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ABSTRACT

The monitoring of soil contamination deriving frooil and gas industry remains difficult in
vegetated areas. Over the last decade, opticalteeseasing has proved helpful for this purpose.
By tracking alterations in vegetation biochemisthyough its optical properties, multi- and
hyperspectral remote sensing allow detecting arahiifying crude oil and petroleum products
leaked following accidental leakages or bad cessgtractices. Recent advances in this field
have led to the development of various methods ¢hat be applied either in the field using
portable spectroradiometers or at large scale dmomie and satellite images. Experiments
carried out under controlled conditions have laygeintributed to identifying the most important
factors influencing the detection of oil (plant sj@s, mixture composition, etc.). In a perspective
of operational use, an important effort is stifjueed to make optical remote sensing a reliable
tool for oil and gas companies. The current methaixi on imagery should extend their scope
to a wide range of contexts and their applicatmmupcoming satellite-embedded hyperspectral

sensors should be considered in future studies.

MAIN ABBREVIATIONS

HM: Heavy Metal

LAD: Lead Angle Distribution
LAI: Leaf Area Index

LCC: Leaf Chlorophyll Content
LWC: Leaf Water Content

NIR: Near-Infrared

REP: Red-Edge Position

RTM: Radiative Transfer Model
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SWIR: Short-Wave Infrared

TPH: Total Petroleum Hydrocarbons
UAV: Unmanned Aerial Vehicle

UV: Ultraviolet

VI: Vegetation Indices

VIS: Visible
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1. Introduction

Oil and gas industry currently holds a key rolettie global energy mix [1-3]. Since the
beginning of the 20 century, crude oil supply has continuously inceeato satisfy a growing
demand, reaching over 35 billion barrels (Gb) pozdlin 2017 [4-6]. Although a global peak of
production — followed by a decline — is expectedthe future, its timing remains largely
unprecise as it depends on several factors, sudsas/e estimates, and on the scenario that will
frame the energy mix [7—10]. According to the Intional Energy Agency, oil production will
become 8 million barrels per day greater in 204nhttoday under the New Policy Scenario,

which considers current government goals and msiddowever, the increase of oil production
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[11] goes together with a greater exposure of estesys to contamination, which remains a
global ecological issue.

Once extracted from oil fields, crude oil is thegiimed to petroleum products [12-14]. At
every step of the production process, oil spilld Bakages may contaminate the soil and affect
ecosystems. They result from facility failures, lpadctices and storm events (Figure 1a-g). For
example, extraction wells, pipelines, refineried amud pits are common sources of contaminant
leaked in the environment [15-20]. This includasder oil, petroleum products, wastewaters and
oil sludge [21-23]. All these contaminants causeese ecological disturbances, such as
landscape fragmentation and habitat loss or alberatand affect human health [24-27].
Therefore, fast-detection is needed for assessintamination and limiting its impacts. Lots of
techniques have been developed for this purposesiponse to major offshore oil spills [28].
However, the onshore domain — which stands for t@%e global oil supply [29] — did not
receive the same attention. Main advances have d&®gaved in pipeline leak detection, one of
the most important source of oil contaminants ie &mvironment [30-33]. Conversely, only
little improvements have been made in assessihg@aiamination deriving from extraction and
refining activities or bad cessation managementhSoperations are often made by field
operators and do not guarantee an early detecfioeleased contaminants, especially when it
implies low and continuous quantities. They areeticonsuming and lead to heavy ecological
consequences when the contamination is not deteatedarly stage. Among promising
alternatives, remote sensing could achieve fagictienh of oil at large scale, fulfilling the needs
of oil and gas companies. Encouraging perspecteperational applications have emerged in

this field, thanks to a growing interest over thstldecades.
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Figure 1. Principal sources of environmental comation caused by oil activities. (a) Oil

sludge pit [34], (b-c) vegetation and soil contaat@d by crude oil leakage near a refining
facility [35], (d) pipeline leakage [36], (e) cr@pntamination resulting from oil well blow out

[37], (f) oil leakage from damaged storage tankofeing a storm [38] and (g) contaminated

wastewater near a production site [39].

Active and passive remote sensing provide inforomatibout the composition of surfaces at
large scale, by analyzing their radiometric prapsrin various domains of the electromagnetic
spectrum [40,41]. Applications in onshore oil intlysmainly rely on passive optical remote
sensing, which exploits the [400:2500] nm refleetddomain [42]. However, the real interest
given to remote sensing by oil and gas companatest a few decades ago, with the emergence
of passive hyperspectral sensors (Figure 2) [48pdfspectral sensors provide reflectance data
over multiple and contiguous wavelengths of thecapteflective domain [41]. They give access
to the spectral signature of surfaceg.(waterbodies, soils, vegetation), which helps daei@ng
their composition (Figure 2). Hyperspectral imagsegsors include drone-/UAV-, airborne- and

satellite-embedded sensors [44]. Some of them @eoviigh to very high spatial resolution
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images (metric to centimetric), making possibledadect small targets. In complement, field
portable spectroradiometers are usually used fdleatmg point reflectance data under
controlled conditions or in the field [45]. The uskehyperspectral sensors for detecting apparent
oil usually relies on exploiting the optical propes of petroleum hydrocarbons. For example,
recent attempts succeeded in detecting contammasimund industrial facilities using
hyperspectral airborne and satellite imagery, Iplating the spectral signature of soils [35,46].
From an operational point of view, hyperspectragery could thus provide a rapid diagnosis of
oil-contaminated surfaces at large scale, but gerimnits still compromise its use in vegetated

regions.
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Figure 2. Principle of passive hyperspectral imgdadapted from [47]). This technology
provides the reflectance of surfaces over a coatiaspectrum in the optical reflective domain

(i.e. the spectral signature).
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On sites covered by dense vegetation, optical rersemnsing remains ineffective for detecting
oil seepages and leakages directly, because ligetpation is strongly limited by the foliage
and the spectral signature of soils is thus noessible. The only information about soil
composition can be provided indirectly by vegetatiorough its optical properties [48-50]. This
can be achieved because vegetation reflectancdogelg linked to its biophysical and
biochemical parameters.g. pigments), which are good indicators of environtakn especially
stressful — conditions [51-53]. Consequently, uafalale growing conditions in soils result in
modifications of vegetation health and optical gndies that can be tracked using hyperspectral
remote sensing [23,54,55]. Therefore, since crutdama petroleum products affect vegetation
health, they can be detected and quantified intyresing optical imagery [56-59]. To achieve
this, several conditions must be fulfilled: (1) Téentamination must affect the biophysical and
biochemical parameters of vegetation, (2) alterstiin these parameters must modify the
spectral signature of vegetation and (3) the satibns of imaging sensors (e.g. the spatial and
spectral resolutions) must make it possible to kitr#ltese alterations. This implies good
knowledge about the parameters of vegetation influgy its reflectance, as well as their
response to oil contamination. Recent studiesaedwut under controlled and natural conditions
have highlighted the need to develop methods gdpaltyf dedicated to this purpose, as well as
the current pitfalls and limits to overcome [50&858]. Hence, an important effort still remains
to make hyperspectral remote sensing an operatioobfor monitoring oil contamination. Yet,
no review has been proposed in that field. Previ@mwsew focused either on heavy metals
contamination deriving from agriculture and minii6@,61] or onsoil contamination in general

[62,63]. However, recent studies emphasized thadecioil and petroleum products cannot be
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treated in the same way as other contaminants ab&eEssing sol contamination from vegetation
reflectance. Hence, they must be addressed selyarate

The present review is intended to provide a congmsive state-of-the-art of advances and
challenges in the use of optical remote sensingrfonitoring oil contamination in vegetated
areas. It is addressed to non-specialists from @& wange of disciplines. This review is
organized in accordance to the three points liateal/e. A first section summarizes the optical
properties of vegetation in the reflective domdihen, an overview of the effects induced by oil
contamination on vegetation health is proposedsé&heo sections introduce key notions for
non-specialists. Finally, the following sectionsfgaher into details of the topic. They focus on
the consequences on these effects on vegetatiectegfce and the methods developed to detect

them under controlled and field conditions and gsiitborne and future satellite imagery.

