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ABSTRACT 15 

The monitoring of soil contamination deriving from oil and gas industry remains difficult in 16 

vegetated areas. Over the last decade, optical remote sensing has proved helpful for this purpose. 17 

By tracking alterations in vegetation biochemistry through its optical properties, multi- and 18 

hyperspectral remote sensing allow detecting and quantifying crude oil and petroleum products 19 

leaked following accidental leakages or bad cessation practices. Recent advances in this field 20 

have led to the development of various methods that can be applied either in the field using 21 

portable spectroradiometers or at large scale on airborne and satellite images. Experiments 22 

carried out under controlled conditions have largely contributed to identifying the most important 23 

factors influencing the detection of oil (plant species, mixture composition, etc.). In a perspective 24 

of operational use, an important effort is still required to make optical remote sensing a reliable 25 

tool for oil and gas companies. The current methods used on imagery should extend their scope 26 

to a wide range of contexts and their application to upcoming satellite-embedded hyperspectral 27 

sensors should be considered in future studies. 28 

MAIN ABBREVIATIONS 29 

HM: Heavy Metal 30 

LAD: Lead Angle Distribution 31 

LAI: Leaf Area Index 32 

LCC: Leaf Chlorophyll Content 33 

LWC: Leaf Water Content 34 

NIR: Near-Infrared 35 

REP: Red-Edge Position 36 

RTM: Radiative Transfer Model 37 
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SWIR: Short-Wave Infrared 38 

TPH: Total Petroleum Hydrocarbons 39 

UAV: Unmanned Aerial Vehicle 40 

UV: Ultraviolet 41 

VI: Vegetation Indices  42 

VIS: Visible  43 
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1. Introduction 67 

Oil and gas industry currently holds a key role in the global energy mix [1–3]. Since the 68 

beginning of the 20th century, crude oil supply has continuously increased to satisfy a growing 69 

demand, reaching over 35 billion barrels (Gb) produced in 2017 [4–6]. Although a global peak of 70 

production – followed by a decline – is expected in the future, its timing remains largely 71 

unprecise as it depends on several factors, such as reserve estimates, and on the scenario that will 72 

frame the energy mix [7–10]. According to the International Energy Agency, oil production will 73 

become 8 million barrels per day greater in 2040 than today under the New Policy Scenario, 74 

which considers current government goals and policies. However, the increase of oil production 75 
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[11] goes together with a greater exposure of ecosystems to contamination, which remains a 76 

global ecological issue. 77 

Once extracted from oil fields, crude oil is then refined to petroleum products [12–14]. At 78 

every step of the production process, oil spills and leakages may contaminate the soil and affect 79 

ecosystems. They result from facility failures, bad practices and storm events (Figure 1a-g). For 80 

example, extraction wells, pipelines, refineries and mud pits are common sources of contaminant 81 

leaked in the environment [15–20]. This includes crude oil, petroleum products, wastewaters and 82 

oil sludge [21–23]. All these contaminants cause severe ecological disturbances, such as 83 

landscape fragmentation and habitat loss or alteration, and affect human health [24–27]. 84 

Therefore, fast-detection is needed for assessing contamination and limiting its impacts. Lots of 85 

techniques have been developed for this purpose in response to major offshore oil spills [28]. 86 

However, the onshore domain – which stands for 70% of the global oil supply [29] – did not 87 

receive the same attention. Main advances have been achieved in pipeline leak detection, one of 88 

the most important source of oil contaminants in the environment [30–33]. Conversely, only 89 

little improvements have been made in assessing soil contamination deriving from extraction and 90 

refining activities or bad cessation management. Such operations are often made by field 91 

operators and do not guarantee an early detection of released contaminants, especially when it 92 

implies low and continuous quantities. They are time-consuming and lead to heavy ecological 93 

consequences when the contamination is not detected at early stage. Among promising 94 

alternatives, remote sensing could achieve fast detection of oil at large scale, fulfilling the needs 95 

of oil and gas companies. Encouraging perspectives of operational applications have emerged in 96 

this field, thanks to a growing interest over the last decades. 97 
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 98 

Figure 1. Principal sources of environmental contamination caused by oil activities. (a) Oil 99 

sludge pit [34], (b-c) vegetation and soil contaminated by crude oil leakage near a refining 100 

facility [35], (d) pipeline leakage [36], (e) crop contamination resulting from oil well blow out 101 

[37], (f) oil leakage from damaged storage tank following a storm [38] and (g) contaminated 102 

wastewater near a production site [39]. 103 

Active and passive remote sensing provide information about the composition of surfaces at 104 

large scale, by analyzing their radiometric properties in various domains of the electromagnetic 105 

spectrum [40,41]. Applications in onshore oil industry mainly rely on passive optical remote 106 

sensing, which exploits the [400:2500] nm reflective domain [42]. However, the real interest 107 

given to remote sensing by oil and gas companies started a few decades ago, with the emergence 108 

of passive hyperspectral sensors (Figure 2) [43]. Hyperspectral sensors provide reflectance data 109 

over multiple and contiguous wavelengths of the optical reflective domain [41]. They give access 110 

to the spectral signature of surfaces (e.g. waterbodies, soils, vegetation), which helps determining 111 

their composition (Figure 2). Hyperspectral imaging sensors include drone-/UAV-, airborne- and 112 

satellite-embedded sensors [44]. Some of them provide high to very high spatial resolution 113 
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images (metric to centimetric), making possible to detect small targets. In complement, field 114 

portable spectroradiometers are usually used for collecting point reflectance data under 115 

controlled conditions or in the field [45]. The use of hyperspectral sensors for detecting apparent 116 

oil usually relies on exploiting the optical properties of petroleum hydrocarbons. For example, 117 

recent attempts succeeded in detecting contamination around industrial facilities using 118 

hyperspectral airborne and satellite imagery, by exploiting the spectral signature of soils [35,46]. 119 

From an operational point of view, hyperspectral imagery could thus provide a rapid diagnosis of 120 

oil-contaminated surfaces at large scale, but serious limits still compromise its use in vegetated 121 

regions. 122 

 123 

 124 

Figure 2. Principle of passive hyperspectral imagery (adapted from [47]). This technology 125 

provides the reflectance of surfaces over a continuous spectrum in the optical reflective domain 126 

(i.e. the spectral signature). 127 

 128 
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On sites covered by dense vegetation, optical remote sensing remains ineffective for detecting 129 

oil seepages and leakages directly, because light penetration is strongly limited by the foliage 130 

and the spectral signature of soils is thus not accessible. The only information about soil 131 

composition can be provided indirectly by vegetation through its optical properties [48–50]. This 132 

can be achieved because vegetation reflectance is closely linked to its biophysical and 133 

biochemical parameters (e.g. pigments), which are good indicators of environmental – especially 134 

stressful – conditions [51–53]. Consequently, unfavorable growing conditions in soils result in 135 

modifications of vegetation health and optical properties that can be tracked using hyperspectral 136 

remote sensing [23,54,55]. Therefore, since crude oil and petroleum products affect vegetation 137 

health, they can be detected and quantified indirectly using optical imagery [56–59]. To achieve 138 

this, several conditions must be fulfilled: (1) The contamination must affect the biophysical and 139 

biochemical parameters of vegetation, (2) alterations in these parameters must modify the 140 

spectral signature of vegetation and (3) the specifications of imaging sensors (e.g. the spatial and 141 

spectral resolutions) must make it possible to track these alterations. This implies good 142 

knowledge about the parameters of vegetation influencing its reflectance, as well as their 143 

response to oil contamination. Recent studies carried out under controlled and natural conditions 144 

have highlighted the need to develop methods specifically dedicated to this purpose, as well as 145 

the current pitfalls and limits to overcome [50,54,55,58]. Hence, an important effort still remains 146 

to make hyperspectral remote sensing an operational tool for monitoring oil contamination. Yet, 147 

no review has been proposed in that field. Previous review focused either on heavy metals 148 

contamination deriving from agriculture and mining [60,61] or on soil contamination in general 149 

[62,63]. However, recent studies emphasized that crude oil and petroleum products cannot be 150 
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treated in the same way as other contaminants when assessing sol contamination from vegetation 151 

reflectance. Hence, they must be addressed separately. 152 

The present review is intended to provide a comprehensive state-of-the-art of advances and 153 

challenges in the use of optical remote sensing for monitoring oil contamination in vegetated 154 

areas. It is addressed to non-specialists from a wide range of disciplines. This review is 155 

organized in accordance to the three points listed above. A first section summarizes the optical 156 

properties of vegetation in the reflective domain. Then, an overview of the effects induced by oil 157 

contamination on vegetation health is proposed. These two sections introduce key notions for 158 

non-specialists. Finally, the following sections go further into details of the topic. They focus on 159 

the consequences on these effects on vegetation reflectance and the methods developed to detect 160 

them under controlled and field conditions and using airborne and future satellite imagery. 161 

