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A gentle introduction to Girard’s
Transcendental Syntax for the linear

logician
Version 7

Boris Eng

Technically speaking, the transcendental syntax is about designing logics
with a computational foundation. It suggests a new framework for proof
theory where logic (proofs, formulas, truth, ...) is no more primitive but
computation is. All the logical entities and activities will be presented as
formatting/structuring on a given model of computation which should be as
general, simple and natural as possible. The selected ground for logic in the
transcendental syntax is a model of computation I call ”stellar resolution”
which is basically a logic-free reformulation of Robinson’s first-order clausal
resolution with a dynamics related to tile systems. An initial goal of the
transcendental syntax is to retrieve linear logic from this new framework. In
particular, this model naturally encodes cut-elimination for proof-structures.
By using an idea of “interactive typing” reminiscent of realisability theory,
it is possible to design formulas/types generalising the connectives of linear
logic. Thanks to interactive typing, we are able to reach a semantic-free
space where correctness criteria are seen as tests (as in unit testing or model
checking) certifying logical correctness, thus allowing an effective use of log-
ical entities.

A friendly glossary of the transcendental syntax and of Girard’s terminology is pre-
sented at the end of this paper. Please contact me by e-mail if this introduction is not
gentle enough in your opinion.

Prerequisites: linear logic, sequent calculus, proof-nets, correctness criteria, term
unification, first-order resolution.
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1. Introduction

1.1. History and scientific context

The transcendental syntax is the direct successor of Girard’s Geometry of Interaction
(GoI) [17, 16, 15, 18, 20, 22]. The initial idea of the GoI was to study cut-elimination
in a purely computational and mathematical fashion. For instance, in the case of MLL,
Girard remarked [14] that it was sufficient to represent proofs as permutations on a finite
subset S ⊆ N of natural numbers (representing logical atoms) and cut-elimination as
a procedure of interaction between permutations1. Then an extension to exponentials
(handling of erasure and duplication of formulas), would naturally require infinitely
many natural numbers for the potentially infinite copies of logical atoms. This is why
Girard introduced interpretations with operator algebras [16]. The next articles of GoI
are extensions of this idea to full linear logic and more. The current most complete
historical introduction on the GoI is probably Seiller’s thesis [43] (written in French).

Unsatisfied with the infinite and complicated objects obtained, Girard introduced the
transcendental syntax as a successor which would use simple and finite combinatorics, by
extending a simplification of an idea coming from the third paper of GoI [18]. Philosoph-
ical motivations such as the wish for the sufficient conditions for a finite and tractable
reasoning in a chaotic semantic-free space also appeared along this new project. More-
over, inspired by the GoI, logic would not be primitive anymore: instead, we should
start from a very general idea of computation and then a logic would be designed for
this model. In some sense, it is opposite to the practice of the proof-program correspon-
dence: instead of taking a logic and turning it into a type system for a new programming
language, we design a logic for a programming language speaking about its computa-
tional behaviour. In the case of linear logic, I personally like to see it as a sort of reverse
engineering of logic where logic would be retrieved instead of pre-defined.

Note that although the GoI has a quite rich history, it was a rather isolated series
of works. In the literature, the term “Geometry of Interaction” usually refers to a
simplification of Girard’s first GoI [16] suggested by Danos and Regnier [12] which led
to the idea of token machine [13, 4] used for rewriting-free evaluations of λ-terms and
which also inspired categorical semantics of linear logic [2, 28].

1.2. Philosophical motivations

In this section, I assume that the reader is already (even vaguely) aware of Girard’s
intuition and conception of logic without necessarily understanding them.

A quite old and recurrent idea of Girard is the idea of blind spot : the idea that our
understanding of logic is biased and only an approximation of a bigger picture we do not
fully understand. Indeed, the whole study of logic usually lies on primitive definitions
and preconception of what a proof or a formula should be. Reductionist approaches of
logic are traditions in mathematical logic: the mechanisms of these given concepts are
explored using mathematics.

1This idea has been simplified with graph theory by Seiller [42]
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In the GoI, Girard tried the opposite approach of founding logic over very general
computational entities without any logical meaning. By using an idea of interactive
typing (also appearing in ludics [19] or classical realisability [36]), it is possible to speak
logic in a semantic-free space since formulas are constructed as grouping of computational
entities instead of simply being predefined syntactic labels.

The philosophical problem that the transcendental syntax aims to solve and which was
not present in the GoI is that in this chaotic semantic-free space, finite and tractable
reasoning is not possible anymore: it is theoretically impossible to verify the logical
correctness of even the simplest things (such as ∀X.X ⇒ X) for reasons we will see
in this paper. The idea is to take inspiration from the correctness criteria of proof-net
theory as a sufficient and finite way to assert logical correctness.

In the transcendental syntax writing a simple and naive proof in sequent calculus is
not so innocent: proof-nets theory shows that when doing so, we implicitly manipulate
computational objects holding a certificate asserting that the computational object is
logically correct. Correct proofs are like individuals having a VIP card but we forget
that there exist some other individuals not having it. What Girard claims is that these
forgotten individuals are essential in the understanding of the mechanisms of logic. An
ambition of the transcendental syntax is to make these implicit assumptions computa-
tionally explicit and to ”put everything on the table, even the table”.

In terms of linear logic, this idea is materialised by the correctness criterion of linear
logic: a computational object (proof-structure) can be tested in order to tell whether or
not it is logically correct (that it corresponds to a sequent calculus proof). In the tran-
scendental syntax, this idea is generalised beyond proof-structures: any computational
object is a “proof” of something when it is accompanied with some tests it satisfies.
The idea of logical correctness then becomes relative/subjective. It means that what we
mean by “passing the tests” is up to us, depending on what we would like to obtain (for
instance, a specific computational behaviour), exactly as we would do when checking
program specifications in model checking for instance.

Girard’s philosophical motivation for the transcendental syntax is to establish a whole
new architecture for logic which would be free of any logical preconception but also
explain the whole logical activity. In this idea, logic is a formatting of computation:
everything starts from a chosen very general, simple and natural model of computation.
This is what Girard calls the analytics, in reference to Kant. We require that the model
includes reducible objects which can be evaluated (what Girard calls performance) to
an irreducible object (Girard’s constat). Both are separated by indecidability : the fact
that an reducible object cannot always be reduced to its potential results (infinite loop
may appear).

Once we have a computational ground, logic is a subjective way to provide a meaning
to the computational objects, what Girard calls synthetics. There are two ways to make
a computation meaningful. First, defining an arbitrary finite set of tests (as we would
do in programming) and see if the object of interest passes these tests. Interestingly,
these tests are also encoded as objects of the same kind as the tested and are part of
the type theory of transcendental syntax instead of being external objects (like how
tests in programming are also programs). This is Girard’s usine (factory in English).
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Another way to provide meaning is to classify objects depending on how they interact
with other ones by the interactive typing mentioned above. This is Girard’s usage
(use in English). Girard claims that the factory and the use are separated by Gödel’s
incompleteness theorems because tests (our arbitrary definitions of proofs and formulas)
cannot always perfectly guarantee the use of logical definitions (the capture of classical
truth for instance). The tests are either too strict (and missing some use cases – or some
true formulas becoming unprovable) or too permissive (contradictions appear).

Notice that this architecture is founded on fatalities and the idea of explicitation
appearing in both computation and logic. Hence, this suggestion of foundations for logic
has a rather solid ground.

1.3. Transcendental Syntax as a toolbox for computer science

The idea of capturing computational properties of behaviour by formulas is not new
to computer science. Formulas are convenient ways to reason about the regularity of
computational phenomena by only manipulating syntactic labels. The transcendental
syntax generalises this practice of formulas in a larger and more convenient framework.

• In descriptive complexity [30], complexity classes such as P and NP are captured
by fragments of a logic and decision problems are characterised by formulas. In our
case, we should be able to design atypical formulas existing outside a predefined
logical system in order to describe computation in a more fine-grained way.

• In model checking, we are interested in reasoning about properties of a model of
computation representing a real system. We will see that in the model of com-
putation we consider, it is possible to naturally encode various classes of circuits,
state machines and tile systems but also to design formulas speaking about them.
From these formulas (corresponding to specifications), tests can be constructed in
order to check if our representation satisfies a specific specification.

• In unit testing, a program is tested against a finite of tests in order to guarantee
a specific computational behaviour and to certify a partial correctness. In the
transcendental syntax, these tests can also be typed and unit testing applies to
any model of computation we can express.

2. Stellar Resolution: query-free concurrent first-order

resolution

The stellar resolution is the computational ground for logic selected by Girard. In fact,
this is not a necessary choice at all. Other choices can be made but this one is especially
convenient for linear logic or computable functions. It comes from a generalisation of
flows (a model of computation appearing in the third article of GoI [18]).

We use the name ”stellar” for Girard’s terminology of stars and constellations and
”resolution” for its similarities with other resolution-based models [35, 47].
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For pedagogical purposes, we describe our model of computation as a generalisation
of tiling models and show that it behaves as a sort of concurrent, query-free and alogical
logic programming language.

2.1. Tile systems

Wang tiles [50] We consider bricks with four faces for the four directions
in the plane Z2. We can connect two opposite faces of two bricks when they have
the same colour. We are usually interested in constructing tilings by reusing the
tiles as many times as possible (hence, producing maximal constructions). This is
a well-known model and a good introduction to tiling-based computation.

Flexible tiles [32, 31]

t1h1

h2

h3

t2

θ(h2)
h4

This is a less
common but still interesting model of computation. Instead of imposing planarity
to tilings, we can allow tiles to have flexible sides selected from a set of sticky-ends
types H. We connect the sticky-ends w.r.t. an involution θ defining complemen-
tarity. Surprisingly, this model is able to simulate rigid tiles such as Wang tiles
[32].

2.2. Stars and constellations

φ1g(x)
+a(x)

−b(x)

φ2

−a(f(y)) +c(y)

The stellar resolution (sketched in this section) can be seen as a flexible tiling model
with terms called rays as sticky-ends. A ray can either be polarised with a head symbol
called colour (e.g. +a(x) or −a(f(y)) where a is a colour and t is any unpolarised term)
or unpolarised (e.g. x or g(x)).

A star (tile) is a finite multiset of rays φ = [r1, ..., rn] and a constellation Φ = φ1+ ...+
φm (tile set / program) is a (potentially infinite2) multiset of stars. We consider stars
to be equivalent up to renaming and no two stars within a constellation share variables:
these variables are local in the sense of programming. The empty star is written [].

By using occurrences of stars from a given constellation, we can connect them along
their matchable rays of opposite polarity in order to construct tilings called diagrams.

We get the following correspondence of terminology:

2Finite constellations are sufficient when speaking about logic.
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Tile systems Stellar Resolution

Sticky-end Ray r = +a(t),−a(t), t

Tile Star φ = [r1, ..., rn]

Tile set Constellation Φ = φ1 + ...+ φm

Tiling Diagram

Example 1. We encode two typical logic programs as constellations. We write sn for n
applications of the symbol s in order to encode natural numbers. A colour corresponds
to a predicate and the polarity represents the distinction input/output or hypothesis/con-
clusion. An unpolarised ray cannot interact with other rays.

add(0, y, y).

add(s(x), y, s(z)) :- add(x, y, z).

?add(s^n(0), s^m(0), r).

Φn,m
N

= [+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))] + [−add(sn(0), sm(0), r), r]

parent(d, j). parent(z, d). parent(s, z). parent(n, s).

ancestor(x, y) :- parent(x, y).

ancestor(x, z) :- parent(x, y), ancestor(y, z).

?ancestor(j, r).

Φfamily = [+parent(d, j)] + [+parent(z, d)] + [+parent(s, z)] + [+parent(n, s)]+

[+ancestor(x, y),−parent(x, y)] + [+ancestor(x, z),−parent(x, y),−ancestor(y, z)]+

[−ancestor(j, r), r]

2.3. Evaluation of constellations

We are now interested in tiling evaluation, which is not standard in the theory of tiling
models but lead in logic programming in our case.