2. Vegetation optical properties in the reflective @dam(400 — 2500 nm)

Over the last 30 years, vegetation health assessspanked an extensive attention by the
remote sensing community. Then, the developmeriirbbrne- and satellite-embedded optical
sensors opened the way to various applicationgiitwdture and ecology, thanks to a better
comprehension of vegetation optical properties. Tbe of field portable spectroradiometer
helped achieving this by providing reflectance datguired at leaf or canopy scales. In the
reflective domain, vegetation optical propertieg ariven by biophysical and biochemical
parameters. They provide a singular shape to teetisgp signature of healthy green vegetation,
characterized by a peak of reflectance in the MgWIS, 400 — 750 nm), a plateau in the near-

infrared (NIR, 750-1300 nm) and two marked peakth& short-wave-infrared (SWIR, 1300 —



173 2500 nm) (Figure 3). Leaf pigment and water corsteartd anatomy are the main parameters

174 involved.
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176 Figure 3. Typical spectral signature of healthyegrieaf and most influential parameters in the
177 different spectral regions.
178
179 2.1.Influence of leaf pigments in the visible regio®@@4- 750 nm)

180 A large diversity of pigments is present in plafég—66]. Pigments are essential to the
181 development of vegetation, because of their impbos in photochemical reactions. They
182 absorb light at various wavelengths in the ultretiguV) and VIS regions, depending on their
183 chemical properties. Consequently, the spectralasige of vegetation is strongly linked to leaf
184 pigment content between 400 and 750 nm [64,67,;B85 makes possible to track changes in
185 pigments using multi- and hyperspectral sensors.

186 Chlorophylls a and b are the main pigments prese¢aves. They are good indicators of
187 vegetation health [69-71], making them largely &ddn remote sensing [72—74]. Chlorophyll
188 concentration usually ranges from 0 to 80 u¢cm crops [75], of which only 20% are

189 represented by chlorophyll b in healthy green lsaii#]. These pigments show two light
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absorption peaks at 440-450 (blue) and 650-670 red) ([77,78]. Due to their important
concentration in leaves, chlorophylls have a strimfigence on the spectral signature, so they
are likely to hide the effects of other pigmentargig common absorption wavelengths. More
precisely, the weak light absorption of chloropbyround 550 (green) and 700 nm (red-edge)
results in high correlation with leaf reflectancetihese regions [67,79]. Hence, remote sensing
mostly exploits these wavelengths to quantify lebforophyll content (LCC) [74]. A large
diversity of approaches have been developed fakitng changes in LCC, such as simple or
normalized reflectance ratios (vegetation indicéh)(and Radiative Transfer Models (RTM)
[52,64]. These approaches gave particular atterttotme inflexion point of reflectance in the
red-edge region — named tRed-Edge Position (REP), which is sensitive to little changes in
LCC (Figure 3) [73,80,81].

Carotenoids are the other photosynthetic pigmentsnd in plants [82]. They can be
distinguished in two categories: carotenes andhagftylls, which absorb light mainly in the
blue region (400 — 500 nm). This common featurénwihlorophylls explains their masking in
healthy leaves, as their concentration rarely edse25 pg.cii [75]. They are usually less
influential on the spectral signature in the VISiahus more difficult to quantify by remote
sensing. However, the chlorophyll breakdown obskrgaring leaf senescence increases the
carotenoid-chlorophyll ratio [76,83]. Consequentbaf reflectance rises between 500 and 750

nm (green — red), so carotenoids become more easlytifiable (Figure 4).

11
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Figure 4. Spectral signaturesRibus fruticosus L. in the visible region across different

seasonal stages (unpublished data).

Frequently described as accessory pigments, caidgerensure essential photoprotective
functions in plants [84,85]. They prevent leaf uiss from harmful effects of reactive oxygen
species and photochemical stress that occur wheaorladd light exceeds the photosynthetic
capacity of leaves [82,83]. Therefore, the quardtion of leaf carotenoid content is of great
importance for monitoring vegetation health. Selv&flahave been designed for this purpose,
such as the Photochemical Reflectance Index (F®IBY]. The PRI exploits reflectance at 531
and 570 nm to track the epoxidation state of theh@phyll cycle and can be used for assessing
variations of photosynthetic activity across seag88,89].

Leaves also contain non-photosynthetic pigments @@ responsible for color changes in
autumn. Several plants turn red during senescémoause of the accumulation of anthocyanins
in vacuoles. Anthocyanins are water-soluble flavdsdhat absorb light in the ultraviolet (UV,
250 — 350 nm) and green (500 — 560 nm) regions9]90,They ensure a photoprotective
function through UV screening, making them relevialicators of vegetation health [92,93].

Other compounds such as tannins are also foundawes, but their influence on leaf optical

12
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properties is restricted to the late senescence preabscission — period [83]. They are

responsible for the browning of leaves.

2.2.Influence of leaf anatomy in the near-infrared o&g{750 — 1300 nm)

As pigments do in the VIS, leaf anatomy drivesaetfhnce in the NIR region [53,94]. Leaves
of Angiosperms are formed by successive cellulgera structured in parenchyma — also called
mesophyll — and protected by a cuticle and an epideon abaxial (lower) and adaxial (upper)
faces. This anatomy is at the origin of the platelaserved on leaf spectral signature in the NIR
(Figure 3), ranging from 30 to 80% reflectance §5396]. The upper cuticle and epidermis are
the first barriers to the penetration of light.itkent light follows diffuse and specular reflection
at leaf surface, but most radiations go througimd are transmitted to lower layers [97,98].

The internal anatomy of leaves greatly contribatehieir optical properties in the NIR, but
differs between mono- and dicotyledonous speci89f9100]. In dicotyledonous leaves, cells
are typically arranged in two distinct parenchynide upper one — known as palisade
parenchyma — is made of well-structured elongatdts avith high chloroplast concentration.
Intercellular spaces are almost absent from thyerleso light scattering remains limited.
Conversely, the lower — spongy — parenchyma isacherized by irregularly-shaped and spaced
cells with low chloroplast content. The spongy pateyma has an important function in leaves,
as it sends back a fraction of incident light te tmalisade parenchyma, thus increasing the
photosynthetic activity [101]. In monocotyledonoleaves, parenchyma are undifferentiated.
Cells form a unique layer similar to the spongyepahyma of dicotyledonous leaves, although
this one is more compact so intercellular spacesreduced. Several studies showed that the

cuticle and parenchyma thickness, the proportiomtefrcellular spaces and the arrangement of

13
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266

chloroplasts greatly affect leaf reflectance in MR [53,94,95,102]. Leaf anatomy substantially
varies among species, partly as a result of phylpgand adaptation to light conditions [103—
105]. Additional factors also influence leaf anayoend NIR reflectance, such as nutrient and
water availability or soil contamination.

While the anatomy of leaves determines their rédlece in the NIR, other biophysical
parameters prevail when measuring reflectanceraipgascale. The Leaf Area Index (LAI) and
the Leaf Angle Distribution (LAD) are the most mdintial ones [51,101,106]. Canopy
reflectance is positively correlated to LAI in thdR, because the influence of bare soil is
reduced in this region as LAl increases (Figurd1®)7]. However, the reflectance reaches a
plateau above very high LAI values (>6) [101]. LAdDaracterizes canopy architecture, the
angular orientation of leaves. de Wit [108] prombse® classify species in the following six LAD
types: Planophile, plagiophile, erectophile, exweinle, spherical and uniform. As leaf
orientation is moving away from zero degrees (t@wplanophile LAD), canopy reflectance

decreases in the NIR [51].

5] [S%) R w1 o
< (=] o f=) <

Reflectance (%)

—_
(=]

500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)

Figure 5. Influence of the Leaf Area Index (LAI) oanopy reflectance [51].
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Because of its relationship with vegetation bioptglsparameters, reflectance in the NIR can
be used to describe leaf anatomy, canopy archieecamd ground cover [53,109]. These
parameters have in common to be directly or intlyeofluenced by vegetation water status
[96,110,111]. Water availability is a key paramefer understanding vegetation optical

properties, as it drives many physiological mecéasi

2.3.Influence of leaf water and dry matter contentthim near-infrared (750 — 1300 nm) and
short-wave infrared (1300 — 2500 nm) regions
Vegetation optical properties are directly influedcby water contained in leaves, which
absorbs light around 970, 1200, 1450, 1950 and 245(112-114]. These features are easily
observed on the spectral signature of healthy plantl are affected by changes in leaf water
content (Figure 6) [96]. Hence, they are relialldicators of vegetation water status [115]. In
addition, water is likely to affect reflectance imrattly in other spectral regions, as it is invalve
in many physiological mechanisms in plants, suclplastosynthesis and leaf turgor. This is
particularly marked for plants undergoing wateridlefstress [57,116]. Changes in leaf turgor
and tissue destructuring induced by insufficientavaiptake greatly affect light scattering and
thus leaf reflectance in the whole NIR region [9bhese effects are also observed at canopy

scale, as plant LAl and LAD are also modified bytevaleficit stress [117].
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Figure 6. Spectral signatures of healthy and waédicient plants.