 162 

2. Vegetation optical properties in the reflective domain (400 – 2500 nm) 163 

Over the last 30 years, vegetation health assessment sparked an extensive attention by the 164 

remote sensing community. Then, the development of airborne- and satellite-embedded optical 165 

sensors opened the way to various applications in agriculture and ecology, thanks to a better 166 

comprehension of vegetation optical properties. The use of field portable spectroradiometer 167 

helped achieving this by providing reflectance data acquired at leaf or canopy scales. In the 168 

reflective domain, vegetation optical properties are driven by biophysical and biochemical 169 

parameters. They provide a singular shape to the spectral signature of healthy green vegetation, 170 

characterized by a peak of reflectance in the visible (VIS, 400 – 750 nm), a plateau in the near-171 

infrared (NIR, 750-1300 nm) and two marked peaks in the short-wave-infrared (SWIR, 1300 – 172 
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2500 nm) (Figure 3). Leaf pigment and water contents and anatomy are the main parameters 173 

involved. 174 

 175 

Figure 3. Typical spectral signature of healthy green leaf and most influential parameters in the 176 

different spectral regions. 177 

 178 

2.1. Influence of leaf pigments in the visible region (400 – 750 nm) 179 

A large diversity of pigments is present in plants [64–66]. Pigments are essential to the 180 

development of vegetation, because of their implications in photochemical reactions. They 181 

absorb light at various wavelengths in the ultraviolet (UV) and VIS regions, depending on their 182 

chemical properties. Consequently, the spectral signature of vegetation is strongly linked to leaf 183 

pigment content between 400 and 750 nm [64,67,68]. This makes possible to track changes in 184 

pigments using multi- and hyperspectral sensors. 185 

Chlorophylls a and b are the main pigments present in leaves. They are good indicators of 186 

vegetation health [69–71], making them largely studied in remote sensing [72–74]. Chlorophyll 187 

concentration usually ranges from 0 to 80 µg.cm-2 in crops [75], of which only 20% are 188 

represented by chlorophyll b in healthy green leaves [76]. These pigments show two light 189 
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absorption peaks at 440-450 (blue) and 650-670 nm (red) [77,78]. Due to their important 190 

concentration in leaves, chlorophylls have a strong influence on the spectral signature, so they 191 

are likely to hide the effects of other pigments sharing common absorption wavelengths. More 192 

precisely, the weak light absorption of chlorophylls around 550 (green) and 700 nm (red-edge) 193 

results in high correlation with leaf reflectance in these regions [67,79]. Hence, remote sensing 194 

mostly exploits these wavelengths to quantify leaf chlorophyll content (LCC) [74]. A large 195 

diversity of approaches have been developed for tracking changes in LCC, such as simple or 196 

normalized reflectance ratios (vegetation indices (VI)) and Radiative Transfer Models (RTM) 197 

[52,64]. These approaches gave particular attention to the inflexion point of reflectance in the 198 

red-edge region – named the Red-Edge Position (REP), which is sensitive to little changes in 199 

LCC (Figure 3) [73,80,81]. 200 

Carotenoids are the other photosynthetic pigments found in plants [82]. They can be 201 

distinguished in two categories: carotenes and xanthophylls, which absorb light mainly in the 202 

blue region (400 – 500 nm). This common feature with chlorophylls explains their masking in 203 

healthy leaves, as their concentration rarely exceeds 25 µg.cm-2 [75]. They are usually less 204 

influential on the spectral signature in the VIS and thus more difficult to quantify by remote 205 

sensing. However, the chlorophyll breakdown observed during leaf senescence increases the 206 

carotenoid-chlorophyll ratio [76,83]. Consequently, leaf reflectance rises between 500 and 750 207 

nm (green – red), so carotenoids become more easily quantifiable (Figure 4). 208 
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 209 

Figure 4. Spectral signatures of Rubus fruticosus L. in the visible region across different 210 

seasonal stages (unpublished data). 211 

 212 

Frequently described as accessory pigments, carotenoids ensure essential photoprotective 213 

functions in plants [84,85]. They prevent leaf tissues from harmful effects of reactive oxygen 214 

species and photochemical stress that occur when absorbed light exceeds the photosynthetic 215 

capacity of leaves [82,83]. Therefore, the quantification of leaf carotenoid content is of great 216 

importance for monitoring vegetation health. Several VI have been designed for this purpose, 217 

such as the Photochemical Reflectance Index (PRI) [86,87]. The PRI exploits reflectance at 531 218 

and 570 nm to track the epoxidation state of the xanthophyll cycle and can be used for assessing 219 

variations of photosynthetic activity across seasons [88,89]. 220 

Leaves also contain non-photosynthetic pigments that are responsible for color changes in 221 

autumn. Several plants turn red during senescence, because of the accumulation of anthocyanins 222 

in vacuoles. Anthocyanins are water-soluble flavonoids that absorb light in the ultraviolet (UV, 223 

250 – 350 nm) and green (500 – 560 nm) regions [90,91]. They ensure a photoprotective 224 

function through UV screening, making them relevant indicators of vegetation health [92,93]. 225 

Other compounds such as tannins are also found in leaves, but their influence on leaf optical 226 
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properties is restricted to the late senescence – or pre-abscission – period [83]. They are 227 

responsible for the browning of leaves. 228 

 229 

2.2. Influence of leaf anatomy in the near-infrared region (750 – 1300 nm) 230 

As pigments do in the VIS, leaf anatomy drives reflectance in the NIR region [53,94]. Leaves 231 

of Angiosperms are formed by successive cellular layers structured in parenchyma – also called 232 

mesophyll – and protected by a cuticle and an epidermis on abaxial (lower) and adaxial (upper) 233 

faces. This anatomy is at the origin of the plateau observed on leaf spectral signature in the NIR 234 

(Figure 3), ranging from 30 to 80% reflectance [53,95,96]. The upper cuticle and epidermis are 235 

the first barriers to the penetration of light. Incident light follows diffuse and specular reflection 236 

at leaf surface, but most radiations go through it and are transmitted to lower layers [97,98]. 237 

The internal anatomy of leaves greatly contribute to their optical properties in the NIR, but 238 

differs between mono- and dicotyledonous species [95,99,100]. In dicotyledonous leaves, cells 239 

are typically arranged in two distinct parenchyma. The upper one – known as palisade 240 

parenchyma – is made of well-structured elongated cells with high chloroplast concentration. 241 

Intercellular spaces are almost absent from this layer so light scattering remains limited. 242 

Conversely, the lower – spongy – parenchyma is characterized by irregularly-shaped and spaced 243 

cells with low chloroplast content. The spongy parenchyma has an important function in leaves, 244 

as it sends back a fraction of incident light to the palisade parenchyma, thus increasing the 245 

photosynthetic activity [101]. In monocotyledonous leaves, parenchyma are undifferentiated. 246 

Cells form a unique layer similar to the spongy parenchyma of dicotyledonous leaves, although 247 

this one is more compact so intercellular spaces are reduced. Several studies showed that the 248 

cuticle and parenchyma thickness, the proportion of intercellular spaces and the arrangement of 249 
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chloroplasts greatly affect leaf reflectance in the NIR [53,94,95,102]. Leaf anatomy substantially 250 

varies among species, partly as a result of phylogeny and adaptation to light conditions [103–251 

105]. Additional factors also influence leaf anatomy and NIR reflectance, such as nutrient and 252 

water availability or soil contamination. 253 

While the anatomy of leaves determines their reflectance in the NIR, other biophysical 254 

parameters prevail when measuring reflectance at canopy scale. The Leaf Area Index (LAI) and 255 

the Leaf Angle Distribution (LAD) are the most influential ones [51,101,106]. Canopy 256 

reflectance is positively correlated to LAI in the NIR, because the influence of bare soil is 257 

reduced in this region as LAI increases (Figure 5) [107]. However, the reflectance reaches a 258 

plateau above very high LAI values (>6) [101]. LAD characterizes canopy architecture, i.e. the 259 

angular orientation of leaves. de Wit [108] proposed to classify species in the following six LAD 260 

types: Planophile, plagiophile, erectophile, extremophile, spherical and uniform. As leaf 261 

orientation is moving away from zero degrees (toward planophile LAD), canopy reflectance 262 

decreases in the NIR [51]. 263 

 264 

Figure 5. Influence of the Leaf Area Index (LAI) on canopy reflectance [51]. 265 

 266 
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Because of its relationship with vegetation biophysical parameters, reflectance in the NIR can 267 

be used to describe leaf anatomy, canopy architecture and ground cover [53,109]. These 268 

parameters have in common to be directly or indirectly influenced by vegetation water status 269 

[96,110,111]. Water availability is a key parameter for understanding vegetation optical 270 

properties, as it drives many physiological mechanisms. 271 

 272 

2.3. Influence of leaf water and dry matter contents in the near-infrared (750 – 1300 nm) and 273 

short-wave infrared (1300 – 2500 nm) regions 274 

Vegetation optical properties are directly influenced by water contained in leaves, which 275 

absorbs light around 970, 1200, 1450, 1950 and 2450 nm [112–114]. These features are easily 276 

observed on the spectral signature of healthy plants and are affected by changes in leaf water 277 

content (Figure 6) [96]. Hence, they are reliable indicators of vegetation water status [115]. In 278 

addition, water is likely to affect reflectance indirectly in other spectral regions, as it is involved 279 

in many physiological mechanisms in plants, such as photosynthesis and leaf turgor. This is 280 

particularly marked for plants undergoing water-deficit stress [57,116]. Changes in leaf turgor 281 

and tissue destructuring induced by insufficient water uptake greatly affect light scattering and 282 

thus leaf reflectance in the whole NIR region [96]. These effects are also observed at canopy 283 

scale, as plant LAI and LAD are also modified by water-deficit stress [117]. 284 



 16

 285 

Figure 6. Spectral signatures of healthy and water-deficient plants. 286 

 287 

Several studies demonstrated the effectiveness of the NIR and SWIR reflectance to assess 288 

vegetation water status by estimating Leaf Water Content (LWC) or Equivalent Water Thickness 289 