φ1g(x)
+a(x)

−b(x)

φ2

−a(f(y))
+c(y)

 

φ1 ∪ φ2g(f(y))
+c(y)

−b(f(y))

We first define an evaluation of diagrams called actualisation. If stars are understood
as molecules, then evaluating diagrams corresponds to triggering the actual interaction
between the stars along their connected rays, thus making a sort of chemical reaction
happen and propagate to the non-involved entities. Another way to see it is to solve
constraints between the connected rays and propagating the solution to the free (uncon-
nected) rays (which survive to the evaluation).

There are two equivalent ways of contracting diagrams into a star by observing that
each edge defines a unification problem (equation between terms):
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Fusion We can reduce the links step-by-step by solving the underlying equation, pro-
ducing a solution θ. The two linked stars will merge by making the connected rays
disappear. The substitution θ is finally applied on the rays of the resulting star.
This is Robinson’s resolution rule.

Actualisation The set of all edges defines a big unification problem. The solution θ of
this problem is then applied on the star of free rays.

In order to get a successful evaluation we need our diagrams to satisfy few properties
(only the first and last ones are mandatory). We usually require diagrams to be:

Connected because otherwise, we would always have infinitely many diagrams by re-
peating isolated stars (notice that it ensures a reduction into a single star);

Saturated meaning that it is impossible to extend the diagram with more occurrences
of stars. It represents the idea of maximal/complete computation. In practice, we
often excludes of diagrams with free coloured rays since they represent incomplete
computation (see subsection 3.1) but keep the definition more general when this
features is not needed.

Correct meaning that the actualisation does not fail (no contradiction during conflict

resolution – such as in the equation f(t)
?
= g(t)).

Example 2. We illustrate diagrams for the unary addition. Notice that diagrams cor-
respond to traces of programs where the re-use of a star corresponds to a loop in pro-
gramming.

Partial computation of 2 + 2 (0 recursion):

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Complete computation of 2 + 2 (1 recursion):

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Over computation of 2 + 2:

−add(0, y, y); +add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z));

+add(x, y, z); −add(s(x), y, s(z)); +add(s2(0), s2(0), r); r;

Note that in the case of Φn,m
N

, there is infinitely many saturated diagrams but only one
is correct: the one corresponding to a successful computation of n+m.
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Example 3 (Fusion). The full fusion of the diagram representing a complete compu-
tation of 2 + 2 from example 2 is described below (we make the exclusion of variable
explicit):

−add(0, y1, y1); +add(x2, y2, z2); −add(s(x2), y2, s(z2));

+add(x3, y3, z3); −add(s(x3), y3, s(z3)); +add(s2(0), s2(0), r); r;

↓ θ = {x3 7→ s(x2), y3 7→ y2, z3 7→ s(z2)}

−add(0, y1, y1); +add(x2, y2, z2); −add(s(s(x2)), y2, s(s(z2))); +add(s2(0), s2(0), r); r;

↓ θ = {x2 7→ 0, z2 7→ y2}

−add(s(s(0)), y2, s(s(y2))); +add(s2(0), s2(0), r); r;

↓ θ = {y2 7→ s(s(0)), r 7→ s(s(s(s(0))))}

s(s(s(s(0))));

Example 4 (Actualisation). If we take the diagram δ representing a complete compu-
tation in the example 2, it generates the following unification problem:

P(δ) = {add(0, y1, y1)
?
= add(x2, y2, z2), add(s(x2), y2, s(z2))

?
= add(x3, y3, z3),

add(s(x3), y3, s(z3))
?
= add(s2(0), s2(0), r)}

which is solved by a unification algorithm such as the Montanari-Martelli algorithm [38]:

→∗ {x2
?
= 0, y2

?
= y1, z2

?
= y1, x3

?
= s(x2), y2

?
= y3, z3

?
= s(z2),

s(x3)
?
= s2(0), y2

?
= s2(0), s(z3)

?
= r}

→∗ {y2
?
= y1, z2

?
= y1, x3

?
= s(0), y2

?
= y3, z3

?
= s(z2), s(x3)

?
= s2(0), y2

?
= s2(0), s(z3)

?
= r}

→∗ {z2
?
= y1, x3

?
= s(0), y1

?
= y3, z3

?
= s(z2), s(x3)

?
= s2(0), y2

?
= s2(0), s(z3)

?
= r}

→∗ {x3
?
= s(0), y1

?
= y3, z3

?
= s(y1), s(x3)

?
= s2(0), y1

?
= s2(0), s(z3)

?
= r}

→∗ {y1
?
= y3, z3

?
= s(y1), s(s(0))

?
= s2(0), y1

?
= s2(0), s(z3)

?
= r}

→∗ {z3
?
= s(y3), s(s(0))

?
= s2(0), y3

?
= s2(0), s(z3)

?
= r}

→∗ {s(s(0))
?
= s2(0), y3

?
= s2(0), s(s(y3))

?
= r}

→∗ {y3
?
= s2(0), s(s(y3))

?
= r}
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→∗ {s(s(s2(0)))
?
= r}

→∗ {r
?
= s(s(s2(0)))}

The solution of this problem is the substitution θ = {r 7→ s4(0)} which is applied on the
star of free rays [r]. The result [s4(0)] of this procedure is called the actualisation of δ.

Φ
generates
−→ ∪∞

k=1Dk
actualises
−→ φ1 + ...+ φn

The execution or normalisation Ex(Φ) of a constellation Φ constructs the set of all
possible correct saturated diagrams and actualises them all in order to produce a new
constellation called the normal form.

In logic programming, we can interpret the normal form as a subset of the application
of resolution operator [37]. It non-deterministically computes all the ”maximal/com-
plete” inferences possible.

If the set of correct saturated diagrams is finite (or the normal form is a finite con-
stellation), the constellation is said to be strongly normalising.

Example 5. For Φ2,2
N

(from Example 1), one can check that we have Ex(Φ2,2
N

) = [s4(0)]
because only the complete computation of example 2 succeed and all other saturated
diagrams representing partial or over computations fail.

3. Encoding of some models of computation

We provide concrete examples of how our model computes. There are two interesting
facts about computing with stellar resolution.

• The stellar resolution computes by encoding a structure (hypergraph) and a trans-
mission of information inside it. This generalises circuits and automata. It also
makes the correspondence between tile systems and automata direct (some links
were already investigated in the literature [49]).

• Models of computation dependent of external definitions (the evaluation function of
circuits for instance) are translated into two dual constellations, one corresponding
to the model and the other corresponding to its environment, semantics or external
evaluation function. We require that they interact as expected. This will be
illustrated in the encoding of circuits.

3.1. Non-deterministic finite automata

The idea is to represent the transitions by binary stars with two opposite polarities
(hence representing an edge in a state graph).

Let Σ be an alphabet and w ∈ Σ∗ a word. If w = c1...cn then w⋆ = [+i(c1·(...·(cn·ε)))].
We use the binary function symbol · considered right-associative.

Let A = (Σ, Q,Q0, δ, F ) be a non-deterministic finite automata. We define its trans-
lation A⋆:

10



• for each q0 ∈ Q0, we have [−i(w),+a(w, q0)].

• for each qf ∈ F , we have [−a(ε, qf ), accept].

• for each q ∈ Q, c ∈ Σ and for each q′ ∈ δ(q, c), we have the star

[−a(c · w, q),+a(w, q′)].

For instance, the following automaton A accepting binary words ending by 00:

q0start q1 q2

0, 1

0 0

is translated as:

A⋆ = [−i(w),+a(w, q0)] + [−a(ǫ, q2), accept]+

[−a(0 · w, q0),+a(w, q0)] + [−a(1 · w, q0),+a(w, q0)]+

[−a(0 · w, q0),+a(w, q1)] + [−a(0 · w, q1),+a(w, q2)]

The set of saturated correct diagrams corresponds to the set of non-deterministic runs.
With the word [+i(0 · 0 · 0 · ε)] only the run q0q0q1q2 leads to the accepting state q2 ∈ F .
The corresponding diagram will actualise into [accept]. The other correct diagrams
correspond to incomplete computations and are excluded. We get  Ex(A⋆ + [+i(0 · 0 ·
0 · ε)]) = [accept] where  Φ erases the stars containing coloured rays (so that we delete
incomplete garbage paths from the result), meaning that the word is accepted.

This idea can easily be extended to pushdown automata. We briefly illustrate the
idea: the star [−a(1 · w, 0 · s),+a(w, s)] corresponds to checking if we read 1 and that
0 is on the top of the stack and if so, we remove it. Since we manipulate terms and
that Turing machines can be seen as pushdown automata extended with two stacks, the
extension to tree automata and Turing machines is direct.

Also remark that there is no explicit flow of computation and that paths are con-
structed non-deterministically in an asynchronous and concurrent way.

3.2. Boolean circuits

The idea is to first encode a hypergraph representing the structure of a boolean circuit
then to connect the resulting constellation to another one containing the implementation
of logic gates (the semantics) as if it was a sort of #include <proplogic.h> in the C
language.

V AR(Y, i) := [−val(x), Y (x),+ci(x)]

SHARE(i, j, k) := [−ci(x),+cj(x),+ck(x)]

11



AND(i, j, k) := [−ci(x),−cj(y),−and(x, y, r),+ck(r)]

OR(i, j, k) := [−ci(x),−cj(y),−or(x, y, r),+ck(r)]

NEG(i, j) := [−ci(x),−neg(x, r),+cj(r)]

CONST (k, i) := [+ci(k)] QUERY (k, i) := [+ci(k), R(k)]

where i, j, k are encodings of natural numbers representing identifiers. We also have a
star V AR(Y, i) for each variable Y we want as input in our boolean circuit.

We consider the following constellation representing a ”module” (as in any program-
ming language) providing the definitions of propositional logic:

ΦPL = [+val(0)] + [+val(1)] + [+neg(0, 1)] + [+neg(1, 0)]+

[+and(0, 0, 0)] + [+and(0, 1, 0)] + [+and(1, 0, 0)] + [+and(1, 1, 1)]

[+or(0, 0, 0)] + [+or(0, 1, 1)] + [+or(1, 0, 1)] + [+or(1, 1, 1)].

We can observe that by changing the module ΦPL, we can adapt the encoding and ob-
tain arithmetic circuits (possibly with several alternative implementations) or even con-
sider several implementations of logic/arithmetic gates (for instance with [+or(0, x, x)]+
[+or(1, x, 1)] for the OR gate). Notice that syntax and semantics live in the same world
(they are represented as objects of the same kind) and can interact.

We use the star CONST (k) to force a value on the input and the star QUERY (k)
to ask for a particular output. For instance, QUERY (1) asks for satisfiability.

To illustrate the encoding, we execute the constellation representing X ∨¬X where n
is an encoding of natural number:

Φem = V AR(X, 0) + SHARE(0, 1, 2) +NEG(2, 3) +OR(1, 3, 4) +QUERY (1, 4)

X S

¬

∨ R

The constellation Φem ⊎ ΦPL will generate two diagrams: one corresponding to the
input 0 and another one for 1. We obtain Ex(Φem +ΦPL) = [X(0), R(1)] + [X(1), R(1)]
stating that for the two valuations x 7→ 0 and x 7→ 1, the circuit outputs R(1).

3.3. Comments on the model

This model of computation embodies the idea of computation-as-interaction [1]. It is
a very primitive model of computation which is based on our intuition of space (a
geometric/topological structure where information flows). The rays can be seen as wires
we can peel (for instance f(x) can be divided into subwires f(l · x) and f(r · x)) and
thus opening topological/geometrical interpretations.
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Relationship with logic programming At first glance, our model is identical to Robin-
son’s first-order resolution using disjunctive clauses. The difference is that our
model is purely computational (no reference to logic) and that we use it for a
different purpose (no interest in reaching the empty clause but rather the set of
atoms we can infer). We can also have information not involved in computation
(unpolarised rays) which collects data which will be outputted in the normal form.
Although this dynamics of logic programming is well-known and well-understood it
seems that it has never been used that way as a logic-free concurrent constraint pro-
gramming language3. Moreover, our model will be extended with internal colours
and possibly additional features in the future, thus justifying the use of a new
name.