Several studies demonstrated the effectivenesieoMiR and SWIR reflectance to assess
vegetation water status by estimating Leaf Watent@u (LWC) or Equivalent Water Thickness
(EWT) [112,113,115]. VI and RTM have been widelgddor this purpose [118-121]. Although
water absorption bands previously cited may be @ppate [112,113], their utilization remains
limited in airborne or satellite imagery, becaus@&ortant noise due to atmospheric effects of
water vapor. This limit can be however overcomeédxploiting other water-dependent and
atmospherically-resistant wavelengths in the NIR 8WVIR regions [121-123].

As described in this section, vegetation opticaperties are strongly linked in the NIR and
SWIR regions, because of direct and indirect infbee of water. According to Ceccagbd
al.[119], water stands for approximately 55 to 75%heélthy leaf fresh weight for temperate
species. More than two thirds of the remaining pame from hemicelluloses, celluloses, lignins
and proteins, which are often grouped in the “datter” term [124,125]. Celluloses are the most
abundant organic compounds on earth and are foualll plants. Hemicelluloses and lignins are
mostly represented in woody species [126,127]. @H®#echemical parameters share common
light absorption features in the NIR and SWIR regiocat 1200, 1450 — 1490, 1540, 1760, 2100

and 2340 nm [128]. Proteins show quite differeghfiabsorption features, located at 1510 —

16
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1520, 1730, 1980, 2060, 2165 — 2180 and 2300 ninthake parameters remain difficult to
estimate from vegetation reflectance, because thélitence on reflectance in the NIR and
SWIR regions is limited in comparison to water [1I2B]. They become however more
influential in dry leaves. Few VI have been destyfar retrieving celluloses and lignins content
in leaves or decomposing litter [129,130].

As outlined in this section, the biophysical anddbiemical parameters driving vegetation
optical properties differ according to the spectegjion (VIS, NIR and SWIR). Modifications in
these parameters are expressed as changes irl¢lotaree of leaves and canopies. This makes
possible to detect oil-induced alterations in vagieh health using multi- and hyperspectral
remote sensing. This purpose however requiresifgiengt the most suitablei.g. oil-sensitive)
spectral regions. A good comprehension of the tfféeduced by crude oil and petroleum
products on vegetation is mandatory for achievingjhese effects are described in the following

section.

3. Effects of crude oil and petroleum products on vatyen health
Crude oil and petroleum products leaked from indaistfacilities are likely to affect
vegetation health and optical properties. Theirtipalar nature and composition are greatly

responsible for these effects.

3.1. Composition of crude oil and petroleum products
Crude oil refers to oil in its natural and extrhtgiform,i.e. oil stored in geological formation
and brought to the surface [12]. Petroleum produessilt from the refining of crude oil. They

include fuels (diesel, gasoline, kerosene), lulmticavaxes and miscellaneous products used in

17
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various domainsg(g. transportation and industry) [131]. The term eflers both to crude oil and
petroleum products. Wastewaters and oil sludge progluced during the refining process
[21,22]. Both crude oil and petroleum products migtures of volatile to dense hydrocarbons
(called Petroleum hydrocarbons), heavy metals (HM, also termd@dace Metal Elements) and
oxygen, sulfur and nitrogen compounds in variouopprtions [132-134]. Petroleum
hydrocarbons include Mono- and Polycyclic Aromatitydrocarbons (BTEX and PAH,
respectively), and saturated (alkanes or paraffims)l unsaturated (alkenes and alkynes)
hydrocarbons [131]Total Petroleum Hydrocarbons (TPH) is a generic term that encompasses
all these compounds. Depending on the length af dagbon chain, petroleum hydrocarbons are

refined to different petroleum products [135,13%}.illustration is given in Figure 7.

0il

Crude oil

l Refining

Petroleum products
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liquefied gas Furnace and diesel oil
e e e

Lubricating oils and greases
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Figure 7. Crude oil and petroleum products accgrtiinpetroleum carbon ranges (reproduced

from [136]).

The composition of crude oil and petroleum produgitgees them a high toxicity towards

vegetation [137]. When considered separately, égdnocarbon and HM type is likely to affect
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vegetation health [138]. Since they are in mixtiureemains difficult to identify which of these
compounds are responsible for the observed respbnaedition, interactions can occur among
hydrocarbons and HM and result in synergistic otagonist effects on vegetation [57].
However, the influence of mixture composition il stisunderstood. Different mixtures such as
crude oil, diesel or gasoline, lead to differensp@nses of vegetation [57,58,139]. These
responses result from indirect effects caused bdlifications of soil physico-chemical and
biological properties, and from direct effects thgh contact with plant and assimilation in
tissues [140,141]. Both occur at root level andll&@m anatomical and biochemical changes in
leaves, so these direct and indirect effects rerddficult to differentiate [142—-144]. They are

described jointly here.

3.2. Effects on soil properties and on plant roots

The phytotoxicity of petroleum hydrocarbons and HEbs been subject to numerous studies.
However, no review has been proposed — for teraégtiants — in this field for almost 50 years
[137]. Since then, few studies have focused oreffexts of petroleum hydrocarbons and HM in
mixture [56,145,146]. This topic has been addressedently and provided a better
comprehension of how vegetation is affected byeaikages.

Because of their particular nature and composittoagde oil and petroleum products induce
important modifications of soil physico-chemical damiological properties [134,147,148].
Consequently, they impose selective growing coowiitito plants [55]. Soil water regime is one
of the most impacted properties. Because of hydbors, crude oil and petroleum products are
in liquid — highly hydrophobic — form [131]. Whewoudnd in soils, they occupy a fraction of

porosity that becomes unavailable to water. In tamdi by interacting with soil materials

19



366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

(especially clay), oil forms a hydrophobic film #teir surface, which forces water drainage
toward deeper soil layers. These phenomena cotgrtbureducing the field capacity of soil and
plant water supply [149-151]. It is amplified by HMhich affect soil water potential and water
uptake by roots once transferred to the soil smiufi52].

Petroleum hydrocarbons represent a considerabiehement in organic material, leading to an
increase of soil carbon content and carbon / rémogatio (C/N) [134,151,153]. This stimulates
the growth of microorganisms capable of degradiggrécarbons, thus modifying organic
matter mineralization cycles and reshaping micranign communities [154-156]. The
biodegradation of hydrocarbons is accompanied byelamation of soil C® concentration,
especially in the presence of vegetation [157]. &ahthe HM found in oil are essential to
vegetation growthgg. Fe, Zn, Cu), but their occurrence at high conegiuns along with other
HM (e.g. Cd, Mg, Pb) also affect microorganisms [158]. Theg not degradable and in the case
of oil leakages, they concentrate in the first &mjlers [159]. The nitrogen cycle is particularly
impacted by carbon enrichment: the availabilityir@drganic nitrogen decreases so vegetation
nitrogen status is highly altered [153]. Likewisggveral studies revealed that petroleum
hydrocarbons and HM reduce nutrient availability K and soil Cation Exchange Capacity
(CEC) [150,151,160]. The latter is indeed closétked to soil organic matter content, C/N ratio
and pH; so many parameters affected by oil [133,1Bdrough modifications of soil physico-
chemical and biological properties, crude oil aretrgdeum products thus affect water and
nutrient availability for plants [161]. These effe@re called indirect effects. In addition, direct
effects occur when oil is in contact with roots 21.6As they do with soil materials, petroleum
hydrocarbons are able to coat plant roots by adsprét their surface. As well as HM, their

assimilation inhibits root growth and causes akining of root epidermis, endodermis and
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cortex, and a reduction of root hair diameter aadsity [140,152,163,164]. These anatomical
changes heavily alter water and nutrient uptakedéips of plants. For some species, they are
partly compensated by a higher allocation of resesito roots.

As soon as water or nutrient supply is no longédfigent to ensure essential physiological
functions, stressful conditions arise so plant wvgodes anatomical and biochemical
modifications that affect its reflectance. Thesteats are amplified by the accumulation of

certain hydrocarbons and HMs in leaves [138,141,142

3.3. Effects on plant biochemical and biophysical parinse

The biophysical and biochemical parameters affebyedxposure to crude oil and petroleum
products are involved in vegetation optical projgsrtA review of these effects is proposed in
Table 1. The alteration of leaf pigment conterthis most frequently described response of plant
to crude oil and petroleum products [58,142,165]isTalteration is induced by that of plant
water and nitrogen status described above [14@hritbe visually observed through symptoms
of leaf discoloration, which vary among species amtording to mixture composition
[57,59,163] (Figure 8a-d). The discoloration is s=ai by a reduction of LCC and indicates a
decrease in photosynthetic activity [139]. Thispmsse is very common for water-deficient
plants [37,111]. Although they are naturally prdsext lower concentrations in leaves,
carotenoids and anthocyanins are also affected [8B] accumulation amplifies this effect
[152,166].