(EWT) [112,113,115]. VI and RTM have been widely used for this purpose [118–121]. Although 290 

water absorption bands previously cited may be appropriate [112,113], their utilization remains 291 

limited in airborne or satellite imagery, because of important noise due to atmospheric effects of 292 

water vapor. This limit can be however overcome by exploiting other water-dependent and 293 

atmospherically-resistant wavelengths in the NIR and SWIR regions [121–123]. 294 

As described in this section, vegetation optical properties are strongly linked in the NIR and 295 

SWIR regions, because of direct and indirect influence of water. According to Ceccato et 296 

al.[119], water stands for approximately 55 to 75% of healthy leaf fresh weight for temperate 297 

species. More than two thirds of the remaining part come from hemicelluloses, celluloses, lignins 298 

and proteins, which are often grouped in the “dry matter” term [124,125]. Celluloses are the most 299 

abundant organic compounds on earth and are found in all plants. Hemicelluloses and lignins are 300 

mostly represented in woody species [126,127]. These biochemical parameters share common 301 

light absorption features in the NIR and SWIR regions, at 1200, 1450 – 1490, 1540, 1760, 2100 302 

and 2340 nm [128]. Proteins show quite different light absorption features, located at 1510 – 303 
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1520, 1730, 1980, 2060, 2165 – 2180 and 2300 nm. All these parameters remain difficult to 304 

estimate from vegetation reflectance, because their influence on reflectance in the NIR and 305 

SWIR regions is limited in comparison to water [124,128]. They become however more 306 

influential in dry leaves. Few VI have been designed for retrieving celluloses and lignins content 307 

in leaves or decomposing litter [129,130]. 308 

As outlined in this section, the biophysical and biochemical parameters driving vegetation 309 

optical properties differ according to the spectral region (VIS, NIR and SWIR). Modifications in 310 

these parameters are expressed as changes in the reflectance of leaves and canopies. This makes 311 

possible to detect oil-induced alterations in vegetation health using multi- and hyperspectral 312 

remote sensing. This purpose however requires identifying the most suitable (i.e. oil-sensitive) 313 

spectral regions. A good comprehension of the effects induced by crude oil and petroleum 314 

products on vegetation is mandatory for achieving it. These effects are described in the following 315 

section. 316 

  317 

3. Effects of crude oil and petroleum products on vegetation health 318 

Crude oil and petroleum products leaked from industrial facilities are likely to affect 319 

vegetation health and optical properties. Their particular nature and composition are greatly 320 

responsible for these effects. 321 

 322 

3.1. Composition of crude oil and petroleum products  323 

Crude oil refers to oil in its natural and extractible form, i.e. oil stored in geological formation 324 

and brought to the surface [12]. Petroleum products result from the refining of crude oil. They 325 

include fuels (diesel, gasoline, kerosene), lubricant, waxes and miscellaneous products used in 326 
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various domains (e.g. transportation and industry) [131]. The term oil refers both to crude oil and 327 

petroleum products. Wastewaters and oil sludge are produced during the refining process 328 

[21,22]. Both crude oil and petroleum products are mixtures of volatile to dense hydrocarbons 329 

(called Petroleum hydrocarbons), heavy metals (HM, also termed Trace Metal Elements) and 330 

oxygen, sulfur and nitrogen compounds in various proportions [132–134]. Petroleum 331 

hydrocarbons include Mono- and Polycyclic Aromatic Hydrocarbons (BTEX and PAH, 332 

respectively), and saturated (alkanes or paraffins) and unsaturated (alkenes and alkynes) 333 

hydrocarbons [131]. Total Petroleum Hydrocarbons (TPH) is a generic term that encompasses 334 

all these compounds. Depending on the length of their carbon chain, petroleum hydrocarbons are 335 

refined to different petroleum products [135,136]. An illustration is given in Figure 7. 336 

 337 

Figure 7. Crude oil and petroleum products according to petroleum carbon ranges (reproduced 338 

from [136]). 339 

 340 

The composition of crude oil and petroleum products gives them a high toxicity towards 341 

vegetation [137]. When considered separately, each hydrocarbon and HM type is likely to affect 342 
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vegetation health [138]. Since they are in mixture, it remains difficult to identify which of these 343 

compounds are responsible for the observed response. In addition, interactions can occur among 344 

hydrocarbons and HM and result in synergistic or antagonist effects on vegetation [57]. 345 

However, the influence of mixture composition is still misunderstood. Different mixtures such as 346 

crude oil, diesel or gasoline, lead to different responses of vegetation [57,58,139]. These 347 

responses result from indirect effects caused by modifications of soil physico-chemical and 348 

biological properties, and from direct effects through contact with plant and assimilation in 349 

tissues [140,141]. Both occur at root level and lead to anatomical and biochemical changes in 350 

leaves, so these direct and indirect effects remain difficult to differentiate [142–144]. They are 351 

described jointly here. 352 

 353 

3.2. Effects on soil properties and on plant roots 354 

The phytotoxicity of petroleum hydrocarbons and HM has been subject to numerous studies. 355 

However, no review has been proposed – for terrestrial plants – in this field for almost 50 years 356 

[137]. Since then, few studies have focused on the effects of petroleum hydrocarbons and HM in 357 

mixture [56,145,146]. This topic has been addressed recently and provided a better 358 

comprehension of how vegetation is affected by oil leakages. 359 

Because of their particular nature and composition, crude oil and petroleum products induce 360 

important modifications of soil physico-chemical and biological properties [134,147,148]. 361 

Consequently, they impose selective growing conditions to plants [55]. Soil water regime is one 362 

of the most impacted properties. Because of hydrocarbons, crude oil and petroleum products are 363 

in liquid – highly hydrophobic – form [131]. When found in soils, they occupy a fraction of 364 

porosity that becomes unavailable to water. In addition, by interacting with soil materials 365 
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(especially clay), oil forms a hydrophobic film at their surface, which forces water drainage 366 

toward deeper soil layers. These phenomena contribute to reducing the field capacity of soil and 367 

plant water supply [149–151]. It is amplified by HM, which affect soil water potential and water 368 

uptake by roots once transferred to the soil solution [152]. 369 

Petroleum hydrocarbons represent a considerable enrichment in organic material, leading to an 370 

increase of soil carbon content and carbon / nitrogen ratio (C/N) [134,151,153]. This stimulates 371 

the growth of microorganisms capable of degrading hydrocarbons, thus modifying organic 372 

matter mineralization cycles and reshaping microorganism communities [154–156]. The 373 

biodegradation of hydrocarbons is accompanied by an elevation of soil CO2 concentration, 374 

especially in the presence of vegetation [157]. Some of the HM found in oil are essential to 375 

vegetation growth (e.g. Fe, Zn, Cu), but their occurrence at high concentrations along with other 376 

HM (e.g. Cd, Mg, Pb) also affect microorganisms [158]. They are not degradable and in the case 377 

of oil leakages, they concentrate in the first soil layers [159]. The nitrogen cycle is particularly 378 

impacted by carbon enrichment: the availability of inorganic nitrogen decreases so vegetation 379 

nitrogen status is highly altered [153]. Likewise, several studies revealed that petroleum 380 

hydrocarbons and HM reduce nutrient availability (P, K) and soil Cation Exchange Capacity 381 

(CEC) [150,151,160]. The latter is indeed closely linked to soil organic matter content, C/N ratio 382 

and pH; so many parameters affected by oil [132,134]. Through modifications of soil physico-383 

chemical and biological properties, crude oil and petroleum products thus affect water and 384 

nutrient availability for plants [161]. These effects are called indirect effects. In addition, direct 385 

effects occur when oil is in contact with roots [162]. As they do with soil materials, petroleum 386 

hydrocarbons are able to coat plant roots by adsorbing at their surface. As well as HM, their 387 

assimilation inhibits root growth and causes a thickening of root epidermis, endodermis and 388 
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cortex, and a reduction of root hair diameter and density [140,152,163,164]. These anatomical 389 

changes heavily alter water and nutrient uptake capacities of plants. For some species, they are 390 

partly compensated by a higher allocation of resources to roots. 391 

As soon as water or nutrient supply is no longer sufficient to ensure essential physiological 392 

functions, stressful conditions arise so plant undergoes anatomical and biochemical 393 

modifications that affect its reflectance. These effects are amplified by the accumulation of 394 

certain hydrocarbons and HMs in leaves [138,141,142]. 395 

 396 

3.3. Effects on plant biochemical and biophysical parameters 397 

The biophysical and biochemical parameters affected by exposure to crude oil and petroleum 398 

products are involved in vegetation optical properties. A review of these effects is proposed in 399 

Table 1. The alteration of leaf pigment content is the most frequently described response of plant 400 

to crude oil and petroleum products [58,142,165]. This alteration is induced by that of plant 401 

water and nitrogen status described above [149]. It can be visually observed through symptoms 402 

of leaf discoloration, which vary among species and according to mixture composition 403 

[57,59,163] (Figure 8a-d). The discoloration is caused by a reduction of LCC and indicates a 404 

decrease in photosynthetic activity [139]. This response is very common for water-deficient 405 

plants [37,111]. Although they are naturally present at lower concentrations in leaves, 406 

carotenoids and anthocyanins are also affected [58]. HM accumulation amplifies this effect 407 