Relationship with tile systems The stellar resolution generalises flexible tiles [32, 31], a
model of computation coming from DNA computing [51]. This model is itself able
to simulate tile systems such as Wang tiles [50] or abstract tile assembly models
[39] by encoding both the tile set and its environment by constellations. From
our interactive typing, one can imagine methods of typing and implicit complexity
analysis of these models.

Relationship with the GoI and complexity We can generalise flows [18, 7] and interac-
tion graphs [43, 44] which have applications in implicit computational complexity
[8, 5, 6, 46]. Some of these works encode some notions of automata which we can
also reproduce and extend.

4. Geometry of Interaction for MLL

We explain how to encode MLL proof-structures and how to simulate both MLL cut-
elimination and logical correctness (by the Danos-Regnier criterion) as a first step to-
wards a full reconstruction of linear logic.

4.1. Cut-elimination and permutations

In a proof-structure, axioms induce a permutation on distinct natural numbers repre-
senting atoms (the conclusion of axiom rules). These atoms (called loci, which is the
plural of locus, in ludics [19]) represent the physical locations involved in a proof (you
can think of computer memory). We can actually forget the formulas which are simply
syntactic labels and only retain these locations without any special logical meaning.

The `/⊗ cuts can be seen as administrative/inessential cuts since all they do is
basically a rewiring on the premises of the ` and ⊗ nodes connected together. Actually,
when considering expansed axioms, they can all be eliminated in order to produce a
canonical form with only cut between atoms. Therefore, cuts can be seen as a (partial)
permutation on atoms. The atoms become the “support of interaction” of the proof; the

3I believe that it is simply because no practical purpose would justify such a model of computation.
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locations where logical interaction occurs. Here is an illustration of two permutations
representing a proof-structure with cuts and atoms in {1, 2, 3, 4, 5, 6, 7, 8}:

1 2 3 4 5 6 7 8

A simple presentation of GoI is given by Seiller [43] with connexion between graphs
instead of permutations on a set of natural numbers representing atoms. These graphs
are called interaction graphs for their ability to connect with each other. The cut-
elimination becomes the computation of maximal alternating path between two graphs
(the graph of axioms and the graph of cuts). This is actually the same as considering an
edge contraction as in the cut-elimination of proof-structures. In this new framework,
proof-nets theory is about locations and paths, and truth or logical correctness is about
cycles and connectivity, hence purely structural considerations.

The stellar resolution generalises this idea by encoding hypergraphs representing proof-
structures. In the case of cut-elimination, we only need binary stars representing graph
edges. The above interaction graph becomes:

Φ := [+c(1),−c(3)] + [+c(4), 5] + [+c(2), 6] + [7, 8]

[−c(1),−c(2)] + [−c(3),−c(4)]

We have Ex(Φ) = [5, 6] + [7, 8] which corresponds to the expected normal form (set of
maximal paths). Notice that the matching is exact, hence the actualisation is a trivial
contraction of a unique diagram (no non-deterministic choice is involved).

We will see later a more sophisticated version which the reproduce the behaviour of
⊗/` cuts so that we do not necessarily have to consider normalised proof-structures.

4.2. Correctness and partitions

If we wish to treat logical correctness in a satisfactory and natural way for MLL, we
have to shift to partitions of a set instead of permutations [14, 3]. Permutations can
still be retrieved: a permutation {x1 7→ y1, ..., xn 7→ yn} on X ⊆ N representing a proof
naturally induces a partition {{x1, y1}, ..., {xn, yn}} in X.

A Danos-Regnier switching induces a partition depending on how it separates or
groups atoms into different connected components:

1 2

⊗

1⊗ 2

3 4

`L

3` 4
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The above switching graph corresponds to the partition {{1, 2}, {3}, {4}} because the
tensor groups the atoms 1 and 2 together while `L separates 3 and 4. Partitions are
related by orthogonality : two partitions are orthogonal when the graph constructed with
sets as nodes and where two nodes are adjacent whenever they share a common value,
is a tree. Testing a partition coming from axioms against several partitions for all the
switching graphs is sufficient to speak about logical correctness. For more details, see
Acclavio and Maieli’s works [3].

Since stars are not limited to the binary case, we can naturally represent general par-
titions by constellations. The above switching graph is translated into the following con-
stellation: [−c(1),−c(2)]+[−c(3)]+[−c(4)] (notice the negative polarity in order to allow
connexion with axioms). However, in this case, all diagrams are closed (no free rays). For
technical reasons, because otherwise the switchings would not be distinguished, we have
to specify where the conclusions are located: [−c(1),−c(2), 1⊗2]+[−c(3)]+[−c(4), 3`4].

We finally obtain the two following constellations Φ for axioms and ΦL
`
for the above

switching graph:
Φ = [+c(1),+c(3)] + [+c(2),+c(4)]

ΦL
` = [−c(1),−c(2), 1⊗ 2] + [−c(3)] + [−c(4), 3` 4].

We have Ex(Φ ⊎ΦL
`
) = [1⊗ 2, 3` 4] which is the star of conclusions. In this case, we

say that Φ passes the test ΦL
`
.

The Danos-Regnier criterion is reformulated as follows: “a constellation representing
a proof-structure is correct if and only if its execution against all the constellations
representing its switching graphs produces the star of its conclusions”.

5. Stellar interpretation of multiplicative linear logic

5.1. The computational content of multiplicatives

We now consider a more general setting using more sophisticated terms as rays instead
of simple constants. This is not especially useful for MLL but will be crucial for the
exponentials or further extensions (for instance first and second-order linear logic).

We set a basis of representation B with unary symbols pA for all formulas A of MLL,
and constants l, r used to encode the addresses of an atom relatively to the arborescence
of the lower part of a proof-structure. We use a right-associative binary symbol · to glue
constants together. Any other isomorphic basis can be considered as well.

To simulate the dynamics of cut-elimination we translate the axioms and the cuts into
stars:

1. An atom A becomes a ray +c.pC(t) where t represents the ”address” of A relatively
to a conclusion C of the proof-structure (without considering cuts). We use and
encoding of the path from a conclusion to A in the tree corresponding to the
lower part of the proof-structure. For instance, for a path going twice left from a
conclusion C, we have the address t := l · l · x. The colour +c stands for ”positive
computation”.
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2. An axiom becomes a binary star containing the translations of its atoms as de-
scribed above. For instance, the axiom ⊢ A,A⊥ becomes [+c.pA(x),+c.pA⊥(x)].

3. A cut between A and A⊥ becomes a binary star [−c.pA(x),−c.pB(x)] coloured with
−c for ”negative computation”.

Example 6. We encode the following cut-elimination S →∗ S ′ of MLL proof-structures:

A⊥
1 A1

`

A⊥
1 `A1

A⊥
2 A3A2 A⊥

3

⊗

A2 ⊗A⊥
3

cut

ax ax ax

→
A⊥

1 A1 A⊥
2 A3A2 A⊥

2

cut

cut

ax ax ax

→∗

A⊥
2 A3

ax

The address of A⊥
1 is pA⊥

1
`A1

(l·x) because it is located on the left-hand side of A⊥
1 `A1.

The address of A⊥
3 is pA2⊗A⊥

3

(r · x) and the one for A3 is pA3
(x). The proof-structure S

is encoded as:

[+c.pA⊥
1
`A1

(l · x),+c.pA⊥
1
`A1

(r · x)] + [+c.pA⊥
2

(x),+c.pA2⊗A⊥
3

(l · x)]+

[+c.pA2⊗A⊥
3

(r · x),+c.pA⊥
3

(x)] + [−c.pA⊥
1
`A1

(x),−c.pA2⊗A⊥
3

(x)]

The only correct saturated diagram is:

+c.pA⊥
1
`A1

(l · x); +c.pA⊥
1
`A1

(r · x) ; +c.pA⊥
2

(x); +c.pA2⊗A⊥
3

(l · x) ; +c.pA2⊗A⊥
3

(r · x); +c.pA3
(x) ;

−c.pA⊥
1
`A1

(x); −c.pA2⊗A⊥
3

(x) ; −c.pA⊥
1
`A1

(x); −c.pA2⊗A⊥
3

(x) ;

The matching is exact (since no non-deterministic choice is involved) and when exe-
cuting the constellation, we end up with [+c.pA⊥

2

(x),+c.pA3
(x)] corresponding to S ′, as

expected.

Example 7. If we have the following reduction S → S ′ instead:

A⊥
1 A1

`

A⊥
1 `A1

A2 A⊥
3

⊗

A2 ⊗A⊥
3

cut

ax
ax

 A⊥
1 A1 A2 A⊥

3

cut

cut

ax
ax

The constellation corresponding to S is

[+c.pA⊥
1
`A1

(l · x),+c.pA2⊗A⊥
3

(l · x) + [+c.pA2⊗A⊥
2

(r · x),+c.pA⊥
1
`A1

(r · x)]+

[−c.pA⊥
1
`A1

(x),−c.pA2⊗A⊥
3

(x)]

When trying to make a saturated diagram by following the shape of the proof-structure,
we end up with:
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Switching Vehicle Test

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

A B A⊥ B⊥

ax
ax

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

Figure 1: The vehicle of a proof-structure and a test corresponding to a Danos-Regnier
switching graph.

+c.pA⊥
1
`A1

(l · x); +c.pA2⊗A⊥
3

(l · x) ; +c.pA⊥
1
`A1

(r · x); +c.pA2⊗A⊥
3

(r · x) ;

−c.pA⊥
1
`A1

(x); −c.pA2⊗A⊥
3

(x) ; −c.pA⊥
1
`A1

(x); −c.pA2⊗A⊥
3

(x) ;

which normalises into infinitely many occurrences of the empty star []. Hence, the
proof-structure is incorrect.

5.2. The logical content of multiplicatives

We translate the correctness criterion of Danos-Regnier [11] by an encoding of hyper-
graphs (representing proof-structures) into constellations.

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

Any proof-structure of conclusion ⊢ A1, ..., An can be seen as the sum of two compo-
nents:

• the upper part made of axioms is called the vehicle;

• the lower part is basically the syntax forest of ⊢ A1, ..., An. The Danos-Regnier
correctness criterion is obtained by considering switchings on the lower part and
checking the acyclicity and connectedness when connected with axioms. This can
be understood as testing the vehicle against a set of test (which we call format).
This testing between vehicle and format produces a certification: if all tests pass,
we have a proof-net. Note that testing is symmetric because tests are encoded as
constellations as well. Moreover, a format can also be seen as tested by a vehicle.

We call the translation of switching graphs tests. They are defined in a very natural
way by translating the nodes of the lower part of a proof-structure S into constellations:
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• A⋆ = [−t.addrS(A),+c.pA(g · x)] where A is a conclusion of axiom;

• (A`L B)⋆ = [−c.pA(g · x),+c.pA`B(g · x)] + [−c.pB(g · x)];

• (A`R B)⋆ = [−c.pA(g · x)] + [−c.pB(g · x),+c.pA`B(g · x)];

• (A⊗B)⋆ = [−c.pA(g · x),−c.pB(g · x),+c.pA⊗B(g · x)];

• We add [−c.pA(g · x), pA(x)] for each conclusion A.

where −t.addrS(A) corresponds to the address of A relatively to S (it is basically the
same as the translation of an atom but with a different colour). The colour t stands for
”typing”.

Definition 1 (Logical correctness). The translation of a proof-structure of conclusion
⊢ A1, ..., An is said to be correct when for each translation of switching graph, their union
normalises into [pA1

(x), ..., pAn
(x)].

The essential point of the translation is that the corresponding dependency graph,
obtained by describing how the rays can be connected to each other, will have the same
structure as a switching graph.