Alterations of biophysical parameters can be okt different scales. At leaf scale, they
are expressed as a reduction in the number andosizells and an increase of intercellular

spaces in parenchyma [142,144]. The accumulatiorcesfain hydrocarbons and HMs —
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412 especially Cd and Mg — also causes tissue destmigt{ll37,138]. Consequently, important
413 modifications of leaf spectral signature are expadh the NIR region. At canopy scale, water
414 and nutrient deficiency leads to a limited develepinf.e. a reduction of leaf and stem length
415 and density), reducing aboveground biomass and InAdddition, changes in leaf anatomy and
416 water content affect plant habit and consequeniip L
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Figure 8. Visible stress symptoms commonly obsepreteaves under exposure to crude oil
and petroleum products. These symptoms are assdd@alteration in pigment content. (a-b)
Canavalia ensiformis (L.) DC grown on diesel-contaminated soil [168}d) Rubus fruticosus L.

grown on (¢) mud pit- and (d) crude oil-contamimigeils [57].

3.4. Sources of variability

The severity of the effects described in sectidh 8ghly varies according to the context as
described in Table 1, because these effects duended by many factors. The sensitivity of the
species is a determining one [49,167,168]. Sintesmdcies do not share similar ecological
requirements, their tolerance to stressful condtialiffers. Consequently, a decrease in soil
water and nutrient availability caused by crude amitl petroleum products will not affect all
species in the same way [169]. Moreover, some epatie capable of detoxifying hydrocarbons
and HMs accumulated in leaves through mechanismsegtestration, transportation and
excretion [145,170]. This prevents biochemicalraliens and tissue destructuring. Few species
are even stimulated by the enrichment of soil cigaratter provided by crude oil and petroleum
products, but this response remains uncommon [X¥2],This variability in species’ sensitivity
has strong implications under natural conditiorm. &ample, only few species are established

around natural oil seepages [55]. Their presenegpsained by a high tolerance to chronic crude
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oil exposure, so these species undergo no or hAftlerations. Mud pits contaminated by oil
production residuese@. oil sludge) are similar cases [16,49,56,57,16nw&rsely, crude oll
and petroleum products leaked from drilling welbrage tank and pipeline leakages consist in a
rapid exposure of oil-intolerant species. In thosaditions, severe alterations and sometimes
plant death are observed [26,58,165].

Petroleum hydrocarbon and HM availability for pkrgtrongly varies according to their
chemical properties. For example, low-carbon PAHG As are easily accumulated in leaves
[138]. Therefore, mixture composition influencesamdl response, so different crude oils or
petroleum productse(. diesel, gasoline) do not affect leaf biophysicald abiochemical
parameters of a single species in the same eXgéritd7,141]. Apart from mixture composition,
these effects are also conditioned by the level tand of exposure to oil [58,149,168]. More
precisely, the amplitude of pigment and water cotngdteration in leaves is positively correlated
to the overall TPH concentration [49]. Above a im@ld concentration that depends on species’
sensitivity (generally in g.Kb, plant death can be observed after only few d&48,167]. In
contrast, several weeks of exposure might be requio induce biophysical and biochemical
alterations at low concentrations (ug to mgkig63,172].

Although the effects of petroleum hydrocarbons &tid mixtures on vegetation are well
documented in the literature, they cannot be gdéimedato all contexts of oil leakages because
their severity depends on many factors. Speciesisigeity, mixture composition and
concentration and exposure time have been ideth#fgethe most influential ones. These factors
have critical implications in remote sensing, siticey determine the amplitude of reflectance
changes in vegetation and thus hydrocarbon deiégtalsing airborne and satellite-embedded

Sensors.
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Table 1. Effects induced by crude oil and petrolguoducts on vegetation biophysical and biochenpeadmetersfi(andy

denotes increase and decrease in the measuredgbaramaspectively; * indicates dose-dependenteffen.a.: not available or not

measured.)
: Crudeoil Total time } :
Species Petr oleum product TPH of exposure Anatomy / Development Pigments/ Photosynthesis Water status Ref.
Ailanthus altissima Mill. Oil sludge 10-40% 240 days U Shoot length and biomass* 1 Photosynthesis* U Stomatal con_dugtance* [173]
U Leaf transpiration*
Allophylus edulis Crude oil 13.65g.kgy 30-60 days f Shoot length and biomass unchanged n.a. n.a. [162]
U Leaf water content
Amorpha fruticosa Crude oil 5-20 g.kg' 6 months U Shoot biomass* U Leaf chlorophyll content* U Stomatal conductance and transpira[174]
rate*
U Palisade and spon arenchyma thickne Leaf discoloration and necro
Canavalia ensiformis Diesel 22,219 mgkd 30 days U Stem and Il()eaf iqeynpth and )l/)iomass U Leaf chlorophyll content n.a. [163]
9 U Leaf carotenoid content
*
Capsicum annum Lubricating oil 1-5% 84 days U Shoot length n.a. n.a. [167]

U Leaf area*

Cedrela odorata Crude oi 18-47.10 g.ki* 245 day U Shoot length and biomass n.a n.a [168]

U Shoot length*

Corchorus olitorius Engine oil 0.2-3% 6 weeks U Leaf area* U Leaf chlorophyll content* U Leaf water content* [175]
1 Cuticle thickness* )
Cyperusbrediolis Crudeol  1080gk¢  Bmontns T O et and ciameter U Loat chioropyl content 1142
4 Shoot biomass*
Deschampsia caespitosa Petroleum cokes n.a 3 months U Shoot length lﬁ'ijfg:g?ggg c;cc)’:tteer;tt v Transpléitrl]%u?;ﬁgd stomatal [176]
f Stomatal conductance until day 80
Fraxinus rotundifolia Mill. Oil sludge 10-40% 240 days U Shoot length and biomass* U Photosynthesis* U Stomatal conductance after day 8([173]
U Leaf transpiration*

Crude oil 1.3-3.1gkg >6 months U Shoot biomass* n.a. n.a.

Glycine hyspida Crude oil (spill)  1.1-3.8 g.kg >6 months U Shoot biomass* n.a. n.a. [134]
Drilling fluids ~ 1.6-76.1 g.k§ >6 months U Shoot biomass* n.a. n.a.

Haematoxylum campechianum Crude oil 18-47.10 g.kg 245 days U Shoot length and biomass n.a. n.a. [168]
Crude oil 1.3-3.1gkg >6 months U Shoot biomass n.a. n.a.

Hordeumvulgare Crude oil (spill) 1.1-3.8 g.kg >6 months Shoot biomass unchanged n.a. n.a. [134]
Drilling fluids ~ 1.6-76.1 g.k§ >6 months U Shoot biomass* n.a. n.a.

Lycopersicon esculentum Lubricating oil 1-5% 84 days U Shoot length n.a. n.a. [167]

U Leaf area*
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: Crudeoil Total time } :
Species Petroleum product TPH of exposure Anatomy / Development Pigments/ Photosynthesis Water status Ref.
Medicago sativa Oil sludge 4-5% 9 weeks U Shoot length and biomass unchanged n.a. n.a. [161]
Mélia azedarach L. Oil sludge 10-40% 240 days U Shoot length and biomass* U Photosynthesis* U Stomatal conductance* 1,74,
U Leaf area U Leaf transpiration*
Phragmites australis Crude oil 2-12 g.kg 2 months U Shoot biomass* n.a. n.a. [153]
Robinia pseudoacacia L. Oil sludge 10-40% 240 days 4 Shoot llle&g;? :rr:adabmmass U Photosynthesis U Stomatal conductance [173]
Swietenia macrophyll Crude oil 18-47.10 g.kg 245 days U Shoot length and biomass n.a. n.a. [168]
Tabebuia rosea Crude oil 18-47.10 g.kg 245 days U Shoot length and biomass n.a. n.a. [168]
7 Cuticle thickness
Terminalia catappa Crude oil (spill) n.a 3 weeks 1 Epidermal cell diameter n.a. n.a. [144]
M Palisade andl spongy parenchyma thickne:

Crude oil 1.3-3.1gkg >6 months U Shoot biomass n.a. n.a.
Triticum aestivum Crude oil (spill) 1.1-3.8 g.kd >6 months U Shoot biomass* n.a. n.a. [134]