[152,166]. 408 

Alterations of biophysical parameters can be observed at different scales. At leaf scale, they 409 

are expressed as a reduction in the number and size of cells and an increase of intercellular 410 

spaces in parenchyma [142,144]. The accumulation of certain hydrocarbons and HMs – 411 
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especially Cd and Mg – also causes tissue destructuring [137,138]. Consequently, important 412 

modifications of leaf spectral signature are expected in the NIR region. At canopy scale, water 413 

and nutrient deficiency leads to a limited development (i.e. a reduction of leaf and stem length 414 

and density), reducing aboveground biomass and LAI. In addition, changes in leaf anatomy and 415 

water content affect plant habit and consequently LAD. 416 

  417 
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 418 

Figure 8. Visible stress symptoms commonly observed on leaves under exposure to crude oil 419 

and petroleum products. These symptoms are associated to alteration in pigment content. (a-b) 420 

Canavalia ensiformis (L.) DC grown on diesel-contaminated soil [163]. (c-d) Rubus fruticosus L. 421 

grown on (c) mud pit- and (d) crude oil-contaminated soils [57]. 422 

 423 

3.4. Sources of variability 424 

The severity of the effects described in section 3.3 highly varies according to the context as 425 

described in Table 1, because these effects are influenced by many factors. The sensitivity of the 426 

species is a determining one [49,167,168]. Since all species do not share similar ecological 427 

requirements, their tolerance to stressful conditions differs. Consequently, a decrease in soil 428 

water and nutrient availability caused by crude oil and petroleum products will not affect all 429 

species in the same way [169]. Moreover, some species are capable of detoxifying hydrocarbons 430 

and HMs accumulated in leaves through mechanisms of sequestration, transportation and 431 

excretion [145,170]. This prevents biochemical alterations and tissue destructuring. Few species 432 

are even stimulated by the enrichment of soil organic matter provided by crude oil and petroleum 433 

products, but this response remains uncommon [171,172]. This variability in species’ sensitivity 434 

has strong implications under natural conditions. For example, only few species are established 435 

around natural oil seepages [55]. Their presence is explained by a high tolerance to chronic crude 436 
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oil exposure, so these species undergo no or little alterations. Mud pits contaminated by oil 437 

production residues (e.g. oil sludge) are similar cases [16,49,56,57,161]. Conversely, crude oil 438 

and petroleum products leaked from drilling well, storage tank and pipeline leakages consist in a 439 

rapid exposure of oil-intolerant species. In those conditions, severe alterations and sometimes 440 

plant death are observed [26,58,165]. 441 

Petroleum hydrocarbon and HM availability for plants strongly varies according to their 442 

chemical properties. For example, low-carbon PAHs and As are easily accumulated in leaves 443 

[138]. Therefore, mixture composition influences plant response, so different crude oils or 444 

petroleum products (e.g. diesel, gasoline) do not affect leaf biophysical and biochemical 445 

parameters of a single species in the same extent [57,137,141]. Apart from mixture composition, 446 

these effects are also conditioned by the level and time of exposure to oil [58,149,168]. More 447 

precisely, the amplitude of pigment and water content alteration in leaves is positively correlated 448 

to the overall TPH concentration [49]. Above a threshold concentration that depends on species’ 449 

sensitivity (generally in g.kg-1), plant death can be observed after only few days [142,167]. In 450 

contrast, several weeks of exposure might be required to induce biophysical and biochemical 451 

alterations at low concentrations (µg to mg.kg-1) [163,172]. 452 

Although the effects of petroleum hydrocarbons and HM mixtures on vegetation are well 453 

documented in the literature, they cannot be generalized to all contexts of oil leakages because 454 

their severity depends on many factors. Species’ sensitivity, mixture composition and 455 

concentration and exposure time have been identified as the most influential ones. These factors 456 

have critical implications in remote sensing, since they determine the amplitude of reflectance 457 

changes in vegetation and thus hydrocarbon detectability using airborne and satellite-embedded 458 

sensors. 459 
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Table 1. Effects induced by crude oil and petroleum products on vegetation biophysical and biochemical parameters. (⇑ and ⇓ 

denotes increase and decrease in the measured parameter, respectively; * indicates dose-dependent effects; n.a.: not available or not 

measured.) 

Species Crude oil 
Petroleum product TPH Total time 

of exposure Anatomy / Development Pigments / Photosynthesis Water status Ref. 

Ailanthus altissima Mill. Oil sludge 10-40% 240 days ⇓ Shoot length and biomass* ⇓ Photosynthesis* 
⇓ Stomatal conductance* 

⇓ Leaf transpiration* 
[173] 

Allophylus edulis Crude oil 13.65 g.kg-1 30-60 days ⇑ Shoot length and biomass unchanged n.a. n.a. [162] 

Amorpha fruticosa Crude oil 5-20 g.kg-1 6 months ⇓ Shoot biomass* ⇓ Leaf chlorophyll content* 
⇓ Leaf water content 

⇓ Stomatal conductance and transpiration 
rate* 

[174] 

Canavalia ensiformis Diesel 22,219 mg.kg-1 30 days ⇓ Palisade and spongy parenchyma thickness 
⇓ Stem and leaf length and biomass 

Leaf discoloration and necrosis 
⇓ Leaf chlorophyll content 
⇓ Leaf carotenoid content 

n.a. [163] 

Capsicum annum Lubricating oil 1-5% 84 days ⇓ Shoot length* 
⇓ Leaf area* 

n.a. n.a. [167] 

Cedrela odorata Crude oil 18-47.10 g.kg-1 245 days ⇓ Shoot length and biomass n.a. n.a. [168] 

Corchorus olitorius Engine oil 0.2-3% 6 weeks 
⇓ Shoot length* 

⇓ Leaf area* 
⇓ Leaf chlorophyll content* ⇓ Leaf water content* [175] 

Cyperus brevifolius Crude oil 10-50 g.kg-1 6 months 

⇑ Cuticle thickness* 
⇓ parenchymatous cell length and diameter* 
⇓ intercellular spaces length and diameter* 

⇓ Shoot biomass* 

Light to very dark leaves 
⇓ Leaf chlorophyll content* 

n.a. [142] 

Deschampsia caespitosa Petroleum cokes n.a 3 months ⇓ Shoot length 
⇓ Leaf chlorophyll content 
⇓ Leaf carotenoid content 

⇓ Transpiration rate and stomatal 
conductance 

[176] 

Fraxinus rotundifolia Mill. Oil sludge 10-40% 240 days ⇓ Shoot length and biomass* ⇓ Photosynthesis* 
⇑ Stomatal conductance until day 80* 
⇓ Stomatal conductance after day 80* 

⇓ Leaf transpiration* 
[173] 

Glycine hyspida 
 

Crude oil 1.3-3.1 g.kg-1 >6 months ⇓ Shoot biomass* n.a. n.a. 

[134] Crude oil (spill) 1.1-3.8 g.kg-1 >6 months ⇓ Shoot biomass* n.a. n.a. 

Drilling fluids 1.6-76.1 g.kg-1 >6 months ⇓ Shoot biomass* n.a. n.a. 

Haematoxylum campechianum Crude oil 18-47.10 g.kg-1 245 days ⇓ Shoot length and biomass n.a. n.a. [168] 

Hordeum vulgare 

Crude oil 1.3-3.1 g.kg-1 >6 months ⇓ Shoot biomass n.a. n.a. 

[134] Crude oil (spill) 1.1-3.8 g.kg-1 >6 months Shoot biomass unchanged n.a. n.a. 

Drilling fluids 1.6-76.1 g.kg-1 >6 months ⇓ Shoot biomass* n.a. n.a. 

Lycopersicon esculentum Lubricating oil 1-5% 84 days ⇓ Shoot length* 
⇓ Leaf area* 

n.a. n.a. [167] 
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Species Crude oil 
Petroleum product TPH Total time 

of exposure Anatomy / Development Pigments / Photosynthesis Water status Ref. 

Medicago sativa Oil sludge 4-5% 9 weeks ⇓ Shoot length and biomass unchanged n.a. n.a. [161] 

Melia azedarach L. Oil sludge 10-40% 240 days ⇓ Shoot length and biomass* 
⇓ Leaf area 

⇓ Photosynthesis* 
⇓ Stomatal conductance* 

⇓ Leaf transpiration* 
[173] 

Phragmites australis Crude oil 2-12 g.kg-1 2 months ⇓ Shoot biomass* n.a. n.a. [153] 

Robinia pseudoacacia L. Oil sludge 10-40% 240 days ⇓ Shoot length and biomass* 
⇓ Leaf area 

⇓ Photosynthesis ⇓ Stomatal conductance [173] 

Swietenia macrophyll Crude oil 18-47.10 g.kg-1 245 days ⇓ Shoot length and biomass n.a. n.a. [168] 

Tabebuia rosea Crude oil 18-47.10 g.kg-1 245 days ⇓ Shoot length and biomass n.a. n.a. [168] 

Terminalia catappa Crude oil (spill) n.a 3 weeks 
⇑ Cuticle thickness 

⇑ Epidermal cell diameter 
⇑ Palisade and ⇓ spongy parenchyma thickness 

n.a. n.a. [144] 

Triticum aestivum 

Crude oil 1.3-3.1 g.kg-1 >6 months ⇓ Shoot biomass n.a. n.a. 

[134] Crude oil (spill) 1.1-3.8 g.kg-1 >6 months ⇓ Shoot biomass* n.a. n.a. 

Drilling fluids 1.6-76.1 g.kg-1 >6 months ⇓ Shoot biomass* n.a. n.a. 