Example 8. Here is an example with the switching graph and the test of figure 1:

A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

[
−t.pA⊗B(l·x)

+c.qA(x) ] + [
−t.p

A⊥`B⊥(l·x)

+c.q
A⊥(x) ]+

[
−t.pA⊗B(r·x)

+c.qB(x) ] + [
−t.p

A⊥`B⊥(r·x)

+c.q
B⊥(x) ]+

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x) ] + [

−c.q
A⊥(x)

+c.q
A⊥`B⊥ (x) ] + [

−c.q
B⊥(x)

]+

[
−c.qA⊗B(x)
pA⊗B(x) ] + [

−c.q
A⊥`B⊥(x)

p
A⊥`B⊥ (x) ]

When connected to the vehicle:

[+t.pA⊗B(l · x),+t.pA⊥`B⊥(l · x)] + [+t.pA⊗B(r · x),+t.pA⊥`B⊥(r · x)]

we obtain the following dependency graph:

+t.pA⊗B(l · x); +t.pA⊥`B⊥(l · x) ; +t.pA⊗B(r · x); +t.pA⊥`B⊥(r · x) ;

[
−t.pA⊗B(l·x)

+c.qA(x) ] ; [
−t.pA⊗B(r·x)

+c.qB(x) ] ; [
−t.p

A⊥`B⊥ (l·x)

+c.q
A⊥(x) ] ; [

−t.p
A⊥`B⊥ (r·x)

+c.q
B⊥(x) ] ;

[−c.qA(x) −c.qB(x)
+c.qA⊗B(x) ] ;

−c.q
A⊥(x)

+c.q
A⊥`B⊥ (x) ; −c.q

B⊥(x)
;

[
−c.qA⊗B(x)
pA⊗B(x) ] ; [

−c.q
A⊥`B⊥ (x)

p
A⊥`B⊥(x) ] ;

structurally corresponding to the following switching graph:
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A B

⊗

A⊗B

A⊥ B⊥

`L

A⊥ `B⊥

ax
ax

Since the matching of the constellation is exact and that the dependency graph is a
tree, only the free rays will be kept in the normal form. We obtain [pA⊗B(x), pA⊥`B⊥(x)].

Example 9. If we have the following test instead:
A A⊥

⊗

A⊗A⊥

[
−t.p

A⊗A⊥(l·x)

+c.qA(x) ] + [
−t.p

A⊗A⊥(r·x)

+c.q
A⊥(x) ]+

[
−c.qA(x) −c.q

A⊥(x)

+c.q
A⊗A⊥(x) ] + [

−c.q
A⊗A⊥(x)

p
A⊗A⊥(x) ]

When connected to the vehicle [+c.pA⊗A⊥(l · x),+c.pA⊗A⊥(r · x)], a loop appears in
the dependency graph and since the matching is exact, we can construct infinitely many
correct diagrams. The constellation is not strongly normalising.

5.3. What is a proof?

We started from very general untyped objects which are the constellations and recon-
structed the elementary bricks of multiplicative linear logic. Our framework liberalise
proof-structures by naturally allowing all sorts of constructions:

• an atomic pre-proof of conclusion ⊢ A as the constellation {[pA(x)]},

• an n-ary axiom as the constellation {[pA1
(x), ..., pAn

(x)]}.

We can finally define what the full translation of a proof-structure is. A proof-structure
is translated into a triple (ΦV ,ΦC ,ΦF ) where:

• ΦV is the uncoloured vehicle made of translations of axioms,

• ΦC is the uncoloured translation of cuts,

• ΦF is coloured translation of all ordeals (the format).

We see that proof-structures can be considered as being made of three components.
This shows that proof-structures, although being considered untyped, actually come
with an implicit typing corresponding to the bottom of the proof-structure: we made an
implicit logical assumptions computationally explicit.

It also exhibits a confusion in proof-net theory where we manipulate hybrid objects
containing a computational and logical part without the possibility of separating them.
The GoI separates these two parts so that the computational and logical parts of a proof
can be distinguished and studied independently. It is like studying λ-terms and types as
separate entities rather than the single hybrid notion of typed λ-term. In particular, tests
can live independently of any notion of proof since they are only generated by formulas.
Moreover, any constellation can be tested with the tests coming from formulas.

19



6. Two notions of type/formula

Depending of whether types or programs come first, we have two distinct notions of
typing which are reunited in the transcendental syntax. Girard talks about existentialism
when programs come first and essentialism when types do.

The main required ingredient is an orthogonality relation ⊥ opposing constellations
depending of what we consider a correct interaction. This corresponds to the subjective
side of logic: defining logic from a selected point of view on computational interaction.
Several choices are possible and lead to different results. For instance, we may consider:

• Φ ⊥ Φ′ when |Ex(Φ ⊎Φ′)| < ∞ (strong normalisation) which captures MLL+MIX
correctness.

• Φ ⊥ Φ′ when |Ex(Φ ⊎Φ′)| = 1 which seems to capture MLL correctness but which
is actually insufficient.

6.1. Existentialist typing / Girard’s use

The first notion of typing, which I call interactive typing, appears in ludics [19], the
GoI and in realisability interpretations [36, 34, 9]. Instead of types as syntactic labels,
we consider types as collections of programs. Types are then seen as descriptions of
computational behaviours or properties. With this idea, types are designed instead of
pre-defined. It is called existentialist because types (the essence) comes after the object.

By grouping some constellations together, it is possible to design various sort of types.
In this section, we show how to design types corresponding to MLL formulas but atypical
connectives can also be constructed (as the insinuation connective of Girard [26]).

This notion of typing is based on the idea of meaning-as-use where computational
interaction defines the meaning of a group of constellations. Girard illustrates this with
the (outdated) idea of DVD player. If you do not know what is a DVD player then
you can either read a definition in the dictionary, which corresponds to a semantic
explanations which are standard in logic. Another way is to define it by what it can
interact with: DVD. When you put what you think are DVD, some interactions will go
well and others will not (this is the orthogonality relation). But then, a DVD player
can be defined by all the DVD it can read. In the same way, the notion of DVD can be
defined by all DVD players which can read it.

Pre-behaviour A pre-behaviour is a set of constellations.

Orthogonal Given a pre-behaviour A, its orthogonal, written A⊥, is the set of all con-
stellations which are strongly normalising when interacting with the constellations
of A. It corresponds to linear negation.

Behaviour A behaviour (or formula) A is the orthogonal of another pre-behaviour B

i.e A = B⊥. It means that it interacts well (with respects to the orthogonality)
with another pre-behaviour. It is equivalent to say that A = A⊥⊥ meaning that
it is closed by interaction. Such pre-behaviours correspond to the ones which can
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be entirely characterised by tests (objects certifying membership in A), in other
words, be testable.

Atoms We define atoms with a basis of interpretation Φ associating for each type vari-
able Xi a distinct behaviour Φ(Xi). It represents a choice of formula for each
variable. A more satisfactory way to handle variables is to consider second-order
quantification, in which case we need further correctness tests. Since our atoms
are represented by rays (thus concrete entities), Girard even considers a constant
フフフ (fu) [26] which is self-dual.

Tensor The tensor A ⊗ B := {ΦA ⊎ ΦB | ΦA ∈ A,ΦB ∈ B}⊥⊥ of two behaviours is
constructed by pairing all the constellations of A with the ones of B by using
a multiset union of constellations Φ1 ⊎ Φ2. The behaviour A and B have to be
disjoint in the sense that they cannot be connected together by two matching rays.
Note that the cut is the same thing except taht the constellations can interact. We
use the double orthogonal (·)⊥⊥ to ensure that we have a behaviour because it is
not always the case depending on the relation ⊥.

Par and linear implication As usual in linear logic, the par and linear implication are
defined from the tensor and the orthogonal: A ` B := (A⊥ ⊗ B⊥)⊥ and A ⊸
B := A⊥ ` B. Notice that these connectives are not simply arbitrary definitions
on labels but that they have a computational interpretation. The constellations of
A`B are the one passing the tests of (A⊥ ⊗B⊥).

Alternative definition for linear implication An alternative but equivalent definition of
linear implication is the set of all constellations Φ such that if we put them against
any constellation of A, the execution produces a constellation of B. This is a
standard definition in realisability theory.

It is possible to design any type we want providing it is a behaviour. For instance,
we could design a type Cut(A,B) which is exactly A⊗B without requiring rays to be
unconnectable, and have A⊗B ⊆ Cut(A,B).

Example 10 (Acceptation in finite automata). From the previous encoding of automata,
we can observe a duality between automata and words. We say that A⋆⊥w⋆ whenever
Ex(A⋆ + w⋆) 6= ∅. An automaton becomes orthogonal to all the words it accepts and
a word is orthogonal to all the automata which recognise it. Notice that if we have
L = {w | w ends with 00}, then L⊥ without restriction is not exactly the set of automata
recognising L: it contains more constellations which are also able to recognise L in a
different way or irrelevant constellations. Other more accurate orthogonality relations
can filter constellations.

If we have an operation of pairwise concatenation L1 • L2 = {w1w2 | wi ∈ Li}
⊥⊥

(the double orthogonal is here to ensure that we have a behaviour), then (L1 • L2)
⊥ is

indeed the set of constellations recognising L1 • L2 but this also defines (by duality), an
operator on automata A1 ◦A1 = (A1

⊥ •A2
⊥)⊥ which construct automata recognising
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the concatenation of two languages. This is similar to Terui’s works [48] which studied
a computational variant of ludics.

Example 11 (Queries and answers in logic programming). Let

Φ+
N

= [+add(0, y, y)] + [−add(x, y, z),+add(s(x), y, s(z))]

be a constellation computing the sum of two natural numbers. We consider the strong
normalisation of the union of two constellations as orthogonality. Let

Q+ = {[−add(sn(0), sm(0), r), r] | n,m ∈ N}

and A+ = {[sn(0)] | n ∈ N}. Take a constellation [−add(sn(0), sm(0), r), r] and connect
it with Φ+

N
. All diagrams corresponding to Φ+

N
with n occurrences of

[+add(s(x), y, s(z)),−add(x, y, z)]

can be reduced to a star [sn+m(0)]. It is easy to check that all other diagram fails.
Therefore, for all Φ ∈ Q+, Ex(Φ⊎Φ+

N
) ∈ A+ and Φ+

N
⊎Φ. If Q+ and A+ are behaviours

(we need a more specific orthogonality) then Φ+
N

∈ Q+ ⊸ A+. Although not explored
here, it might be possible to retrieve existing type systems and extend them.

We can also imagine more interesting examples: typing for tilings models (thus typing
for DNA computing), characterisation of properties of constellations (characterisation of
complexity classes?).

Finally, by considering that meaning is defined by interaction, we got rid of semantics
since there is no previously defined constraints about how formulas should be. Formulas
can be defined as we wish by constructions between sets of constellations and a given
point of view (orthogonality relation).

6.2. Neo-essentialist typing / Girard’s factory

The problem with the previous interactive typing is that effective reasoning is no more
possible. This is the price for a semantic-free space. To take again the illustration of
DVD player, you will never be able to tell if you have a DVD player or DVD in front of
you unless you travel the world in the search of all the existing DVD players and DVD.
But another way is possible: to have a sample of “good” candidates in order to proceed
to a finite verification. It is what happens in factories when certifying a product (a car,
a vaccine, a tool, a DVD, a DVD player). This is what Girard calls the usine (factory
in English).

In terms of linear logic and constellations, imagine that we have a constellation Φ and
that we would like to check if it is a proof of A, hence checking if Φ ∈ A. Since it is a
behaviour, we have to check if Φ passes the testsB := A⊥ ofA, hence to check if Φ ∈ B⊥.
However, depending on ⊥, the set of tests can be infinite which makes impossible the
answer to “do I have a proof of A?”. The way to get out of this infinite hell is to
materialise the correctness criterion of linear logic which provide a finite verification.
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For a formula label A, it is possible to define the pre-behaviour Tests(A) corresponding
to the set of tests for A such that Tests(A)⊥ ⊆ A. Hence, passing this finite battery of
tests is sufficient to ensure membership to A.

This notion of typing is close to the traditional typing of proof theory and type theory
(Martin-Löf type theory for instance) which only needs finite verification (effective type
checking by rules or algorithm). This traditional point of view handling types as syntactic
labels is called essentialist typing by Girard. However, these labels put constraints of
the notion of types: some programs may not be typable (for instance λx.xx in simply
typed λ-calculus). Types represent arbitrary constraints on computation.