Drilling fluids ~ 1.6-76.1 g.k§ >6 months U Shoot biomass* n.a. n.a.
Triticum aestivum Petroleum cokes na 2 months U Shoot length U Leaf chlorophyll content U Transpiration rate and stomatal [176]

| Leaf area U Leaf carotenoid content conductance
U Leaf chlorophyll content
Vicia faba Crude oil 1.56-50% 30 days U Shoot biomass Leaf carotenoid content U Leaf water content [177]
unchanged

Crude oil 9-18 g.kg 5 weeks U Shoot length and biomass* n.a. n.a.
Vicia faba Diesel 9-18 g.kg 5 weeks U Shoot length and biomass* n.a. n.a. [141]

Engine oi 9-18 g.k¢* 5 week U Shoot length and biomass* na n.a
Zeamays Crude oil 0.28-0.66% 6 weeks U Shoot biomass U Leaf chlorophyll content U Leaf water, osmolic and turgor [149]

potentials
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4. Detection of crude oil and petroleum products usiagetation optical properties

The previous introductory sections provided keyrelats to understand how the biophysical
and biochemical parameters of vegetation driveseiigctance, and how these parameters are
affected by oil contamination. It is therefore esfeel that these biophysical and biochemical
alterations will modify the reflectance of vegetati at leaf and plant scales, making possible to
detect oil contamination indirectly. This sectiomnsnarizes the modifications of vegetation
reflectance induced by crude oil and petroleum petg] and the existing methods developed to
track these modifications, under controlled anttifeonditions.

Vegetation optical properties have been extensiuedd for tracking alterations in pigment or
water content caused by biotic and abiotic facibr8—182]. Conversely, their exploitation in oil
leakage detection has been initiated more recgilp9,165]. Major progress has been made in
this field by taking advantage of multi- and hyperstral methods developed for assessing
vegetation health in other contexts, such as crap ecosystem monitoring. Some of these
methods — especially VI and RTM — proved efficiéoit tracking oil-induced alterations in
vegetation reflectance under controlled and fiedaditions, from spectroradiometer-acquired

reflectance data [57,59,172,183].

4.1. Effects of crude oil and petroleum products on vatien reflectance
As described in section 3, crude oil and petrolguoducts affect the main biophysical and
biochemical parameters driving vegetation opticabpprties. These effects result in
modifications in the spectral signature at leaf aadopy scales, which have been studied under
greenhouse or field conditions. They are summaripedable 2. The VIS has been mostly

exploited for tracking the effects of crude oil gmetroleum products from the spectral signature
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474  of vegetation, because of its strong link with pamts [59,139,165,183]. The alteration of
475 chlorophyll content described in the previous sectimmediately leads to an increase of
476 reflectance in this region, at leaf and canopyescéFigure 9) [57,58].

477 This increase is essentially located in the greghwavelengths (500 — 670 nm), where it can
478 reach 20%, and is expressed as a shift of the BE&d shorter wavelengths around 700 nm. In
479 comparison, the blue wavelengths (400 — 500 nmyvaekly affected. This response is observed
480 after few days of exposure — even at low concentrat and becomes more pronounced in time,
481 making crude oil and petroleum products more eas#lectable. Once again, it is difficult to
482 identify the most contributing hydrocarbons and Kislace a single of these compounds is able

483 to induce a similar response [146,184,185].

60 Control -
" A S S,
g 10 | — 241 gkg' of TPH 1, - i
§ 30
€ 20
o~
10 +
0 T
400 550 700 850 1000
484 Wavelength (nm)
485 Figure 9. Spectral signatures of leaveZet mays L. grown for 14 days on engine oil-
486 contaminated (48 — 214 g:Kgor uncontaminated soils (modified from [59]).

487

488 Although the increase of green-red reflectance #ed shift of the REP are frequent, an
489 absence of reflectance change has been sometirses/ed) in studies (Table 2) [16,139,186]. In
490 addition, some oil-tolerant species exhibit modifions of reflectance in the first stages of

491 exposure to oil, and then recover reflectance &kimilar than those of healthy plants [57].
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Other species are even stimulated by low TPH cdratgons, inducing a decrease in reflectance
[172]. This underlines the variability of vegetaticesponse to crude oil and petroleum products
discussed in section 3.4. Of the mentioned studies)e clearly linked the level of pigment
content alteration to that of reflectance in th&V49,57,183]. They focused on leaf chlorophyll
content, because of its major influence on refleztain the 500 — 670 nm wavelengths [183].
Sancheset al. [58,165] conducted an experiment on four oil-sévesitspecies exposed to
gasoline and diesel and concluded that carotenoitent had only few contribution to
reflectance changes in the VIS. Conversely, thegmgnts were highly involved in the reponse
of oil-tolerant species in other studies [57,172].

As described in section 2.2, reflectance in the NdRhighly dependent on the species —
especially mono- and dicotyledonous — and on tlgpiiaition scale (leaf, canopy). The same
factors, as well as mixture composition, lead tatested response of vegetation in this region
(Table 2). Whether they result from an increasa decrease of reflectance, differences between
healthy and affected vegetation can exceed 20%anN\iR [58]. A decrease in reflectance is
more likely to be observed at canopy scale, sitaet glevelopment — and thus LAI — is strongly
limited by hydrocarbons and HMs. However, severateptions have been noticed in the
literature. As pointed out by three studies [57188], a single species can undergo opposite
reflectance changes in the NIR, depending on thdecoil or petroleum product to which it is
exposed. Likewise, two species exposed to a sinutarcentration of the same petroleum
product can exhibit contrasted responses in tig®ng187]. This causes serious detection limits
in regions with high species diversity. Similar eb&tions have been made at leaf scale, where
reflectance in the NIR mainly depends on anatomgwéier, no study demonstrated the

relationship between alterations of parenchymarafidctance changes in this region.

29



515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

Because of modifications in vegetation water status SWIR is largely impacted by exposure
to crude oil and petroleum products. As well aghe NIR, the response of vegetation in the
SWIR varies among studies (Table 2). In the caserevh decrease of reflectance is observed on
exposed vegetation, it remains rarely lower thafbo1[188]. Conversely, an increase of
reflectance, which is more consistent with the otida of leaf water content and canopy LAI,
can exceed 20% for the most oil-sensitive spetiieloth cases, the response appears later than
in the VIS and is thus a good indicator of a loeg¥t exposure. As expected, the most affected
wavelengths are located in water absorption featyd3]. Because of low atmospheric
transmission, these features are however unusebbnapy — and image — scale, but other ones
(e.g. 1600 and 2200 nm) proved to be good alternatig&sbB]. Vegetation reflectance in the
SWIR also depends on celluloses, hemicellulosgsing and proteins, which have already been
reported as slightly sensitive to petroleum prosgunt one study [58]. Because of the strong
influence of LWC in this region, it is unlikely thalterations in these biochemical compounds

have major contribution to the modifications ofleefance described here.
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Table 2. Effects induced by crude oil and petrolguoducts on vegetation reflectance in the diffesgectral regions, at leaf and
canopy scales. This review includes studies caoigdinder experimental or field conditions andlymg point reflectance
measurements using a spectroradiometer. (VIS: MisMIR: Near Infra-Red, SWIR: Short-Wave InfraR@édndl denotes

reflectance increase and decrease, respectively-Eld capacity; * indicates dose-dependent effetta.: not available; n.s.: non-

significant effect.)

Reflectance - L eaf scale
Reflectance - Plant / Canopy scale

! . Crudeail Total time
Species Conditions petroleum product TPH of exposure Ref.
VIS NIR SWIR VIS NIR SWIR
o Field Diesel 12.7 L.m® 30 days = = * = = *
Brachiaria brizantha . . 3 [58]
Field Gasoline 12.7L.m 30 days = U= * = U= *

Buddleja davidii Franch. Field Mud pit 16-77 g.kg' n.a? n.s. n.s. n.s. n.a. n.a. n.a. [49]
Cenchrus alopecuroides (L.) Experimental Mud pit 14 g.kg* 60 days n U i [56]
Cenchrus alopecuroides (L.) Experimental Mud pit 1-19 g.k¢' 42 days n* n* * n* > * [172]