Triticum aestivum Petroleum cokes n.a 2 months ⇓ Shoot length 
⇓ Leaf area 

⇓ Leaf chlorophyll content 
⇓ Leaf carotenoid content 

⇓ Transpiration rate and stomatal 
conductance 

[176] 

Vicia faba Crude oil 1.56-50% 30 days ⇓ Shoot biomass 
⇓ Leaf chlorophyll content 

Leaf carotenoid content 
unchanged 

⇓ Leaf water content [177] 

Vicia faba 

Crude oil 9-18 g.kg-1 5 weeks ⇓ Shoot length and biomass* n.a. n.a. 

[141] Diesel 9-18 g.kg-1 5 weeks ⇓ Shoot length and biomass* n.a. n.a. 

Engine oil 9-18 g.kg-1 5 weeks ⇓ Shoot length and biomass* n.a. n.a. 

Zea mays Crude oil 0.28-0.66% 6 weeks ⇓ Shoot biomass ⇓ Leaf chlorophyll content 
⇓ Leaf water, osmotic and turgor 

potentials 
[149] 
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4. Detection of crude oil and petroleum products using vegetation optical properties 451 

The previous introductory sections provided key elements to understand how the biophysical 452 

and biochemical parameters of vegetation drives its reflectance, and how these parameters are 453 

affected by oil contamination. It is therefore expected that these biophysical and biochemical 454 

alterations will modify the reflectance of vegetation, at leaf and plant scales, making possible to 455 

detect oil contamination indirectly. This section summarizes the modifications of vegetation 456 

reflectance induced by crude oil and petroleum products, and the existing methods developed to 457 

track these modifications, under controlled and field conditions. 458 

Vegetation optical properties have been extensively used for tracking alterations in pigment or 459 

water content caused by biotic and abiotic factors [178–182]. Conversely, their exploitation in oil 460 

leakage detection has been initiated more recently [57,59,165]. Major progress has been made in 461 

this field by taking advantage of multi- and hyperspectral methods developed for assessing 462 

vegetation health in other contexts, such as crop and ecosystem monitoring. Some of these 463 

methods – especially VI and RTM – proved efficient for tracking oil-induced alterations in 464 

vegetation reflectance under controlled and field conditions, from spectroradiometer-acquired 465 

reflectance data [57,59,172,183]. 466 

  467 

4.1. Effects of crude oil and petroleum products on vegetation reflectance 468 

As described in section 3, crude oil and petroleum products affect the main biophysical and 469 

biochemical parameters driving vegetation optical properties. These effects result in 470 

modifications in the spectral signature at leaf and canopy scales, which have been studied under 471 

greenhouse or field conditions. They are summarized in Table 2. The VIS has been mostly 472 

exploited for tracking the effects of crude oil and petroleum products from the spectral signature 473 
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of vegetation, because of its strong link with pigments [59,139,165,183]. The alteration of 474 

chlorophyll content described in the previous section immediately leads to an increase of 475 

reflectance in this region, at leaf and canopy scales (Figure 9) [57,58]. 476 

This increase is essentially located in the green-red wavelengths (500 – 670 nm), where it can 477 

reach 20%, and is expressed as a shift of the REP toward shorter wavelengths around 700 nm. In 478 

comparison, the blue wavelengths (400 – 500 nm) are weakly affected. This response is observed 479 

after few days of exposure – even at low concentration – and becomes more pronounced in time, 480 

making crude oil and petroleum products more easily detectable. Once again, it is difficult to 481 

identify the most contributing hydrocarbons and HMs, since a single of these compounds is able 482 

to induce a similar response [146,184,185]. 483 

 484 

Figure 9. Spectral signatures of leaves of Zea mays L. grown for 14 days on engine oil-485 

contaminated (48 – 214 g.kg-1) or uncontaminated soils (modified from [59]). 486 

 487 

Although the increase of green-red reflectance and the shift of the REP are frequent, an 488 

absence of reflectance change has been sometimes observed in studies (Table 2) [16,139,186]. In 489 

addition, some oil-tolerant species exhibit modifications of reflectance in the first stages of 490 

exposure to oil, and then recover reflectance values similar than those of healthy plants [57]. 491 
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Other species are even stimulated by low TPH concentrations, inducing a decrease in reflectance 492 

[172]. This underlines the variability of vegetation response to crude oil and petroleum products 493 

discussed in section 3.4. Of the mentioned studies, some clearly linked the level of pigment 494 

content alteration to that of reflectance in the VIS [49,57,183]. They focused on leaf chlorophyll 495 

content, because of its major influence on reflectance in the 500 – 670 nm wavelengths [183]. 496 

Sanches et al. [58,165] conducted an experiment on four oil-sensitive species exposed to 497 

gasoline and diesel and concluded that carotenoid content had only few contribution to 498 

reflectance changes in the VIS. Conversely, these pigments were highly involved in the reponse 499 

of oil-tolerant species in other studies [57,172]. 500 

As described in section 2.2, reflectance in the NIR is highly dependent on the species – 501 

especially mono- and dicotyledonous – and on the acquisition scale (leaf, canopy). The same 502 

factors, as well as mixture composition, lead to contrasted response of vegetation in this region 503 

(Table 2). Whether they result from an increase or a decrease of reflectance, differences between 504 

healthy and affected vegetation can exceed 20% in the NIR [58]. A decrease in reflectance is 505 

more likely to be observed at canopy scale, since plant development – and thus LAI – is strongly 506 

limited by hydrocarbons and HMs. However, several exceptions have been noticed in the 507 

literature. As pointed out by three studies [57,58,139], a single species can undergo opposite 508 

reflectance changes in the NIR, depending on the crude oil or petroleum product to which it is 509 

exposed. Likewise, two species exposed to a similar concentration of the same petroleum 510 

product can exhibit contrasted responses in this region [187]. This causes serious detection limits 511 

in regions with high species diversity. Similar observations have been made at leaf scale, where 512 

reflectance in the NIR mainly depends on anatomy. However, no study demonstrated the 513 

relationship between alterations of parenchyma and reflectance changes in this region. 514 
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Because of modifications in vegetation water status, the SWIR is largely impacted by exposure 515 

to crude oil and petroleum products. As well as in the NIR, the response of vegetation in the 516 

SWIR varies among studies (Table 2). In the case where a decrease of reflectance is observed on 517 

exposed vegetation, it remains rarely lower than 10% [188]. Conversely, an increase of 518 

reflectance, which is more consistent with the reduction of leaf water content and canopy LAI, 519 

can exceed 20% for the most oil-sensitive species. In both cases, the response appears later than 520 

in the VIS and is thus a good indicator of a long-term exposure. As expected, the most affected 521 

wavelengths are located in water absorption features [183]. Because of low atmospheric 522 

transmission, these features are however unusable at canopy – and image – scale, but other ones 523 

(e.g. 1600 and 2200 nm) proved to be good alternatives [57,58]. Vegetation reflectance in the 524 

SWIR also depends on celluloses, hemicelluloses, lignins and proteins, which have already been 525 

reported as slightly sensitive to petroleum products in one study [58]. Because of the strong 526 

influence of LWC in this region, it is unlikely that alterations in these biochemical compounds 527 

have major contribution to the modifications of reflectance described here. 528 

  529 
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Table 2. Effects induced by crude oil and petroleum products on vegetation reflectance in the different spectral regions, at leaf and 

canopy scales. This review includes studies carried out under experimental or field conditions and implying point reflectance 

measurements using a spectroradiometer. (VIS: Visible, NIR: Near Infra-Red, SWIR: Short-Wave InfraRed, ⇑ and ⇓ denotes 

reflectance increase and decrease, respectively; FC: Field capacity; * indicates dose-dependent effects; n.a.: not available; n.s.: non-

significant effect.) 

Species Conditions Crude oil  
petroleum product TPH Total time 

of exposure 

Reflectance - Leaf scale 
  Reflectance - Plant / Canopy scale 

Ref. 

VIS NIR SWIR  VIS NIR SWIR 

Brachiaria brizantha 
Field Diesel 12.7 L.m-3 30 days ⇑* ⇑* ⇑*  ⇑* ⇑* ⇑* 

[58] 
Field Gasoline 12.7 L.m-3 30 days ⇑* ⇓* ⇑*  ⇑* ⇓* ⇑* 

Buddleja davidii Franch. Field Mud pit 16-77 g.kg-1 n.a.a n.s. n.s. n.s.  n.a. n.a. n.a. [49] 

Cenchrus alopecuroides (L.) Experimental Mud pit 14 g.kg-1 60 days     ⇑ ⇓ ⇑ [56] 

Cenchrus alopecuroides (L.) Experimental Mud pit 1-19 g.kg-1 42 days ⇑* ⇑* ⇑*  ⇑* ⇑* ⇑* [172] 

Cornus sanguinea L. Field Mud pit 16-77 g.kg-1 n.a.a ⇑* ⇑* ⇑*  n.a. n.a. n.a. [49] 

Forsythia suspensa Experimental Engine oil 20-60 % soil FC 28 days ⇑* ⇑ n.a.     [187] 

Neonotonia wightii 
Field Diesel 6.25 L.m-3 184 days ⇑* ⇓* ⇓*  ⇑* ⇓* ⇓* 

[188] 
Field Gasoline 6.25 L.m-3 184 days ⇑* ⇓* ⇓*  ⇑* ⇓* ⇓* 

Panicum virgatum L. Experimental Mud pit 14 g.kg-1 60 days n.a. n.a. n.a.  ⇑ ⇓ ⇑ [56] 