Girard calls his factory typing a dessentialisation of types since it retrieves finite
verification again but in an open semantic-free space, without the constraints of type
labels which are in his opinion, a pure reification of prejudices.

To sum-up the two notions of logical meaning, I quote Girard:

• L’usine enables to predict what proofs/programs will do.

• L’usage is what proofs/programs actually do.

• Using mathematics, we have to show the accuracy of l’usine: how accurately it is
able to certify the use/behaviour.

6.3. A logical constant for atoms

In transcendental syntax’s fourth paper [27], Girard gives hints for the definition of a
self-dual behaviour corresponding to a new logical constant.

The idea is that in the stellar resolution, atoms are translated into concrete objects
which are not substitutable, unlike in the original theory of proof-nets. It should be
possible to group them in a behaviour corresponding to the type of atoms. But the
only thing they share in common is their topology (a single point). In order to retrieve
Girard’s logical constant フフフ, we will consider that two constellations sharing the same
structure are seen as being in the same group in the point of view of typing.

This is actually an extension of the correctness criterion on partitions described before
but adapted to the case of constellations [23]. We only give informal definitions.

A constellation Φ is said to be rooted when it has at most one uncoloured ray for each
of its stars. These uncoloured rays are called the roots of Φ, inducing a star Roots(Φ)
of the roots.

Definition 2 (Orthogonality). Two constellations Φ1 and Φ2 satisfying the two following
conditions:

• | ± Rays(Φ1)| = | ± Rays(Φ2)| where ±Rays returns the set of coloured rays of a
constellation;

• exactly one of them is rooted;

are orthogonal, written Φ1 ⊥ Φ2, if and only if Ex(Φ′
1 ⊎Φ′

2) = Roots(Φi) where Φi with
i ∈ {1, 2} is rooted, and Φ′

1 and Φ′
2 are Φ1 and Φ2 coloured with +t and −t (if there is

already a colour for a ray, it is replaced, otherwise, if it is uncoloured, nothing changes).
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Now, remark that uncoloured rays do not participate in computation and simply
corresponds to output. It is fair to consider that behaviours are equal up to removal
of uncoloured rays but also up to change of terms providing the depency graphs has
the same structure. We define an equivalence relation ≈ such that for two behaviours
A ≈ B whenever for all ΦA ∈ A and ΦB ∈ B, the dependency graph of ΦA and ΦB

are isomorphic or A with all uncoloured rays removed is equal or equivalent (by ≈) to
B with all uncoloured rays removed. We implicitly consider two behaviours equal when
they are equivalent modulo ≈.

We can then define a behaviour corresponding to the type of atoms.

Proposition 1 (Logical constant フフフ). The pre-behaviour フフフ = {{φ} | |φ| = 1} is a

self-dual behaviour, that is フフフ =フフフ
⊥
=フフフ

⊥⊥
.

Now, we can give ground to multiplicative propositions. All formula variables can be
replaced by フフフ. For instance ⊢ X⊥

1 `X⊥
2 ,X1 ⊗X2 can be translated into the behaviour

⊢フフフ`フフフ,フフフ⊗フフフ.
There are few interesting points:

• for any formula A, we can type atomic pre-proofs: [+t.pA(x)] ∈フフフ;

• the axioms are now typable with [+t.pA(x),+t.pA⊥(x)] ∈フフフ`フフフ;

• we can write stand-alone links: [+t.pA(x),+t.pB(x)] ∈ フフフ `フフフ and [+t.pA(x)] +
[+t.pB(x)] ∈フフフ⊗フフフ.

One purpose of フフフ is to justify the axiom ⊢ A,A⊥ for a formula A we know nothing
about. We theoretically need an infinite verification since it has to work for any formula
A. However, it is sufficient to check the cases A := フフフ, A := フフフ⊗フフフ and A := フフフ`フフフ
with A⊥ := フフフ, A⊥ := フフフ ` フフフ, A⊥ := フフフ ⊗ フフフ (respectively), corresponding to the
possible shapes of an axiom [27]. This is the three cases we would check if we would do
an induction on A. For instance, assume that we have the two tests A := フフフ `フフフ and
A⊥ := フフフ ⊗フフフ. The orthogonal of these tests must be a constellation [r1, r2] + [r3, r4]
which is indeed isomorphic to the vehicle of a proof of ⊢ X⊥

1 `X⊥
2 ,X1⊗X2 with expansed

axioms.
This orthogonality relation only cares about the shape of constellations and their

interactions. This new point of view of logic is what Girard calls morphologism [26].

7. Extension with intuitionistic implication

The exponentials have already been studied using flows (corresponding to binary stars)
[18, 7] but the correctness was not considered yet until Girard’s transcendental syntax
[25].

The idea is that the stellar resolution already has a built-in mechanism of duplication
(by multiple matching and re-use of stars) and weakening (rejection of some unwanted
diagrams).

We restrict the definitions to MLL extended with the intuitionistic implication A ⇒
B := !A⊸ B and its dual (A ⇒ B)⊥ in order to follow Girard’s papers [16].
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• Non-linear formulas are written A (this corresponds to ?A) and only appear at
top-level (for conclusions and not subformulas).

• We define new connectives A ⋉ B (corresponding to ?A ` B) and A < B (corre-
sponding to !A⊗B) with the following links:

⋉

Exponential par

<

Exponential tensor

• Weakened (erased) atomsXi of address t coming from a conclusion A are translated
as a star

[+c.pA(t · y),−wA(t · y),+wA(t · y)]

so that any cut connected to it forms a non-saturated diagram which will be
rejected. This is basically a... black hole!

• Derelicted (linearised) atoms Xi of address t coming from a conclusion A are
translated as a ray pA(t · d).

• Contracted (duplicated) atoms Xi,Xj (with i 6= j) of address t coming from a
conclusion A are translated into rays pA(t · (l · y)) and pA(t · (r · y)).

• Promoted atoms Xi of address t coming from a conclusion A are translated into
pA(t · y) for a fresh variable y and its auxiliary formulas Bi into pBi

(ti · y) (repre-
senting the other parts of the associated exponential box).

We can remark that subterms of the form t · u are used. The term t corresponds to
the multiplicative part encoding the address of atoms as before and the term u encodes
the nested boxes (e.g (t · y1) · y2) and the copy identifier for the contraction (left and
right copy). In the case of dereliction, we prevent any duplication on the current layer
by a constant d. This gives a box-free approach to exponentials where box dependency
is simulated by matchability between terms.

To illustrate these notions, I present a simple λ-term. Because it looks like the least
intuitive thing ever, it often makes me laugh but here is the identity function:

(λx.x)⋆ := [+c.pB⊥⋉B((l · x) · d),+c.pB⊥⋉B(r · x)]

It is basically an axiom (hence a binary star) with a dereliction applied on the left atom
so that the function applied (by cuts) to a box corresponding to an argument with
addresses t · y.
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7.1. The computational content of exponentials

We illustrate the cut-elimination by few examples using the usual translation of simply
typed λ-terms into proof-nets [10, 40].

Example 12 (Case dereliction/box). This corresponds to opening a box. We illustrate
this case with the identity function applied to an argument: (λx.x)y.

B⊥

d

B⊥ B

⋉

B⊥
⋉B

B B⊥

<

B <B⊥

B⊥ B

ax

cut

ax ax

It is translated into:

[+c.pB⊥⋉B((l · x) · d),+c.pB⊥⋉B(r · x)]+

[+c.pB⊥(x),+c.pB<B⊥((l · x) · y)]+

[+c.pB<B⊥(r · x),+c.pB(x)]+

[−c.pB⊥⋉B(x),−c.pB<B⊥(x)]

It is similar to the multiplicative case. The essential
point is that +c.pB⊥⋉B((l · x) · d) will interact with
+c.pB<B⊥((l · x) · y) replacing y by d. It means that
the rays corresponding to this box are no longer du-
plicable. In some sense, we opened the box.

Example 13 (Case weakening/box). It corresponds to a box erasure. We consider the
simple example of right projection (λxy.y)z.

w

B⊥

d

B⊥ B

⋉

A⊥ B⊥
⋉B

⋉

A⊥
⋉B⊥

⋉B

A⊥ (B <B⊥)⊥A B <B⊥

<

A<B <B⊥

cut

ax

ax ax

It is translated into the constellation:

[+c.pA⊥⋉B⊥⋉B((l · x) · y),

+wA⊥⋉B⊥⋉B((l · x) · y),

−wA⊥⋉B⊥⋉B((l · x) · y)]+

[+c.pA⊥⋉B⊥⋉B((r · l · x) · d),

+c.pA⊥⋉B⊥⋉B(r · r · x)]+

[+c.pA⊥(x · y),+c.pA<B<B⊥((l · x) · y)]+

[+c.pA<B<B⊥(r · x),+c.pA<B<B⊥(x)]+

[−c.pA⊥⋉B⊥⋉B(x),−c.pA<B<B⊥(x)]

We can see that the cut will be duplicated into:

[−c.pA⊥⋉B⊥⋉B((l · x) · y),−c.pA<B<B⊥((l · x) · y)]

and
[−c.pA⊥⋉B⊥⋉B(r · x),−c.pA<B<B⊥(r · x)].
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The ray −c.pA⊥⋉B⊥⋉B((l · x) · y) will match the weakening star and all diagrams us-
ing terms matchable with the weakening star will be excluded (because no saturation is
possible). This indeed corresponds to box erasure. Actually, it is also possible to put
“plugs” +c.pA⊥⋉B⊥⋉B(t · y) instead of the weakening star so that we obtain the empty
star for each erased boxes. This is closer to cut-elimination of proof-nets which leaves
some weakening nodes in the normal form.

Example 14 (Case contraction/box). It corresponds to a box duplication. Instead of
illustrating it by the translation of a λ-term, we will describe how it works:

[+c.pA(t · (l · y)), ...] + [+c.pA(t · (r · y)), ...] + [+c.pB(t · y), ...] + [−c.pA(x),−c.pB(x)]

The cut star forces the matching between rays for A and for B. We see that +c.pB(t · y)
can interact with both +c.pA(t · (l · y)) and +c.pA(t · (r · y)), hence the star containing
+c.pB(t · y) and all the stars connected to it will be naturally duplicated.

7.2. The logical content of exponentials

As usual with proof-nets, if we allow the MIX rule then the correctness criterion is
straightforward. In this case, we only need to check acyclicity. The only difference
with the multiplicative case is that we must check that the variables we use are handled
correctly:

• in subterms x · y, the variables x and y must be different;

• the left part of a ⋉ must be of shape x · y.

If we reject the MIX rule, only the left part of ⋉ which can be cancelled is problematic.
We present new tests which extend the previous multiplicative tests:

• A⋆ = [−t.addrS(A),+c.qA(x · y)] where A comes from the left part of ⋉ or <;

• (A<x B)⋆ = [−c.qA(x · x),−c.qB(x),+c.qA<B(x)];

• (A<l B)⋆ = [−c.qA(x · l),−c.qB(x),+c.qA<B(x)];

• (A⋉L B)⋆ = [−c.qA(x · y),+c.qA⋉B(x · y)]+
[−c.qB(x · y),+qB(x),−qB(x)] (cancelling);

• (A⋉R B)⋆ = [−c.qB(x),+c.qA⋉B(x)] + [−c.qA(x · y)] + [−c.qA(x
′ · y′)]

(unless x = x′);

• (A)⋆ = [−c.qA(x)] where A is a conclusion.

The two tests for < force the presence of different variables. The test ⋉R only cancels
the non-linear formulas. The star [−c.qA(x

′ · y′)] is only used when x′ can be instantiated
with something different from the variable x. This is a technical hack which forces the t
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in the t ·u cancelled to be x. This actually uses a technical extension of stellar resolution
called coherent constellations introduced by Girard [23].