Cornus sanguinea L. Field Mud pit 16-77 g.kg' n.a’ ™ ™ * n.a. n.a. n.a. [49]
Forsythia suspensa Experimental Engine oll 20-60 % soil FC 28 days n* i n.a. [187]
o Field Diese 6.25 L.n* 184 day ™ U= U= = U= U
Neonotonia wightii _ ) 3 [188]
Field Gasoline 6.25L.m 184 days n* U* U* n* U* 4*
Panicumvirgatum L. Experimental Mud pit 14 g.kg* 60 days n.a. n.a. n.a. i U i) [56]
Pennisetum alopecur oides Experimente Engine oi 20-60 % soil F( 28 day: n* U* n.a n.a n.a n.a [187]
Phragmistes australis Field Oil well leak 9.45-652 mg.kg n.a’ n.a. n.a. n.a. n* U* n.a. [189]
Populus x canadensis Moench Field Mud pit 16-77 g.kg' n.a? > > > na. na. n.a. [49]
Quercus pubescens Wild. Field Mud pit 16-77 g.kg' n.a’ I I ™ n.a. na. n.a. [49]
Rubus fruticosus L. Experimental Mud pit 4-40 g kg 100 days " " " " f f [16]
Rubus fruticosus L. Experimental Mud pit 36 g.kg" 60 days " " " " f f [56]
. Experimentz Mud pit 6-25 g.k¢* 32 day: forns.* fori* M orU* M or n.s.* U* foriy*
Rubus fruticosus L. i . o [57]
Experimental Crude oil 25 g.kg 32 days i n n ) U f
Rubus fruticosus L. Field Mud pit 16-77 g.kg' n.a? = = * n.a. n.a. n.a. [49]
Salicorna virginica Experimental Alba'’ crude oil 7.7-9.1% 32 days ns. n n.a. n.a. n.a. n.a. [139]

& Naturally-established vegetation
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Experimente Escravos' crude ¢ 0.7-1.4 % 32 day: U U n.a n.a n.a n.a
Reflectance - L eaf scale Reflectance - Plant / Canopy scale
. . Crudeail Total time
Species Conditions petroleum product TPH of exposure VIS NIR SWIR VIS NIR SWIR Ref
Triticum sp. Experimental Gasoline 10-100 ml.kg' 106 days n.s. n.s. n.s. n.a. n.a. n.a. [186]
Field Diesel 6.25 L.m® 184 days n* U* U* n.a. n.a. n.a.
Zea mays ) . 5 [188]
Field Gasoline 6.25 L.m 184 days = U= U* n.a. n.a. n.a.
Zea mays Experimental Engine oil 48-241 g kg 14 days n* U* n.a. n.a. n.a. n.a. [59]
Zea mays Experimente Mud pit 4-40 g.k¢* 100 day n.s U i n.a n.a n.a [16]
Field Gasoline 8.33 L.n® 203 days = U= U* n.a. n.a. n.a.
Zea mays ) . 3 [188]
Field Diesel 8.33 L.m 203 days n* U* U* n.a. n.a. n.a.
Zea mays Experimente Engine oi 96 g.k¢* 20 day: i i i n.a n.a n.a [116]
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4.2.Methods developed for detecting crude oil and petwra products under controlled and
field conditions

The studies carried out to characterize the speetsponse of vegetation to crude oil and
petroleum products gave rise to various methodsd#&gecting and quantifying TPH. These
methods are based on exploiting the modificatidn®efectance described in section 4.1, under
controlled or field conditions. Most of existing theds rely on visual or statistical comparisons
of spectral signatures between healthy and oil-eggoregetation [16,139]. These methods are
however limited for application beyond the contstudied. Other authors exploited reflectance
at particular wavelengths by using VI, REP and spet transformations, and converged on the
critical importance of VIS wavelengths [58,59,18G]irtleret al.[188] compared these methods
for discriminating among healthy and gasoline- ieisdl-exposed vegetation, at leaf and canopy
scales, and concluded that their performance dependthe species. In a single experiment,
Sanchest al. [58] combined first derivative ancbntinuum removal spectra transformation to
Principal Component Analysis (PCA) for similar pase and identified the red-edge region as a
good indicator of soil contamination. However, narighe above-mentioned methods aimed to
predict whether vegetation is — or has been — e@us crude oil or petroleum products from its
spectral signature. This represents an importaoeigor detecting contamination under natural
conditions without priori knowledge about their presence.

VI, REP and spectrum transformations have been imsegssessing stress-induced alterations
in vegetation health in a wide range of contexiiell& & Pefiuelas [81] used reflectance derived
in the red-edge for tracking changes in LCC and loAICapsicum annuum and Phaseolus
vulgaris resulting from nitrogen deficiencies. Likewise, &iploiting the NIR and SWIR regions

succeeded in tracking water-stress caused by iomudf irrigation or pests [120,190]. When
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used in classification or simple and multiple ragien methods, these reflectance data allow
predicting stressed vegetation and quantifying tysgal and biochemical parameters
automatically [191-194]. Therefore, they are greahdidates for detecting crude oil and
petroleum products and quantifying TPH indirectly.

Classification relies on the combination of sevedacrete or continuous variables.gf
reflectance data, VI) to predict a categorical oese variable €g. “healthy” or “stressed”)
through a mathematical function [195]. Here, weyardnsider supervised classification. In most
cases, these methods are first calibrated on afsdata with known categories, called the
training set, and tested on an independent set —téseset - by predicting categories and
comparing them to the true ones [196]. Numeroussdiaation methods have been proposed in
the literature [197-199]. When dealing with hypexdpal data, several constraints yet arise.
Since reflectance is measured over multiple andigwous wavelengths, it is not rare to have
more variables than observationg.(reflectance wavelengths > sample size). This pmemon,
known as the Hughes’ effect [200], leads to ovenfit of the training set, which negatively
affects classification accuracy. This effect carpbely avoided by reducing the dimensionality
of the variables using, for example, Principal Comgnt Analysis (PCA). Focusing on
vegetation studies, Linear Discriminant AnalysiDA), Support Vector Machines (SVM),
Random Forest (RF) and Spectral-Angle-Mapper-badasksification (SAM) revealed to be
particularly efficient for discriminating healthyd stressed categories while avoiding overfitting
[192,194,201,202]. However, an exhaustive revieappsed by Lowet al. [179] stated that no
consensus is made in the choice of the methode sheir performance highly depends on the
purpose of the classification. Few methods alloventdying the most importanti.€.

discriminant) variables through weighting or stegaviselection criteria [201,203]. Stepwise
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Forward LDA [204] has been specifically designedtfos purpose, but remains poorly adapted
to hyperspectral data because of high multicollitggaln a spectral region, multicollinearity
occurs when reflectance data are linear combinatbreach other [205]. For example,
correlation coefficientsrf among reflectance data from different red wavglles can easily
exceed 0.8, which indicates high redundancy. V&iaklection becomes very difficult in this
case. To achieve it, penalized methods have beerlageed, such as the Elastic net [206], but
remain underexploited in vegetation studies.

Regression methods are used to predict a contintesonse variable from one (simple
regression) or several (multiple regression) camus input variables [207]. In practice, these
methods follow the same calibration — test procedban for classification. Simple regression
relies on the calibration of univariate modetsy( polynomial, exponential, etc.). It has been
especially used for predicting LCC from single Wi previous studies [64,67,81]. Multiple
regression regroups a wide range of methods thaiotigubstantially differ from classification
ones, and are constrained by the same overfittimd) @multicollinearity issues. Regarding
vegetation studies, it has been shown that Stepli3&, Partial Least Square Regression
(PLSR) and Support Vector Regression (SVR) are-sweted for retrieving biophysical and
biochemical parameters from hyperspectral data,[B®,208]. Once again, there is no best
method since the performance varies according @octintext. Since both classification and
regression methods perform well for detecting andngfying stress-induced changes in
vegetation health, they are promising for monitgrinil contamination from vegetation
reflectance. Studies listed in Table 2 showed tiatmixture composition and the overall TPH
concentration strongly influence the amplitude eflactance modifications observed in the

whole spectral signature. Based on these obsemgatjwredictive methods combining VI and
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either classification and regression approaches Hzeen recently proposed to detect and
characterize oili(e. to identify the type of crude oil or petroleum guat) and to quantify TPH
concentration in temperate and tropical regionsl[BZ]. These methods rely on tracking subtle
changes in chlorophyll or various carotenoid cotgé@mduced by oil contamination by exploiting
reflectance at multiple wavelengths in the VIS. yh@oved suitable for use both under
controlled conditions and in the field.