Pennisetum alopecuroides Experimental Engine oil 20-60 % soil FC 28 days ⇑* ⇓* n.a.  n.a. n.a. n.a. [187] 

Phragmistes australis Field Oil well leak 9.45-652 mg.kg-1 n.a.a n.a. n.a. n.a.  ⇑* ⇓* n.a. [189] 

Populus x canadensis Moench. Field Mud pit 16-77 g.kg-1 n.a.a ⇑* ⇑* ⇑*  n.a. n.a. n.a. [49] 

Quercus pubescens Wild. Field Mud pit 16-77 g.kg-1 n.a.a ⇑* ⇑* ⇑*  n.a. n.a. n.a. [49] 

Rubus fruticosus L. Experimental Mud pit 4-40 g.kg-1 100 days ⇑ ⇑ ⇑  ⇑ ⇑ ⇑ [16] 

Rubus fruticosus L. Experimental Mud pit 36 g.kg-1 60 days ⇑ ⇑ ⇑  ⇑ ⇑ ⇑ [56] 

Rubus fruticosus L. 
Experimental Mud pit 6-25 g.kg-1 32 days ⇑ or n.s.* ⇑ or ⇓* ⇑ or ⇓*  ⇑ or n.s.* ⇓* ⇑ or ⇓* 

[57] 
Experimental Crude oil 25 g.kg-1 32 days ⇑ ⇑ ⇑  ⇓ ⇓ ⇑ 

Rubus fruticosus L. Field Mud pit 16-77 g.kg-1 n.a.a ⇑* ⇑* ⇑*  n.a. n.a. n.a. [49] 

Salicorna virginica Experimental Alba' crude oil 7.7-9.1 % 32 days n.s. ⇑ n.a.  n.a. n.a. n.a. [139] 

                                                 

a Naturally-established vegetation 
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Experimental Escravos' crude oil 0.7-1.4 % 32 days ⇓ ⇓ n.a.  n.a. n.a. n.a. 

Species Conditions Crude oil  
petroleum product TPH 

Total time 
of exposure 

Reflectance - Leaf scale  Reflectance - Plant / Canopy scale 

Ref. 
VIS NIR SWIR  VIS NIR SWIR 

Triticum sp. Experimental Gasoline 10-100 ml.kg-1 106 days n.s. n.s. n.s.  n.a. n.a. n.a. [186] 

Zea mays 
Field Diesel 6.25 L.m-3 184 days ⇑* ⇓* ⇓*  n.a. n.a. n.a. 

[188] 
Field Gasoline 6.25 L.m-3 184 days ⇑* ⇓* ⇓*  n.a. n.a. n.a. 

Zea mays Experimental Engine oil 48-241 g.kg-1 14 days ⇑* ⇓* n.a.  n.a. n.a. n.a. [59] 

Zea mays Experimental Mud pit 4-40 g.kg-1 100 days n.s. ⇓ ⇑  n.a. n.a. n.a. [16] 

Zea mays 
Field Gasoline 8.33 L.m-3 203 days ⇑* ⇓* ⇓*  n.a. n.a. n.a. 

[188] 
Field Diesel 8.33 L.m-3 203 days ⇑* ⇓* ⇓*  n.a. n.a. n.a. 

Zea mays Experimental Engine oil 96 g.kg-1 20 days ⇑ ⇑ ⇑  n.a. n.a. n.a. [116] 
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4.2. Methods developed for detecting crude oil and petroleum products under controlled and 530 

field conditions 531 

The studies carried out to characterize the spectral response of vegetation to crude oil and 532 

petroleum products gave rise to various methods for detecting and quantifying TPH. These 533 

methods are based on exploiting the modifications of reflectance described in section 4.1, under 534 

controlled or field conditions. Most of existing methods rely on visual or statistical comparisons 535 

of spectral signatures between healthy and oil-exposed vegetation [16,139]. These methods are 536 

however limited for application beyond the context studied. Other authors exploited reflectance 537 

at particular wavelengths by using VI, REP and spectrum transformations, and converged on the 538 

critical importance of VIS wavelengths [58,59,183]. Gürtler et al.[188] compared these methods 539 

for discriminating among healthy and gasoline- or diesel-exposed vegetation, at leaf and canopy 540 

scales, and concluded that their performance depends on the species. In a single experiment, 541 

Sanches et al. [58] combined first derivative and continuum removal spectra transformation to 542 

Principal Component Analysis (PCA) for similar purpose and identified the red-edge region as a 543 

good indicator of soil contamination. However, none of the above-mentioned methods aimed to 544 

predict whether vegetation is – or has been – exposed to crude oil or petroleum products from its 545 

spectral signature. This represents an important issue for detecting contamination under natural 546 

conditions without a priori knowledge about their presence. 547 

VI, REP and spectrum transformations have been used for assessing stress-induced alterations 548 

in vegetation health in a wide range of contexts. Filella & Peñuelas [81] used reflectance derived 549 

in the red-edge for tracking changes in LCC and LAI of Capsicum annuum and Phaseolus 550 

vulgaris resulting from nitrogen deficiencies. Likewise, VI exploiting the NIR and SWIR regions 551 

succeeded in tracking water-stress caused by insufficient irrigation or pests [120,190]. When 552 
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used in classification or simple and multiple regression methods, these reflectance data allow 553 

predicting stressed vegetation and quantifying biophysical and biochemical parameters 554 

automatically [191–194]. Therefore, they are great candidates for detecting crude oil and 555 

petroleum products and quantifying TPH indirectly. 556 

Classification relies on the combination of several discrete or continuous variables (e.g. 557 

reflectance data, VI) to predict a categorical response variable (e.g. “healthy” or “stressed”) 558 

through a mathematical function [195]. Here, we only consider supervised classification. In most 559 

cases, these methods are first calibrated on a set of data with known categories, called the 560 

training set, and tested on an independent set – the test set - by predicting categories and 561 

comparing them to the true ones [196]. Numerous classification methods have been proposed in 562 

the literature [197–199]. When dealing with hyperspectral data, several constraints yet arise. 563 

Since reflectance is measured over multiple and contiguous wavelengths, it is not rare to have 564 

more variables than observations (i.e. reflectance wavelengths > sample size). This phenomenon, 565 

known as the Hughes’ effect [200], leads to overfitting of the training set, which negatively 566 

affects classification accuracy. This effect can be partly avoided by reducing the dimensionality 567 

of the variables using, for example, Principal Component Analysis (PCA). Focusing on 568 

vegetation studies, Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), 569 

Random Forest (RF) and Spectral-Angle-Mapper-based classification (SAM) revealed to be 570 

particularly efficient for discriminating healthy and stressed categories while avoiding overfitting 571 

[192,194,201,202]. However, an exhaustive review proposed by Lowe et al. [179] stated that no 572 

consensus is made in the choice of the method, since their performance highly depends on the 573 

purpose of the classification. Few methods allow identifying the most important (i.e. 574 

discriminant) variables through weighting or stepwise selection criteria [201,203]. Stepwise 575 
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Forward LDA [204] has been specifically designed for this purpose, but remains poorly adapted 576 

to hyperspectral data because of high multicollinearity. In a spectral region, multicollinearity 577 

occurs when reflectance data are linear combination of each other [205]. For example, 578 

correlation coefficients (r) among reflectance data from different red wavelengths can easily 579 

exceed 0.8, which indicates high redundancy. Variable selection becomes very difficult in this 580 

case. To achieve it, penalized methods have been developed, such as the Elastic net [206], but 581 

remain underexploited in vegetation studies. 582 

Regression methods are used to predict a continuous response variable from one (simple 583 

regression) or several (multiple regression) continuous input variables [207]. In practice, these 584 

methods follow the same calibration – test procedure than for classification. Simple regression 585 

relies on the calibration of univariate models (e.g. polynomial, exponential, etc.). It has been 586 

especially used for predicting LCC from single VI in previous studies [64,67,81]. Multiple 587 

regression regroups a wide range of methods that do not substantially differ from classification 588 

ones, and are constrained by the same overfitting and multicollinearity issues. Regarding 589 

vegetation studies, it has been shown that Stepwise LDA, Partial Least Square Regression 590 

(PLSR) and Support Vector Regression (SVR) are well-suited for retrieving biophysical and 591 

biochemical parameters from hyperspectral data [191,193,208]. Once again, there is no best 592 

method since the performance varies according to the context. Since both classification and 593 

regression methods perform well for detecting and quantifying stress-induced changes in 594 

vegetation health, they are promising for monitoring oil contamination from vegetation 595 

reflectance. Studies listed in Table 2 showed that the mixture composition and the overall TPH 596 

concentration strongly influence the amplitude of reflectance modifications observed in the 597 

whole spectral signature. Based on these observations, predictive methods combining VI and 598 
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either classification and regression approaches have been recently proposed to detect and 599 

characterize oil (i.e. to identify the type of crude oil or petroleum product) and to quantify TPH 600 

concentration in temperate and tropical regions [57,172]. These methods rely on tracking subtle 601 

changes in chlorophyll or various carotenoid contents induced by oil contamination by exploiting 602 

reflectance at multiple wavelengths in the VIS. They proved suitable for use both under 603 

controlled conditions and in the field. 604 

Other methods based on a different approach have been developed for similar purposes. Those 605 

based on RTM are of great interest. RTM are physically-based models aiming to simulate 606 

vegetation optical properties. They are typically classified in four categories: plate models, N-607 

flux models, stochastic models and ray tracing models [98,209]. Focusing at leaf scale, the plate 608 

model PROSPECT is probably the most widespread [52,72]. In its direct mode, PROSPECT 609 

allows simulating leaf optical properties (reflectance and transmittance) in the optical reflective 610 

domain from its biophysical and biochemical parameters (structure and pigment, water and dry 611 

matter contents). Inversion of the model allows retrieving these parameters from reflectance and 612 

transmittance measurements performed on leaves [125]. PROSPECT has been used in many 613 

studies dealing with environmental monitoring purposes [72,210]. While LCC and LWC remain 614 

the most targeted parameters in vegetation stress assessment [119,211], recent improvements of 615 

the model allow separating chlorophylls, carotenoids and anthocyanins with good precision 616 