Let us focus on the test ⋉L which relies on the mechanisms of stellar resolution. Struc-
tural rules only appear on the left of ⋉ and we need both acyclicity and connectedness.
The idea is that any star connected to the star [−c.qB(x · y),+qB(x),−qB(x)] will be
erased because of the loop making it impossible to produce a saturated diagram. Re-
mark that we ask for this test to be cancelling (the interaction normalises into the empty
constellation ∅). The test connects the conclusion of ⋉ to its left part. The possible
cases for A⋉B are the following ones:

Γ, A, ..., A B

⋉L

A⋉B

Case 1

cut

Γ, A, ..., A B

⋉L

A⋉B

Case 2

Case 1 The star corresponding to ⋉L is connected to all (possible none) the copies of
the atoms coming from A. Assume one of these atoms has a path leading to A⋉B
by a cut. Hence, we obtain a cycle and infinitely many correct diagrams. The
constellation is not strongly normalising.

Case 2 Assume we do not have the cycle of case 1 and that some atoms of A possibly
have a path reaching an atom of B. If we wish to keep both connectivity, then all
stars must be connected. Because of the star [−c.qB(x · y),+qB(x),−qB(x)], all
stars connected to an atom of B (actually the whole constellation) will be erased
because unable to produce a saturated diagram. The normal form is ∅.

We then ask that for each tests (except the ones containing ⋉L which should be
cancelled) we get the star of conclusions (as usual) but we also require that we only get
the non-linear conclusions in particular. Hence, for a proof of ⊢ Γ,∆, we should obtain
the star of conclusions coming from Γ. This is due to two reasons:

• there is a recurrent problem (not necessarily a flaw) of GoI: it is impossible to act
on the auxiliary conclusions of boxes and to always preserve the paths of proofs
with non-linear conclusions. Since we do not consider full exponentials, non-linear
conclusions A cannot appear as conclusion of a proof anyway;

• morally, when performing a test and looking at the interaction between a vehicle
and a test, it is impossible to guess how many times each conclusion appears in
the normal form (if we use the orthogonality relation used for the definition ofフフフ).
We could only test for the presence of a single star in the normal form but this is
not sufficient because we cannot ensure that we got exactly the right conclusions.
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Example 15 (Correctness of identity function). We check the correctness of the λ-term
λx.x.

B⊥

d

B⊥ B

⋉

B⊥
⋉B

ax +t.p⋉((l · x) · d); +t.p⋉(r · x);

−t.p⋉((l·x)·y)
+c.q

B⊥(x·y) ;
−t.p⋉(r·x)
+c.qB(x) ;

−c.q
B⊥(x·y)

+c.q
B⊥

⋉B
(x·y) ;

−c.qB(x·y)
+qB(x),−qB(x) ;

−c.q
B⊥

⋉B
(x)

p
B⊥

⋉B
(x) ;

+t.p⋉((l · x) · d); +t.p⋉(r · x);

−t.p⋉((l·x)·y)
+c.q

B⊥ (x·y) ;
−t.p⋉(r·x)
+c.qB(x) ;

−c.qB⊥(x · y); −c.qB(x)
+c.q

B⊥
⋉B

(x) ;

−c.q
B⊥

⋉B
(x)

p
B⊥

⋉B
(x) ;

We obtain two diagrams corresponding to the two possible correction graphs. The left
one using ⋉L is erased. The right one using ⋉R normalises into [pB⊥⋉B(x)]. Hence,
the identity function is logically correct.

7.3. Expansionals connectives

Using a similar idea, Girard suggested to construct new connectives called expansionals
which works like exponentials but on linear rays instead. It is a weak form of exponen-
tials. We define two connectives ↑A and ↓A, which only exist in combination with ⊗
and ` as in < and ⋉, defined by the following tests:

• (↓fA⊗B)⋆ = [−c.qA(f(x)),−c.qB(x),+c.q↓A⊗B(x)];

• (↓gA⊗B)⋆ = [−c.qA(g(x)),−c.qB(x),+c.q↓A⊗B(x)];

• (↑LA`B)⋆ = [−c.qA(x),+c.q↑A`B(x)] + [−c.qB(x),+qB(x),−qB(x)]
(cancelling);

• (↑R A`B)⋆ = [−c.qB(x),+c.q↑A⋉B(x)] + [−c.qA(x)].

It is then possible to create a behaviour for a new implication called insinuation
defined by A ֌ B := ↓A ⊸ B. The two first tests ensures that we have a linear ray
qA(x). The switching ↑R is exactly the same as for `R and ↑L is very similar to ⋉L. By
this similarity, it is possible to erase formulas on the left of ↑ A` B and A֌ B hence
has the behaviour of an affine implication. But more than that, Girard remarked that
it could still do a weak contraction on atoms [26].

8. New horizons for second-order logic

A novelty of the transcendental syntax is the computational reconstruction of predicate
calculus but also a redefinition of first and second-order logic.
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8.1. Girard’s first and second-order

Girard explained in a paper written in French [26] that second-order logic is actually
implicit in a lot of definitions of logic. For instance, the rule (∨e) for NJ implicitly
requires a generic formula C which assumes the existence of a given specific space of
allowed formulas:

...
A ∨B

[A]
...
C

[B]
...
C

∨e
C

A B
∧i

A ∧B

In theorems of propositional logic such as A ⇒ B ⇒ A, the formulas A and B are
implicitly universally quantified and should be understood as ∀A B. A ⇒ B ⇒ A. The
same thing occurs for P which is external in ∀x.P (x). This is how Girard justifies the
treatment of the additives and exponentials in second-order for proof-nets because they
use rules which are morally of second-order.

If we look at the rule ∧i, it only locally reunites hypotheses without any genericity or
need of a system. Since MLL proof-nets are hypergraphs linking formulas, it is similar.
Even the atoms are concrete objects: simple vertices with non-essential labels. First-
order logic hence corresponds to the part of logic which uses nothing more than “what
is already here” and second-order logic as the part of logic referring to the set of all
propositions (externally structured). This structuration of the space of all formulas is
what Girard calls epidictic architecture. By this point of view on second-order logic,
it happens that predicate calculus is actually part of second-order logic while MLL
extended with ⇒ and フフフ is purely first-order. We have the new following distinction
between first and second-order:

First-order ⊗,`,⊸,フフフ,ヲヲヲ,⋉,<,⇒;

Second-order ?, !,⊕,&,∀,∃,1,

T

,0,T.

where the additives, exponentials and neutral elements (not detailled here) are defined
as follows:

A&B := ∃X. !(X ⊸ A)⊗ !(X ⊸ B)⊗X,

A⊕B := ∀X. (A⊸ X) ⇒ (B⊸ X) ⇒ X,

!A := ∀X.(A ⇒ X)⊸ X, ?A := (!A)⊥,

1 := !T,

T

:= ?0, 0 = ∀X.X, T = ∃X.X.

These new formulations for additives come from considerations of the rules for ∧ and ∨
in NJ which are morally of second-order.

According to Girard, there are two status of the notion of (logical) system:

• it is an unavoidable evil. All systems are bad but we still need one that we will
improve [27]. This is the case of second-order logic where doubt exist but we have
more expressivity and complex structurations.
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• Systems are useless. This is what Girard calls anarchy. Certainty is absolute
and structuration purely emerge from computation. This is only possible when
considering first-order connectives.

8.2. Girard’s derealism

The treatment of interactive typing (the usage) for second-order linear logic is straight-
forward. Universal and existential quantification respectively correspond to an infinite
intersection and union of behaviours whereX is a bound variable appearing in behaviours
and T is any behaviour:

∀X.A :=
⋂

T∈E

A{X := T} ∃X.A :=

(

⋃

T∈E

A{X := T}

)⊥⊥

where E is an epidictic architecture defined as a set of behaviours closed by some chosen
connectives. Notice the plain intersection for ∀ because it is closed by bi-orthogonal
while it is not the case for ∃ which has the same restriction as for ⊗.

Now, the problem of logical correctness is less straightforward (the usine). Girard’s
derealism corresponds to a new status for proofs, coming from a new treatment of second-
order quantification. His intuition comes from the second-order definition of natural
numbers:

nat := ∀X.(X ⊸ X) ⇒ (X ⊸ X).

He claims [26] that nat⊥ corresponds to iteration/induction on natural numbers and
that if testing for nat⊥ was finite, we could determine which iterations are licit, which
is problematic. Further details are needed in order to make this idea explicit but it is
not investigated here. Girard has the intuition that reasoning should be finite, hence we
should preserve a finite testing. This leads to quantified entities being part of the proof
itself.

A{X := T}

∃X.A

More generally, the problem is that in a formula ∃X.A, it is impossible to finitely “guess”
the right existential witness, which would be necessary to define tests from a formula.
But, nonetheless, the witness T is actually hidden in the proof itself, hence part of the
vehicle (as you can see in the rule of second-order existential quantification). In Girard’s
derealism, the vehicle comes together with an auxliary test for the existential witness.

A proof is now a tuple (ΦV ⊎ΦM ,ΦC ,ΦF ) where ΦM is called a mould and corresponds
to the tests associated to an existential witness.

Since X in ∃X.A may appear positively or negatively (X or X⊥), the mold comes in
two versions and we are interested in a balance between them (are they truly orthogonal
to each other?) which is not discussed here but the reader can find more details in the
fourth article of transcendental syntax [27].

As for the universal quantification ∀X.A, in the case of MLL proof-nets, it is sufficient
to consider the three cases X :=フフフ,X :=フフフ`フフフ and X :=フフフ⊗フフフ on the top of tests
for A.
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For technical reasons and to add more combinatorial complexity to proofs, we distin-
guish two classes of rays:

• objective rays which are the usual rays;

• subjetive rays allowing internal colours, for instance +a(−b(x)). As a consequence,
we can to consider a subjective logical constant, similar to フフフ. Girard calls it ヲヲヲ
(wo). It can be tested with the test [−t.p

ヲヲヲ
(t · x), p

ヲヲヲ
(x)] where t is subjective (e.g

+a(x)) ensuring the presence of an internal colour.

A star is objective if it only has objective rays and subjective if it only has subjective
rays. Otherwise, it is animist (a mix of objective and subjective). Animist stars typically
appear in behaviours such as (フフフ⊗ヲヲヲ)⊥ =フフフ`ヲヲヲ. A constellation of フフフ⊗ヲヲヲ is of the
shape [r] + [r′] where r′ is subjective but in the dual, we obtain [r, r′], hence an animist
star. An épure is a constellation without animist star, i.e. it can be put into the form
ΦO ⊎ ΦS where ΦO only contains objective stars and ΦS subjective ones. This makes
the idea of correct proof clearer: it has to be made of an épure with an objective part
only containing binary stars (they represent axioms).

The interesting feature of this new combinatorics is that the status of stars (objec-
tive/subjective/animist) can change during the execution. Another consequence is that
we can design a behaviour 0 containing a constellation which can interact with other
constellations but which is not correct (because of animist stars). This gives this con-
stant a computational content, something which is usually not considered in usual logic
(0 is usually considered empty because it has no proof).

Finally, second-order logic in the transcendental syntax is dependent of a system
(called epidictic architecture by Girard) which specify the shape of existential quan-
tifiers or the possible shapes the values a variable can take in the tests for universal
quantification. For MLL, it is sufficient to restrict the epidictic to MLL formulas but in
general we can go beyond that since we have an open system.

8.3. Additive neutrals

We illustrate the mechanisms of witnesses and subjective rays with additive neutrals by
following the third paper of transcendental syntax [24]. We define the following rays:

C⊤(x) := p⊤(c · x) L⊤(x) := p⊤(−t(l · x)) R⊤(x) := p⊤(−t(r · x))

The neutral element ⊤ is defined by the orthogonal of the following tests where the
second one is cancelling (as for ⋉L in the exponentials):

⊤1 :

[

−t.C⊤(x),−t.L⊤(x)
]

+

[

−t.R⊤(x)

p⊤(x)

]

⊤2 :

[

−t.C⊤(x),−t.L⊤(x)

p⊤(x)

]

(cancel)

The constellation [+t.C⊤(x)] + [+t.L⊤(x),+t.R⊤(x)] is an épure passing the tests.
However, it is not a correct proof because the objective part is unary and not binary.