Other methods based on a different approach haste developed for similar purposes. Those
based on RTM are of great interest. RTM are phijgitased models aiming to simulate
vegetation optical properties. They are typicalgssified in four categories: plate models, N-
flux models, stochastic models and ray tracing n®838,209]. Focusing at leaf scale, the plate
model PROSPECT is probably the most widespread/2$2)n its direct mode, PROSPECT
allows simulating leaf optical properties (refleata and transmittance) in the optical reflective
domain from its biophysical and biochemical parare(structure and pigment, water and dry
matter contents). Inversion of the model allowsieging these parameters from reflectance and
transmittance measurements performed on leaveq. [PBBOSPECT has been used in many
studies dealing with environmental monitoring pweg® [72,210]. While LCC and LWC remain
the most targeted parameters in vegetation stesssament [119,211], recent improvements of
the model allow separating chlorophylls, caroteso@hd anthocyanins with good precision
[68,92]. In a recent study, Arellare al. [48] inverted the model to compare LCC of various
tropical plant families among uncontaminated arkg il sites, and found significant alterations
for some of them. More recentlyassalle et al. [49] inverted PROSPECT to retrieve oil-induced
chlorophyll alterations in leaves from reflectandata, making possible to quantify TPH

concentrations in soils (Figure 10). These two isidlso highlighted the importance of taking
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622 the species’ sensitivity to oil and the developm&age into account, which both determine the

623 detection and quantification accuracy.
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625 Figure 10. Relationship between Leaf Chlorophylht@mt (LCC) retrieved from the spectral
626 signature oRubus fruticosus L. by inverting the PROSPECT model, and the cotraéon of

627 Total Petroleum Hydrocarbons (TPH) in mud pit spi].

628

629 Hence, the methods developed for monitoring oiltamnation from vegetation reflectance
630 are largely inspired from those of other fields rG@mpmy, ecology). In a perspective of
631 application at large scale — using airborne orligatémagery, an upscaling of these methods is
632 necessary. This represents a difficult step tosctoward operational applications over industrial
633 facilities.

634

635 5. Application in contamination monitoring using airhe and satellite imagery

636 5.1. Synthesis based on previous studies

637 Few attempts have been made in detecting oil leekagd contaminated mud pits in vegetated
638 areas using optical remote sensing in the pastl€Tab In most cases, studies aimed to assess

639 the impact of crude oil and petroleum products lo& énvironment using multi- (Landsat) or
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hyperspectral (Hyperion) satellite imagery at 3@matial resolution [23,212—-214]. More rarely,
the goal was to detect natural oil seepages (FigjLaeb) [55]. A limited number of authors have
used airborne hyperspectral images, and those whbade rarely exploited the entire spectral
signature of vegetation. Almost all the mentionaddes used REP or VI to detect changes in
vegetation health induced by crude oil or petroleanoducts. As for experiments carried out
under controlled conditions, these methods relyn@an comparison between sites with healthy
and oil-exposed vegetation [54,212,215]. They pdoteebe efficient for identifying vegetation
stress on seepage or leakage sites, but suffeved gerious limits when applied outside the

study area (Figure 11a-b).

Table 3. Studies aiming to detect and quantify eroiland petroleum products using multi-
and hyperspectral airborne and satellite imagesfl.(RReflectance; VI. Vegetation Indices; CR:
Continuum Removal; RF: Random Forest; REP: Red-Edge Positmmp.: Comparison; RTM:

Radiative Transfer Model.)

. Sensor type Bands

Vegetation type Target Sensor name (spatial resolution)  (spectral domain) Method Ref.

Multispectral
Mangrove Crude oil leakac Landsa-8 Satellite (30 9 (435- 2294 nm VI + Mean comg [212]
Crops,grassland & tree Crude oil leakac Landsa-8 Satellite (30 9 (435- 2294 nm VI + RF classificatio [213]
Mangrove Crude oil leakac Landsa-5 & -7  Satellite (30 r 6 (450- 2350 nm VI + Simple regressic [216]
Mangrove Crude oil leakac Landsa-5 & -7  Satellite (30 r 6 (450- 2350 nm VI + Mean comg [216]

Hyper spectral
Wetland Crude oil leakage AISA Airborne (1.5 m) 286 (400 - 2400 nm Reflectance + Classificatior [217]
Crops Benzene pipeline leak HyMap Airborne (4 m) 128 (436 - 2485 nm  REP & VI + Spatial filter  [23]
Temperate shrubs Mud pit HySpex Airborne (1 m) 409 (400 — 2500) VI + Classification [50]

P P ysp RTM + Regression

Mediterranean grasslai  Crude oil microseepage  Probe-1 Airborne (8 m) 128 (436 - 2480 nm. REP & VI + Spatial filter  [55]
Tropical forest Crude oil leakage Hyperion Satellite (30 m) 242 (400 - 2500 nm' VI + Threshold [54]
Plain & rainforest Crude oil leakage Hyperion Satellite (30 m) 242 (400 - 2500 nm' CR + Mean comp. [215]
Plain & rainforest Crude oil leakage Hyperion Satellite (30 m) 242 (400 - 2500 nm Refl. & VI + Mean comp. [215]

In contrast to experimental studies, REP and Viehalveady been exploited in classification

or anomaly detection methods on multi- and hypeatsgkimages. However, the performance of
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these methods has been rarely quantified. Theluatran mostly relied on visual interpretation
of detection mapping with lacking ground validatidata, which are often difficult to obtain.
Among notable examples, Oziga al. [213] combined 10 VI in random forest on 30-m
resolution Landsat-8 images for detecting oil legdea and obtained an overall accuracy of
maximum 70% on selected sites. Conversely, Arelkirad. [54] applied successive vegetation
index thresholds to map oil-induced stress neadymtion facilities using 30-m resolution
Hyperion images. These methods were first calidrate a study area, and then applied to the
entire image. In all cases, they led to the apparidf false alarms, especially false positivies (
vegetation stress not induced by petroleum hydbmrer and HMs) (Figure 11b). This
phenomenon is observed under various contexts {emperate, tropical) and results from
multiple factors. First, in most studies, the spatesolution of the images was not adapted to the
size of the target. In addition, as described ctise 3.4, certain species are particularly toleran
to crude oil and petroleum products and undergy bitle changes in their spectral signature,
which make them difficult to discriminate from hégl vegetation. In that situation, high
spectral resolution and signal-to-noise ratio ageded to catch these changes in reflectance, so
hyperspectral sensors are required. In additiotyralkdifferences in optical properties among
species and individuals — as well as in sensititityoil — make the detection particularly
challenging in areas with high species diversity: lastance, a species exposed to crude oil or
petroleum products may exhibit a similar spectighature than that of another unexposed
species [49]. This becomes a serious issue at dgdarspatial resolution, where species are
highly mixed inside pixels. A similar issue arisisen exposed species are mixed with bare soil.

Very high spatial resolution (1 — 2 m) is thus rexktb overcome these limits.
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Figure 11. (a) Crude oil seepage in vegetated dteaseepage is surrounded by a particular
vegetation distribution pattern, which allows bedejected (b) from hyperspectral airborne
images using various vegetation indices (see [@5fHe description of indices). However, false
alarms (red pixels outside yellow circles) canmotlioided. Similar observations have been

depicted for accidental oil leakages [54,216].

Ozigis et al. [213] pointed out several sources of confusion twmatribute to increasing false
positives. The presence of crude oil and petrolguoducts is not the only factor affecting
vegetation health and optical properties underrahttonditions. Some biotic or abiotic factors
are likely to induce similar effects, thus introthgconfusion. As described in section 3.2, crude
oil and petroleum products reduce water availabfir plants and can induce a water-deficit
stress. Under natural conditions, this effect cardsily confused with that of a “natural” water-
deficit (i.e. resulting from insufficient precipitation and/orghly drained soils). Although it
seems possible to discriminate these stressorkidgbity oil-sensitive species under controlled
conditions [59,183], it is more difficult for oibterant species and using airborne or satellite
hyperspectral images. Stress confusion has beatifidd as one of the most important cause of
misclassification in previous studies. It is theref necessary to account for these sources of

confusion in each context, when applying detectr@thods over an entire region. Once again,
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very high spatial and spectral resolutions are egeéd achieve efficient discrimination of oil and
other stressors. Although no current satellite-addbd sensor offers such resolutions
simultaneously at the moment, airborne imageryasgmts a good alternative [217].

As concluded from the above-mentioned studies itat the best option to develop methods
for detecting and quantifying oil using only airberor satellite images, especially without solid
knowledge about the context (species’ sensitiviggdrocarbon and HM mixture, other potential
stressors). Experiments carried out under conttailenditions are a necessary first step, since
they help determining the response of vegetati@tifpally induced by crude oil and petroleum
products. These experiments must be representativealistic field conditionsi(e. species,
TPH concentrations) and serve as basis for devedoglassification or regression methods that
are suitable for use on images. The upscaling dhoas is the most important difficulty in this
approach, so it is crucial to address it progresgi\for example, from leaf to canopy scales and
finally on images. The validation of the methodghe field is an intermediate — and critical —
step prior to imagery application. Then, the methsldould be progressively applied to imagery;
first, on selected sites with known species’ sensés, and thereafter at large scale. This
multiscale approach proved efficient in recent ®sidFor example, Lassale al. [49,50,57]
developed methods for detecting and quantifying Titd$ed on bramble reflectance under
controlled and field conditions and succeeded piyapg them on airborne hyperspectral images
over contaminated mud pits (accuracy > 90%).