[68,92]. In a recent study, Arellano et al. [48] inverted the model to compare LCC of various 617 

tropical plant families among uncontaminated and oil-spill sites, and found significant alterations 618 

for some of them. More recently, Lassalle et al. [49] inverted PROSPECT to retrieve oil-induced 619 

chlorophyll alterations in leaves from reflectance data, making possible to quantify TPH 620 

concentrations in soils (Figure 10). These two studies also highlighted the importance of taking 621 
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the species’ sensitivity to oil and the development stage into account, which both determine the 622 

detection and quantification accuracy. 623 

 624 

Figure 10. Relationship between Leaf Chlorophyll Content (LCC) retrieved from the spectral 625 

signature of Rubus fruticosus L. by inverting the PROSPECT model, and the concentration of 626 

Total Petroleum Hydrocarbons (TPH) in mud pit soils [49]. 627 

 628 

Hence, the methods developed for monitoring oil contamination from vegetation reflectance 629 

are largely inspired from those of other fields (agronomy, ecology). In a perspective of 630 

application at large scale – using airborne or satellite imagery, an upscaling of these methods is 631 

necessary. This represents a difficult step to cross toward operational applications over industrial 632 

facilities. 633 

  634 

5. Application in contamination monitoring using airborne and satellite imagery 635 

5.1. Synthesis based on previous studies 636 

Few attempts have been made in detecting oil leakages and contaminated mud pits in vegetated 637 

areas using optical remote sensing in the past (Table 3). In most cases, studies aimed to assess 638 

the impact of crude oil and petroleum products on the environment using multi- (Landsat) or 639 
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hyperspectral (Hyperion) satellite imagery at 30-m spatial resolution [23,212–214]. More rarely, 640 

the goal was to detect natural oil seepages (Figure 11a-b) [55]. A limited number of authors have 641 

used airborne hyperspectral images, and those who did have rarely exploited the entire spectral 642 

signature of vegetation. Almost all the mentioned studies used REP or VI to detect changes in 643 

vegetation health induced by crude oil or petroleum products. As for experiments carried out 644 

under controlled conditions, these methods rely on mean comparison between sites with healthy 645 

and oil-exposed vegetation [54,212,215]. They proved to be efficient for identifying vegetation 646 

stress on seepage or leakage sites, but suffered from serious limits when applied outside the 647 

study area (Figure 11a-b). 648 

 649 

Table 3. Studies aiming to detect and quantify crude oil and petroleum products using multi- 650 

and hyperspectral airborne and satellite images. (Refl.: Reflectance; VI: Vegetation Indices; CR: 651 

Continuum Removal; RF: Random Forest; REP: Red-Edge Position; comp.: Comparison; RTM: 652 

Radiative Transfer Model.) 653 

Vegetation type Target Sensor name Sensor type 
(spatial resolution) 

Bands 
(spectral domain) Method Ref. 

  Multispectral     
Mangrove Crude oil leakage Landsat-8 Satellite (30 m) 9 (435 - 2294 nm) VI + Mean comp. [212] 

Crops, grassland & trees Crude oil leakage Landsat-8 Satellite (30 m) 9 (435 - 2294 nm) VI + RF classification [213] 
Mangrove Crude oil leakage Landsat-5 & -7 Satellite (30 m) 6 (450 - 2350 nm) VI + Simple regression [216] 
Mangrove Crude oil leakage Landsat-5 & -7 Satellite (30 m) 6 (450 - 2350 nm) VI + Mean comp. [216] 

  Hyperspectral     
Wetland Crude oil leakage AISA Airborne (1.5 m) 286 (400 - 2400 nm) Reflectance + Classification [217] 
Crops Benzene pipeline leak HyMap Airborne (4 m) 128 (436 - 2485 nm) REP & VI + Spatial filter [23] 

Temperate shrubs Mud pit HySpex Airborne (1 m) 409 (400 – 2500) 
VI + Classification 

[50] 
RTM + Regression 

Mediterranean grassland Crude oil microseepage Probe-1 Airborne (8 m) 128 (436 - 2480 nm) REP & VI + Spatial filter [55] 
Tropical forest Crude oil leakage Hyperion Satellite (30 m) 242 (400 - 2500 nm) VI + Threshold [54] 

Plain & rainforest Crude oil leakage Hyperion Satellite (30 m) 242 (400 - 2500 nm) CR + Mean comp. [215] 
Plain & rainforest Crude oil leakage Hyperion Satellite (30 m) 242 (400 - 2500 nm) Refl. & VI + Mean comp. [215] 

 654 

In contrast to experimental studies, REP and VI have already been exploited in classification 655 

or anomaly detection methods on multi- and hyperspectral images. However, the performance of 656 
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these methods has been rarely quantified. Their evaluation mostly relied on visual interpretation 657 

of detection mapping with lacking ground validation data, which are often difficult to obtain. 658 

Among notable examples, Ozigis et al. [213] combined 10 VI in random forest on 30-m 659 

resolution Landsat-8 images for detecting oil leakages and obtained an overall accuracy of 660 

maximum 70% on selected sites. Conversely, Arellano et al. [54] applied successive vegetation 661 

index thresholds to map oil-induced stress near production facilities using 30-m resolution 662 

Hyperion images. These methods were first calibrated on a study area, and then applied to the 663 

entire image. In all cases, they led to the apparition of false alarms, especially false positives (i.e. 664 

vegetation stress not induced by petroleum hydrocarbons and HMs) (Figure 11b). This 665 

phenomenon is observed under various contexts (e.g. temperate, tropical) and results from 666 

multiple factors. First, in most studies, the spatial resolution of the images was not adapted to the 667 

size of the target. In addition, as described in section 3.4, certain species are particularly tolerant 668 

to crude oil and petroleum products and undergo only little changes in their spectral signature, 669 

which make them difficult to discriminate from healthy vegetation. In that situation, high 670 

spectral resolution and signal-to-noise ratio are needed to catch these changes in reflectance, so 671 

hyperspectral sensors are required. In addition, natural differences in optical properties among 672 

species and individuals – as well as in sensitivity to oil – make the detection particularly 673 

challenging in areas with high species diversity. For instance, a species exposed to crude oil or 674 

petroleum products may exhibit a similar spectral signature than that of another unexposed 675 

species [49]. This becomes a serious issue at decametric spatial resolution, where species are 676 

highly mixed inside pixels. A similar issue arises when exposed species are mixed with bare soil. 677 

Very high spatial resolution (1 – 2 m) is thus needed to overcome these limits. 678 
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 679 

Figure 11. (a) Crude oil seepage in vegetated area. The seepage is surrounded by a particular 680 

vegetation distribution pattern, which allows being detected (b) from hyperspectral airborne 681 

images using various vegetation indices (see [55] for the description of indices). However, false 682 

alarms (red pixels outside yellow circles) cannot be avoided. Similar observations have been 683 

depicted for accidental oil leakages [54,216].  684 

 685 

Ozigis et al. [213] pointed out several sources of confusion that contribute to increasing false 686 

positives. The presence of crude oil and petroleum products is not the only factor affecting 687 

vegetation health and optical properties under natural conditions. Some biotic or abiotic factors 688 

are likely to induce similar effects, thus introducing confusion. As described in section 3.2, crude 689 

oil and petroleum products reduce water availability for plants and can induce a water-deficit 690 

stress. Under natural conditions, this effect can be easily confused with that of a “natural” water-691 

deficit (i.e. resulting from insufficient precipitation and/or highly drained soils). Although it 692 

seems possible to discriminate these stressors for highly oil-sensitive species under controlled 693 

conditions [59,183], it is more difficult for oil-tolerant species and using airborne or satellite 694 

hyperspectral images. Stress confusion has been identified as one of the most important cause of 695 

misclassification in previous studies. It is therefore necessary to account for these sources of 696 

confusion in each context, when applying detection methods over an entire region. Once again, 697 
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very high spatial and spectral resolutions are needed to achieve efficient discrimination of oil and 698 

other stressors. Although no current satellite-embedded sensor offers such resolutions 699 

simultaneously at the moment, airborne imagery represents a good alternative [217]. 700 

As concluded from the above-mentioned studies, it is not the best option to develop methods 701 

for detecting and quantifying oil using only airborne or satellite images, especially without solid 702 

knowledge about the context (species’ sensitivity, hydrocarbon and HM mixture, other potential 703 

stressors). Experiments carried out under controlled conditions are a necessary first step, since 704 

they help determining the response of vegetation specifically induced by crude oil and petroleum 705 

products. These experiments must be representative of realistic field conditions (i.e. species, 706 