If we take [+t.C⊤(l · x),+t.C⊤(r · x)] + [+t.L⊤(l · x)] + [+t.L⊤(r · x),+t.R⊤(x)] in-
stead, then it is a correct and also passes the test. In fact, it is possible to check that for
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any Φ ∈ T, we have Φ ∈ ?(フフフ⊗ヲヲヲ)`ヲヲヲ = (フフフ⊗ヲヲヲ)⋉ヲヲヲ = (フフフ`ヲヲヲ) ⇒ヲヲヲ because of
the possibility of duplicating C⊤ and L⊤ which preserves the fact of passing the tests.

We define the following rays:

C0(x) := p0(c · x) L0(x) := p0(−t(l · x)) R0(x) := p0(−t(r · x))

The neutral element 0 is defined from the following tests:

01 :

[

−t.C0(x)
]

+

[

−t.L0(x),−t.R0(x)

p0(x)

]

02 :

[

−t.L0(x)
]

+

[

−t.C0(x),−t.R0(x)

p0(x)

]

03 :

[

−t.R0(x)

p0(x)

]

The constellation [+t.R0(x)]+[+t.C0(x),+t.L0(x)] (containing an animist star) passes
the tests but there is no épure. The tests are actually designed in order to be orthogonal
to a constellation with animist stars (corresponding to a logically incorrect constellation).
This new combinatorics for proofs allows to speak about logical coherence (that 0 has
no correct inhabitant). Since 0 = T

⊥, we should have that for any Φ ∈ 0, we have
Φ ∈ (フフフ`ヲヲヲ)<ヲヲヲ (by following the expression of T in terms of フフフ and ヲヲヲ).

8.4. Predicate calculus

Because of Girard’s new distinction between first and second-order, I choose to use the
term ”predicate calculus” instead of ”first-order logic” to avoid confusion.

As remarked before, the predicate calculus is part of second-order logic but few con-
ceptual choices remain. Girard remarks that by looking at Leibniz’s equality defining
a = b as ∀X.X(a) ⇔ X(b), the predicate X would play no role if written as a proof-
net. We can connect a and b directly and X is seen as a sort of modality restricting
connexions.

Girard’s idea is to use second-order logic with quantification restricted to multiplica-
tive formulas. Hence, terms/individuals and predicates are encoded with multiplicative
formulas and equality becomes linear equivalence A ≡ B defined as (A⊸ B)⊗(B⊸ A).
Such terms can typically be multiplicative combinations ofフフフ such asフフフ⊗(フフフ`フフフ). The
encodings can be freely chosen but for individuals, we need to ensure technical properties
such as the injectivity of the encoding in order to have that f(t) = f(u) implies t = u.
These ideas are presented in Girard’s third article on Transcendental Syntax [24].

We can define the following pairing of terms where T and U are propositions corre-
sponding to some terms:

< T,U >⋆:= (T`U)⊗ (T`T`U)

Such a pairing can represent a function applied to a term as in the previous term f(t).
If we have two pairs < T,U > and < T′,U′ > it is possible to verify their equality by
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checking if < T,U >≡< T′,U′ > is provable (contains a correct constellation). This is
equivalent to checking if

(T`U)⊗ (T`T`U) ≡ (T′ `U′)⊗ (T′ `T′ `U′)

is provable. Now assume that it is provable. If we think in terms of sequent calculus,
if it is provable then T ≡ T′ and U ≡ U′ must be provable as well, with satisfies our
requirement of injectivity.

In terms of epidictic (the structure of quantified formulas and existential witnesses),
since the quantification is restricted to individuals and that individuals are encoded as
multiplicative formulas, it is sufficient to quantify only over multiplicative formulas.

8.5. System-free Peano arithmetic

In the fourth article of transcendental syntax [27], Girard suggests an encoding of integers
by multiplicative combinations of フフフ and ヲヲヲ. We define フフフn as:

•

⊗n
k=1フフフ when n > 0 and

•

˙2−n
k=1フフフ when n < 2.

And we define ヲヲヲn by induction on n:

ヲヲヲ0 :=ヲヲヲ ヲヲヲn :=フフフn ⊗ヲヲヲ when n 6= 0

Integers are defined as follows:

n :=ヲヲヲn when n is positive and n :=ヲヲヲ
⊥
n otherwise.

For instance, 0 :=ヲヲヲ, 3 :=フフフ⊗フフフ⊗フフフ⊗ヲヲヲ and −3 =フフフ`フフフ`フフフ`ヲヲヲ. An example
of proof of 3 is the constellation [+n3(x)] + [+n2(x)] + [+n1(x)] + [+n0(+z(x))] and an
example of proof of −3 is the constellation [+n3(x),−n2(x),−n1(x),−n0(+z(x)), x].

It is possible to interpret arithmetic operations by logical connectives for two integers
n and m:

n+m := n⊗m n−m := n⊸ m m = n := (n⊸ m)⊗ (m⊸ n).

A novelty suggested by Girard [27] is to extend these definitions by adding variables
and quantifiers so that we can reconstruct Peano Arithmetic. It is actually system-free
in the sense that we reconstruct arithmetic in a larger system where new connectives or
operations can be defined as we wish without the need for axioms. Axioms are actually
proven in some sense.
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9. Visibility and non-classical truth

In technical terms, it is usually considered that truth is a property invariant by cut-
elimination which has a distinguished value (of falsity) for contradiction (0 in linear
logic). Girard shows that, in the transcendental syntax, it is possible to define non-
classical notions of truth which invalidate an idea of unique and absolute truth.

His notion of truth is called visibility. What is invisible is what we do not want to
see but which are essential in the functioning of the system (think of hidden files which
are used by some programs but invisible for the user). In particular, an ambition of the
transcendental syntax is to exhibit those “hidden files of logic”.

The idea is to take inspiration from Girard’s Blind Spot [21] (end of first volume)
where appears the Euler-Poincaré invariant which returns 1 for trees. It is a necessary
condition for trees but not a sufficient one, hence not sufficient to reformulate the Danos-
Regnier correctness criterion. However, it is still valid as a definition of truth.

Definition 3 (Euler-Poincaré invariant). Let (V,E) be a bipartite multigraph. If |Cy|
is the number of minimal cycles and |CC| is the number of connected components, then
we have |V | − |E|+ |Cy| − |CC| = 0.

Since we are interested in trees, we have |CC| = 1 and |Cy| = 0. We can divide V
into V1 and V2 since it is bipartite. Hence:

2(|V1|+ |V2| − |E|) = 2|V1|+ 2|V2| − 2|E| = (2|V1| − |E|) + (2|V2| − |E|) = 2.

Considering that constellations corresponding to proof-structures and tests are related
to partitions, the above equations induce a weight on constellations Φ defined by ω(Φ) :=
2|Φ| − | ± Rays(Φ)|. For instance, for a constellation of フフフ⊗フフフ, we would have a weight
of 2× 2− 2 = 2 and a weight of 2× 1− 2 = 0 for フフフ`フフフ. It is then expected that the
sum of the weight of two orthogonal constellations is 2. This is the case with the two
previous dual constellations.

We define the weight of a behaviour as the maximal weight of its constellations and
obtain the following weights:

ω(フフフ) := 1 ω(A⊗B) := ω(A) + ω(B) ω(A`B) := ω(A) + ω(B)− 2

ω(A⊥) := 2− ω(A) ω(A⊸ B) := ω(B)− ω(A)

We can now design our notion of truth (but omit the proof that it is invariant by
cut-elimination and that 0 is false).

Definition 4 (Visibility). A constellation or behaviour is visible (true) when its weight
is a least 0.

Visibility is preserved by cut-elimination because when applying a cut on two binary
stars representing axioms, we annihilate two rays and two stars are merged into a single
star (hence two stars from each constellations are removed but a new one appear):

ω(Ex(Φ ⊎ Φ′)) = 2(|Φ|+ |Φ′| − 2 + 1)− (| ± Rays(Φ)|+ | ± Rays(Φ′)| − 2)
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2(|Φ|+ |Φ′| − 1)− (| ± Rays(Φ)|+ | ± Rays(Φ′)| − 2)

= 2|Φ|+ 2|Φ′| − 2− | ± Rays(Φ)| − | ± Rays(Φ′)|+ 2

= 2|Φ|+ 2|Φ′| − | ± Rays(Φ)| − | ± Rays(Φ′)|

= ω(Φ ⊎Φ′).

We can give a weight toヲヲヲ so that it does not make both the behaviours A and A ⇒ 0

visible at the same time. We obtain the following definitions:

ω(ヲヲヲ) := 0 ω(A`B) := ω(A) + ω(B)− 2 (if one of A or B does not contain ヲヲヲ)

ω(A`B) := ω(A) + ω(B) (otherwise).

We have ω(ヲヲヲ `ヲヲヲ) = 0 and ω(フフフ ⊗ヲヲヲ) = 1 but ω(フフフ `ヲヲヲ) = −1 as expected. It
is then possible to obtain the following table of Girard’s truth where 0 stands for false
(not visible) and 1 for true (visible), and we ignore the uninteresting truth values:

A B A⊗B A`B A⊥

1 1 0 1
0 1 1 0

To illustrate a case of this table, if we have A := ヲヲヲ `ヲヲヲ (which is not visible since
ω(フフフ `フフフ) = 0 + 0 − 2 = −2) and B := フフフ ⊗フフフ (which is visible since ω(フフフ ⊗フフフ) =
1 + 1 = 2), then we have ω(A⊗B) = −2 + 2 = 0 ≥ 0 hence A⊗B is visible.

“A definite jailbreak from tarskism... and any sort of semantics.” would say Girard.

10. Thoughts about the future of logic

Logic engineering This expression already appeared in the literature [29] but I believe
that it can take a new meaning from a transcendental syntax. In programming, the idea
of testing and specification is essential. We want programs to have a certain behaviour
described by a specification so that the programs does not crash or do unexpected things.
These specifications are usually defined relatively to a logic, hence the conception of logic
is especially important. For instance, in model checking [29], LTL formulas are used to
speak about temporal properties about a model of computation (usually an automata
or a transition system) such as the fact that a property will eventually happen or that
it always holds. To tell if an automata A satisfies an LTL formula ϕ, we construct
an automata A¬ϕ from ¬ϕ and check if the product A × A¬ϕ recognises the empty
language. It is similar to how tests for proof-structures are sort of proof of the negation
of a formula. We obtain the following table:

Tested Test Specification Interaction

Model checking Automata A A¬ϕ ϕ (LTL) L(A×A¬ϕ)

Proof-nets Vehicle Φax
S Tests(⊢ Γ) ⊢ Γ (MLL) Ex(Φax

S ⊎ Φtest)
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It may be possible from the transcendental syntax to consider a model checker (or
other verification tools) which is independent of a specific logic but in which logics
can be defined as sort of modules/libraries. Moreover, it may open ideas of high-order
model checking for lambda-calculus since the lambda-calculus can be encoded with proof-
structures.

Epidictic architectures Something important which is left by Girard is epidictic. When
we quantify in second logic (over a predicate for instance), there are allowed and dis-
allowed properties. But who decide what is licit or not? There is actually something
external (what Girard calls a system or epidictic architecture) which structures the space
of all formulas. This is something which appears for instance in type theory with depen-
dent types or in statements such as “A is a type” or “if A and B are types then A×B
is a type”. But how should this be handled? Should we consider other tests constrain-
ing the possible tests for quantified formulas/witnesses? More than rules on syntactic
labels, our approach should have a computational content, something like a regulation
by interaction with some tests. In the case of Girard’s first-order, no structuration nor
external control is necessary.

Open systems Without considering systems, the transcendental syntax is naturally
system-free, in the sense that formulas are characterised by finite sets of tests which
are freely chosen. In particular, multiple connectives can live together (such as the
difference sorts of exponentials ⋉,⊗, ↑, ↓, !, ? etc). It is also possible to design any kind of
connectives either by finite tests (l’usine) or by interactive typing (l’usage). Even when
considering an epidictic architecture (a system), it is possible to change the system as
if we were loading a module or library in programming. In particular, is it possible to
design a very generic model checker or proof assistant which is independent of a logic
but can load any logic? The logic would then be external rather than internal and hard-
wired. Trust in the proof assistant or the model checker would only rely on a unification
algorithm and tests designed and written by the user.