The studies listed in Table 3 demonstrated thalfgifyg of assessing oil contamination using
optical remote sensing. However, the methods destrin these studies were validated locally,
in a specific context. As a perspective, they atended to be applied operationally in a broader

range of situations encountered in oil contamimatioonitoring (pipeline leakage, mud pits,
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storage tanks failure, etc.), in various regiomesnfterate, tropical, etc.). This implies extending
the scope of these methods and overcoming theierulimits regarding operating and future

satellite-embedded sensors.

5.2. Perspectives toward operational applications irnd gas industry

In an operational context, remote sensing shoubdige accurate mapping of oil over large
industrial facility sites colonized by vegetatioit this stages, the methods developed for this
purpose remain rarely effective — or often unaggkssoutside a given study site [54,55,213],
which limits their operational use. Most of thene adapted to a given species or vegetation type
(mangroves, shrubs, etc.) with known location, resé methods can be applied for identifying
new contaminated sites, provided they are colonigetthe same species or vegetation type. This
remains very restrictive, because oil can be mapmpey locally and to pre-selected vegetated
sites. Therefore, in an operational perspectives, @ssential to extend the scope of the methods
to other contexts (in terms of species and contatioin type and level). Likewise, they should
be applicable to entire images, in order to assgs®ntamination at large scale. To achieve this,
it is not conceivable to use airborne hyperspedinagery — especially for daily monitoring,
because it implies an important economic cost. €msely, satellite imagery is already used
operationally by oil and gas companies for minegalal mapping and marine oil spill tracking
[218,219]. Satellite-embedded sensors can proviggyés over industrial facilities on a daily —
or weekly — basis, allowing continuous monitorirfgod contamination. To date, the best spatial
resolution provided by operating and planned hypetal satellite-embedded sensors is 8 m,
with less than 300 spectral bands in the refledimmain (Table 4). In contrast, the best methods

developed for assessing oil contamination were ldped using high to very high spatial and
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spectral resolutions [23,50,217]. Using satellitegery, their performance would be impacted
by the degradation of resolutions. Therefore, twaditions are required for applying these
methods in an operational way, namely: extendimjy thcope to a wide range of contexts and

adapting them to future satellite-embedded hypetsgesensors (Table 4).

Table 4. Specifications of operational and futatekite-embedded hyperspectral sensors. The

name and specifications of future sensors may kdifr@d until their operating (n.a.: not

available).
Sensor name Spectral domain Bands Spatial resolution L aunch date
(nm) (m)
CHRIS 415- 105(C 19-63 18-36 operationg
EnMAP 420- 245( 244 3C 202
HISUI 400- 250( 18t 30 202(
HJ1A 450- 95C 11F 10C operationg
Hyperior 357-257¢ 22C 3C operationg
HypXim 400- 250( 21C 8 202(-202z
HySI 400- 95C 64 55C operationg
HyspIRI VSWIR 380- 250( 21z 30 n.a
PRISMA 400- 250¢ 24¢ 30 operationg
SHALOM 400- 250( 27¢ 1C 202(
TianGon¢1 400- 250( 12¢ 10-2¢ operationg

At this stage, the application of the methods ajdascale is limited by the necessity to know
the location of the species — or vegetation typen—images. In an operational frame, an
automatic mapping of this species would be helpiithout this preliminary step, the methods
would lead to false-detection alarms and inaccugai@ntification of TPH if applied to other
species and vegetation types, which differ in @fproperties and sensitivity to oil [50,55,220].
The mapping could be achieved quite easily for hgenous and dense covers, but would
become harder in regions with high species richniéss particularly true when using satellite
imagery, as “pure” pixels of dense vegetatioa. {ncluding a single species or vegetation type
and no bare soil) become even rarer with increasjragial resolution. Spectral unmixing might

help overcoming this issue [47]. Unmixing aimsaaritifying the different species or vegetation
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types inside pixels using, for example, specttadalies. Lots of unmixing methods have been
proposed in previous studies [47,221-223]. Focusimyegetation studies, unmixing methods
have been developed for two main purposes: mappisiggle target species or vegetation type
and discriminating among various ones. Thus, ummgixould be used for mapping the species
or vegetation types of interest before applying iethods of oil detection and quantification.

Toward operational monitoring, future studies sddokus on applying unmixing methods prior

to detecting and quantifying TPH at satellite sgdatsolution. However, it might be interesting

not to limit to the species or vegetation typeswdrich the methods were developed. Various
species might serve for detecting and quantifyiigwhich would extend the scope of the

methods and fulfill operational needs.

Once the target species or vegetation types hase tmapped, it is important to note that the
accuracy of the detection and quantification ofwill depend on the level of contamination. For
example, the exact range of effectiveness of thinaas proposed for quantifying TPH remains
unknown [49,50,189]. This information is essenfial operational applications, because oil
contamination can extend to a wide range of comagahs. Further studies should focus on
determining the exact limits of detection and qifemation of existing methods, especially since
they may vary among species. Depending on theisitbaty to oil, all species do not allow
detecting and quantifying contamination in the saargge. Species with different sensitivities
could be complementary for quantifying TPH overidewange of concentrations [49,189,220].
High spatial resolution is also needed, as TPH eotmations may vary locally. 8- or 30-m pixels
may include different species exposed to diffedenels of contamination, making oil very

difficult to detect and quantify accurately. Henes, important effort remains to identify the
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species suitable for monitoring oil contaminationdato define their respective range of
effectiveness at the spatial resolution of sagetinbedded sensors.

At this stage, the scope of the methods developeddétecting and quantifying TPH is
restricted to assessing huge oil leakages (e.grmodjspills and large, contaminated mud pits).
Toward operational applications, it should extendother scenarios. Chronic crude oil or
petroleum product leaks deriving from pipeline tmrage tank failures are priority, because they
represent one of the main sources of contamind@ase from oil industry [15,18]. From the
perspective of satellite imagery application, onegible limit to applying the methods may arise
at the spatial resolution of satellite images foaB contaminated areas. More precisely, pipeline
and storage tank leaks can spread on a few squareram35,43], making their detection
challenging at satellite spatial resolution, beeapscels would not only include oil-exposed
vegetation. Therefore, the required spatial resmiutiepends on the contamination event to

detect (mud pit, pipeline leak, etc.).

6. Conclusion

This review aimed at summarizing the advances hatlanges in using optical remote sensing
for assessing oil contamination in vegetated ar&kisough the optical properties of vegetation
have been well documented, their use in oil and igdsastry is still recent. By exploiting
modifications in these properties caused by pignamt water alteration in leaves, previous
studies have shown that it is possible to detedtcrantify TPH in soils under controlled and
field conditions. However, at this stage, sevemlits discussed in this review prevent from
applying the same methods in an operational wdgrge scale, using hyperspectral imagery.

Hence, the work summarized in this review shouldtiooie in further research, in order to
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extend the scope of the methods and to assessffeiational maturity. More precisely, future
studies should first focus on identifying more valet plant species and, for each of them, the
types of oil {.e. crude oil and petroleum products) and the rangeootentrations that can be
detected or quantified. This would be helpful femote sensing operators of oil and gas
companies, as the methods could be used for a maitge of purposes in oil exploration and
contamination monitoring. Prior to operational apgtions, the methods should be evaluated at
the spatial and spectral resolutions of futurelb@embedded hyperspectral sensors, along with
species unmixing.

On the long term, oil and gas companies may spaokvigg interest in UAV-embedded
hyperspectral sensors. Although they are still urdkvelopment, they represent a promising
complement or alternative to satellite imagery. UAwvibedded sensors allow multitemporal,
localized, monitoring, while providing very highaal (up to cm scale) and spectral resolutions
[224,225], therefore overcoming some of the aboestioned limits. In addition, active remote
sensing could be used to improve oil detection guehtification, by providing complementary
information about vegetation. For example, radar BIDAR imagery are useful for estimating
canopy height and biomass [226], which are affedigdoil. Radar remote sensing is light-
independent and atmospherically-resistant, which onsiderable advantage in wet tropical
regions [227,228]. By combining various technolsgiactive and passive) and sensor platforms
(satellite, drone), remote sensing will undoubtetlgcome an indispensable support to oil

contamination monitoring in vegetated areas incthraing decades.
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