TPH concentrations) and serve as basis for developing classification or regression methods that 707 

are suitable for use on images. The upscaling of methods is the most important difficulty in this 708 

approach, so it is crucial to address it progressively; for example, from leaf to canopy scales and 709 

finally on images. The validation of the methods in the field is an intermediate – and critical – 710 

step prior to imagery application. Then, the methods should be progressively applied to imagery; 711 

first, on selected sites with known species’ sensitivities, and thereafter at large scale. This 712 

multiscale approach proved efficient in recent studies. For example, Lassalle et al. [49,50,57] 713 

developed methods for detecting and quantifying TPH based on bramble reflectance under 714 

controlled and field conditions and succeeded in applying them on airborne hyperspectral images 715 

over contaminated mud pits (accuracy > 90%). 716 

The studies listed in Table 3 demonstrated the feasibility of assessing oil contamination using 717 

optical remote sensing. However, the methods described in these studies were validated locally, 718 

in a specific context. As a perspective, they are intended to be applied operationally in a broader 719 

range of situations encountered in oil contamination monitoring (pipeline leakage, mud pits, 720 
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storage tanks failure, etc.), in various regions (temperate, tropical, etc.). This implies extending 721 

the scope of these methods and overcoming their current limits regarding operating and future 722 

satellite-embedded sensors. 723 

 724 

5.2. Perspectives toward operational applications in oil and gas industry 725 

In an operational context, remote sensing should provide accurate mapping of oil over large 726 

industrial facility sites colonized by vegetation. At this stages, the methods developed for this 727 

purpose remain rarely effective – or often unassessed – outside a given study site [54,55,213], 728 

which limits their operational use. Most of them are adapted to a given species or vegetation type 729 

(mangroves, shrubs, etc.) with known location, so these methods can be applied for identifying 730 

new contaminated sites, provided they are colonized by the same species or vegetation type. This 731 

remains very restrictive, because oil can be mapped only locally and to pre-selected vegetated 732 

sites. Therefore, in an operational perspective, it is essential to extend the scope of the methods 733 

to other contexts (in terms of species and contamination type and level). Likewise, they should 734 

be applicable to entire images, in order to assess oil contamination at large scale. To achieve this, 735 

it is not conceivable to use airborne hyperspectral imagery – especially for daily monitoring, 736 

because it implies an important economic cost. Conversely, satellite imagery is already used 737 

operationally by oil and gas companies for mineralogical mapping and marine oil spill tracking 738 

[218,219]. Satellite-embedded sensors can provide images over industrial facilities on a daily – 739 

or weekly – basis, allowing continuous monitoring of oil contamination. To date, the best spatial 740 

resolution provided by operating and planned hyperspectral satellite-embedded sensors is 8 m, 741 

with less than 300 spectral bands in the reflective domain (Table 4). In contrast, the best methods 742 

developed for assessing oil contamination were developed using high to very high spatial and 743 



 43

spectral resolutions [23,50,217]. Using satellite imagery, their performance would be impacted 744 

by the degradation of resolutions. Therefore, two conditions are required for applying these 745 

methods in an operational way, namely: extending their scope to a wide range of contexts and 746 

adapting them to future satellite-embedded hyperspectral sensors (Table 4). 747 

 748 

Table 4. Specifications of operational and future satellite-embedded hyperspectral sensors. The 749 

name and specifications of future sensors may be modified until their operating (n.a.: not 750 

available). 751 

Sensor name Spectral domain 
(nm) 

Bands Spatial resolution 
(m) 

Launch date 

CHRIS 415 - 1050 19-63 18-36 operational 
EnMAP 420 - 2450 244 30 2020 
HISUI 400 - 2500 185 30 2020 
HJ-1A 450 - 950 115 100 operational 

Hyperion 357 - 2576 220 30 operational 
HypXim 400 - 2500 210 8 2020-2022 

HySI 400 - 950 64 550 operational 
HyspIRI VSWIR 380 - 2500 212 30 n.a. 

PRISMA 400 - 2505 249 30 operational 
SHALOM 400 - 2500 275 10 2020 

TianGong-1 400 - 2500 128 10-20 operational 

 752 

At this stage, the application of the methods at large scale is limited by the necessity to know 753 

the location of the species – or vegetation type – on images. In an operational frame, an 754 

automatic mapping of this species would be helpful. Without this preliminary step, the methods 755 

would lead to false-detection alarms and inaccurate quantification of TPH if applied to other 756 

species and vegetation types, which differ in optical properties and sensitivity to oil [50,55,220]. 757 

The mapping could be achieved quite easily for homogenous and dense covers, but would 758 

become harder in regions with high species richness. It is particularly true when using satellite 759 

imagery, as “pure” pixels of dense vegetation (i.e. including a single species or vegetation type 760 

and no bare soil) become even rarer with increasing spatial resolution. Spectral unmixing might 761 

help overcoming this issue [47]. Unmixing aims at identifying the different species or vegetation 762 
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types inside pixels using, for example, spectral libraries. Lots of unmixing methods have been 763 

proposed in previous studies [47,221–223]. Focusing on vegetation studies, unmixing methods 764 

have been developed for two main purposes: mapping a single target species or vegetation type 765 

and discriminating among various ones. Thus, unmixing could be used for mapping the species 766 

or vegetation types of interest before applying the methods of oil detection and quantification. 767 

Toward operational monitoring, future studies should focus on applying unmixing methods prior 768 

to detecting and quantifying TPH at satellite spatial resolution. However, it might be interesting 769 

not to limit to the species or vegetation types on which the methods were developed. Various 770 

species might serve for detecting and quantifying oil, which would extend the scope of the 771 

methods and fulfill operational needs. 772 

Once the target species or vegetation types have been mapped, it is important to note that the 773 

accuracy of the detection and quantification of oil will depend on the level of contamination. For 774 

example, the exact range of effectiveness of the methods proposed for quantifying TPH remains 775 

unknown [49,50,189]. This information is essential for operational applications, because oil 776 

contamination can extend to a wide range of concentrations. Further studies should focus on 777 

determining the exact limits of detection and quantification of existing methods, especially since 778 

they may vary among species. Depending on their sensitivity to oil, all species do not allow 779 

detecting and quantifying contamination in the same range. Species with different sensitivities 780 

could be complementary for quantifying TPH over a wide range of concentrations [49,189,220]. 781 

High spatial resolution is also needed, as TPH concentrations may vary locally. 8- or 30-m pixels 782 

may include different species exposed to different levels of contamination, making oil very 783 

difficult to detect and quantify accurately. Hence, an important effort remains to identify the 784 
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species suitable for monitoring oil contamination and to define their respective range of 785 

effectiveness at the spatial resolution of satellite-embedded sensors. 786 

At this stage, the scope of the methods developed for detecting and quantifying TPH is 787 

restricted to assessing huge oil leakages (e.g. major oil spills and large, contaminated mud pits). 788 

Toward operational applications, it should extend to other scenarios. Chronic crude oil or 789 

petroleum product leaks deriving from pipeline or storage tank failures are priority, because they 790 

represent one of the main sources of contaminant release from oil industry [15,18]. From the 791 

perspective of satellite imagery application, one possible limit to applying the methods may arise 792 

at the spatial resolution of satellite images for small contaminated areas. More precisely, pipeline 793 

and storage tank leaks can spread on a few square meters [35,43], making their detection 794 

challenging at satellite spatial resolution, because pixels would not only include oil-exposed 795 

vegetation. Therefore, the required spatial resolution depends on the contamination event to 796 

detect (mud pit, pipeline leak, etc.). 797 

 798 

6. Conclusion 799 

This review aimed at summarizing the advances and challenges in using optical remote sensing 800 

for assessing oil contamination in vegetated areas. Although the optical properties of vegetation 801 

have been well documented, their use in oil and gas industry is still recent. By exploiting 802 

modifications in these properties caused by pigment and water alteration in leaves, previous 803 

studies have shown that it is possible to detect and quantify TPH in soils under controlled and 804 

field conditions. However, at this stage, several limits discussed in this review prevent from 805 

applying the same methods in an operational way at large scale, using hyperspectral imagery. 806 

Hence, the work summarized in this review should continue in further research, in order to 807 
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extend the scope of the methods and to assess their operational maturity. More precisely, future 808 

studies should first focus on identifying more relevant plant species and, for each of them, the 809 

types of oil (i.e. crude oil and petroleum products) and the range of concentrations that can be 810 

detected or quantified. This would be helpful for remote sensing operators of oil and gas 811 

companies, as the methods could be used for a wide range of purposes in oil exploration and 812 

contamination monitoring. Prior to operational applications, the methods should be evaluated at 813 

the spatial and spectral resolutions of future satellite-embedded hyperspectral sensors, along with 814 

species unmixing. 815 

On the long term, oil and gas companies may spark growing interest in UAV-embedded 816 

hyperspectral sensors. Although they are still under development, they represent a promising 817 

complement or alternative to satellite imagery. UAV-embedded sensors allow multitemporal, 818 

localized, monitoring, while providing very high spatial (up to cm scale) and spectral resolutions 819 

[224,225], therefore overcoming some of the above-mentioned limits. In addition, active remote 820 

sensing could be used to improve oil detection and quantification, by providing complementary 821 

information about vegetation. For example, radar and LiDAR imagery are useful for estimating 822 

canopy height and biomass [226], which are affected by oil. Radar remote sensing is light-823 

independent and atmospherically-resistant, which is a considerable advantage in wet tropical 824 

regions [227,228]. By combining various technologies (active and passive) and sensor platforms 825 

(satellite, drone), remote sensing will undoubtedly become an indispensable support to oil 826 

contamination monitoring in vegetated areas in the coming decades. 827 
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