Logico-functional space Surprisingly, the encoding of λ-calculus in stellar resolution
shows that logic programs and functional programs live in the same space. Logic pro-
grams can be used to represent the structure of λ-terms (following Regnier’s encoding
with proof-nets [40]) by independent concurrent agents expressed in a language which
shares the same dynamics as first-order resolution, itself used in logic programming.
This also has similarities with Saurin’s use of proof-search in the context of ludics [41].
In the same way, using the stellar resolution, it may be possible to do proof-search on
λ-terms and proof-structures or proof-nets (by adding correctness tests as an additional
constraint).

Towards a materialistic logic? What follows is a possibly exaggerated discussion about
how logic could actually be more than our current logic. Something I find quite remark-
able is that the stellar resolution places the link between computation and logic in the

37



broad world of complex systems. We compute by non-deterministic local interactions
between independent entities with a notion of information propagation. A logic emerges
from the behaviour of constellations. We could also expect relationships with sequential
dynamical systems and graph dynamical systems.

At the time of the document, I believe than no one truly understands the nature
of logic yet. The Geometry of Interaction and the transcendental syntax showed that
we can speak about (linear) logic with topology/geometry/dynamics by considering the
locations of entities, their links, cycles, interactions, paths etc (see Seiller’s graphings
[45]). These are rather tangible things reminiscent of interaction in the biological/phys-
ical world (for instance chemical reaction networks [33]).

I wonder if it is possible to consider a setting even more general than stellar resolution,
for instance a dynamical system for which attractors would have a logical meaning. It
may be possible that what we know about logic is only a particular case of a more general
theory of interaction as mentioned several times already [1, 17] or a logic of things which
speaks about interactions in general and not only interaction in the language. But is all
sorts of interaction expressible in the language? In particular, mathematics are able to
describe physical phenomena only by language and interaction within language.

Indeed, we must take several additional things into account. First, logic has a sub-
jective side because we look at computation from a specific point of view and a choice
of what a sound/successful computation means, which depends on the use of objects
and our own perception/goals. It probably makes purely mathematical techniques in-
sufficient (unless we speak about the objective part of logic, i.e. computation). A more
conceptual/philosophical study and connexions with other fields (typically physics and
biology) may be useful and seem possible. Moreover, we can also wonder if logic exists
beyond the computable. Does this even make sense?

Finally, I am curious about whether all of that has something to say at all about
computational complexity (some hints seem to exists in Seiller’s works [46]). Due to the
barriers of problems such as the separations of classes, it may be necessary to look for
new definitions of logic and computation.
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[44] Thomas Seiller. Interaction graphs: Full linear logic. In 2016 31st Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10. IEEE,
2016.

[45] Thomas Seiller. Interaction graphs: Graphings. Annals of Pure and Applied Logic,
168(2):278–320, 2017.

[46] Thomas Seiller. Interaction graphs: Non-deterministic automata. ACM Transac-
tions on Computational Logic (TOCL), 19(3):1–24, 2018.

[47] Sharon Sickel. A search technique for clause interconnectivity graphs. IEEE Trans-
actions on Computers, (8):823–835, 1976.

[48] Kazushige Terui. Computational ludics. Theoretical Computer Science,
412(20):2048–2071, 2011.

[49] Wolfgang Thomas. On logics, tilings, and automata. In International Colloquium
on Automata, Languages, and Programming, pages 441–454. Springer, 1991.

[50] Hao Wang. Proving theorems by pattern recognition —II. Bell system technical
journal, 40(1):1–41, 1961.

[51] Erik Winfree. Algorithmic self-assembly of DNA. PhD thesis, Citeseer, 1998.

Appendix A Not a pure waste of paper (light version)

In this section, I would like to clarify Girard’s terminology. Please read it after being a
bit familiar with the content of this paper.

Analytic In reference to Kant’s epistemology. A space of meaningless and computa-
tional entities. A ground for logic where objects are expressed before obtaining a logical
meaning. A good analytic space should be as natural and simple as possible (typically
including independent agents with a local and concurrent interaction so that it is possible
to get rid of external control).
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Anarchy Refers to Girard’s first-order logic where logical operations are local with
no reference to the shape of all possible formulas (no genericity). There is no need of
external control providing the logic is limited to some connectives.

Animist In reference to Japanese traditional beliefs where every entities (including
lifeless ones) can have both a subjective part (a spirit inhabiting it) and an objective part
(its physical materialisation). In the transcendental syntax, we distinguish objective and
subjective rays. An animist star mixes both objective and subjective ones. We usually
consider correct a constellation with no animist star (hence, having a clear separation
between object and subject).

Apodictic State of absolute certainty where only finitely many tests with a tractable
testing are sufficient for type checking with no appearance of doubts. It happens for
Girard’s first-order logic but not in general.

Axiom Group of physical locations (usually two) with are related so that they are
updated simultaneously. They are represented with binary polarised stars.

Behaviour A set of constellations A with satisfies the biorthogonal closure A = A⊥⊥

ensuring that A is characterised by a (potentially infinite) set of tests and that it is
theoretically testable.

Bureaucracy Refers to unecessary structures or steps of computation which prevent us
from accessing a more explicit version of an entity. For instance, in the sequent calculus,
the order of application of rules is usually irrelevant and disappears in proof-nets.

Certainty State in which the connexion (testing) between answer (computational en-
tity) and a question (formula/behaviour) is purely analytic. In particular, finite testing
is able to perfectly ensure the use/interaction of computational entities.

Constat Refers to irreducible objects (for instance, the normal form of a λ-term). Also
refers to dynamic objects which are seen as static (for instance a program seen as code
which can be manipulated as a single entity).

Cut Link connecting two physical locations which can be seen as an adapter (for in-
stance HDMI/VGA) ensuring that two constellations can be connected by some rays.
They are represented with binary stars with a polarity opposite to axioms.

Cut-elimination Resolution of addresses applied on cuts in order to identify some lo-
cations. It defines the dynamics happening in logic, allowing to go from an a reducible
object to an irreducible one. This is an access to explicit knowledge by computation. It
can also be understood as progressing in an explanation.
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Derealism Approach appearing in Girard’s second-order logic where, instead of testing
a vehicle (computational entity) against a test (correctness criterion), another test called
mould for existential witnesses is attached to the vehicle. Hence, a part of subjectivity
is included in the object (tested).

Doubt State in which it is not possible to fully ensure a correct use/interaction of
computational objects by finite and tractable testing.

Dichology See Behaviour.

Epidictic Refers to reasonable but not absolute certainty occurring in logic. It happens
in mathematics but also in Girard’s Derealism when full certainty is not possible because
of the presence of correctness test given with the vehicle (hence on the side of tested
entities).

Epidictic architecture In Girard’s second-order logic, quantification is general and not
limited to a system shaping formulas. Hence, a structuration of the space of all possible
formulas is needed for generic statements.

Epistate Computational object generalising proofs and tests asserting their logical cor-
rectness. Another name for pre-proof (an object not yet a correct proof but which can
be identified as such by some criterion).

Epure Correct proof in second-order logic. In reference to a French word representing
a drawing with several views of an object. These several views are represented by the
different tests included with the existential witness provided in a second-order proof.
Epures are represented with a constellation having a clear separation between objective
and subjective rays (hence no animist star).

Essentialism Philosophy in which the essence of objects comes before their existence.
It corresponds to Church typing where any computational entities only exist attached
with a syntactic labels called his type and which forbid some interactions considered
wrong. In the transcendental syntax, it is updated so to get rid of external semantics
and corresponds to typing by finite testing where arbitrary tests define the type of
computational objects.

Existentialism Philosophy in which the essence of objects is defined by their existence.
It corresponds to Curry typing where computational entities first exist independently
then it is possible, afterwards, to attach a syntactic label on it describing its computa-
tional behaviour. In the transcendental syntax, it refers to interactive typing where types
correspond to classification of computational objects according to how they interact with
each other.
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Factory Typing by finite and tractable testing.

First-order logic Fragment of logic where no genericity exist and reasoning is purely
intrinsic with no need of external control. Logical rules are, for instance, physical moving
specific entities such as reuniting two formulas (actually just physical locations) together
for the conjunction.

Format In the transcendental syntax, logic is seen as a way to format computational
entities. In particular, there are two way of formatting (or giving meaning). Either by
finite testing (see Factory) or by interaction (see Use).

Formula Syntactic label materialising an assertion which usually formalises a question
or a property. It can be understood either as a constraint or a synthetic description.

Hidden files Often wrong or ill-behaving entities not considered in traditional proof
theory and whose existence is computationally relevant in logic. For instance, the formula
0 in linear logic is considered as a contradiction with no proof and thus corresponds to
an empty set. In the transcendental syntax, the corresponding behaviour 0 is inhabited
by constellations with none of them considered correct. However, they can still interact
with other constellations and have a computational meaning.

Interaction Phenomena occurring when opposing two compatible objects. In the tran-
scendental syntax, this is represented by the execution of the union of two constellations.

Locativity Approach taken in Ludics and the latest articles of GoI where the physical
location, referred to by an address is given a great importance. For instance, the formulas
in a sequent calculus proof are inessential labels which can be replaced by addresses
(usually natural numbers). A proof becomes a manipulation of addresses.

Monism Approach in which every entities is represented as objects of the same kind.
For instance, proof-nets and their tests become constellations but so are circuits and their
semantics, automata and words, tile systems and Turing machines. It is the opposite of
dualism where we distinguish objects of two kinds (for instance program vs environment,
syntax vs semantics etc).

Morphologism Girard’s paradigm for logic where what matters is the shape of objects
and their interactions.

Objective rays Usual rays which is used in Girard’s first-order logic. They are used to
represent proof-structures.

Ordeal See Test.
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Orthogonality Binary symmetric relationship formalising the compatibility of two com-
putational entities. In the transcendental syntax, it also formalises the idea of “passing
a test”. We can design any orthogonality relationship we want and it leads to different
computational analyses or models of logic.

Performance Procedure leading a reducible computational object to an irreducible one.
It is essential in the theory of computation since reducible objects cannot be reduced
to their results because of the computational indecidability (for instance, the halting
problem).

Predicate calculus A fragment of Girard’s second-order logic where there are two sorts
of quantification: one over predicates and another one over individuals. Both are en-
coded as MLL behaviours. Hence, it corresponds to second-order logic with an epidictic
architecture limited to multiplicative linear logic. Equality becomes linear equivalence
between MLL formulas instead of mere predicate.

Proof Object formalising an answer to a formula. It can take several forms (tree,
graph, number etc) but usually depends on the requirement of the formula and what is
considered an answer to the formula. In logic, we are usually interested in the adequacy
between proofs and formulas (did we correctly answer the question?).

Realism Belief in which the meaning of an entity is located in an external space of
reality, what typically happens in denotational semantics where syntactic objects are
interpreted in another (mathematical) space. For instance, x = x because the two
occurrences of x refer to the same reality. In the case of logic, logical systems can be
mistakenly considered as correct representations/materialisations of reality.

Second-order logic A fragment of logic which uses generic reasoning. For instance, the
rule of the modus ponens (from A and A ⇒ B follows B) works for any formula A and B.
Girard claims that a large part of traditional logic is actually second-order (propositional
logic and first-order logic in particular). In the transcendental syntax, second-order logic
has a different meaning. It corresponds to a logic where quantification is unlimited and
does not presuppose how the space of all formulas is shaped. It needs a specific external
architecture.

Semantics System in which we associate a meaning to (often computational) objects.
For instance, denotational semantic associates a mathematical object to proofs. Such
objects represent the meaning of the proof, which is purely syntactic.

Scientism Refers (usually negatively) to a belief in which science and more especially
logic can explain everything. In particular, certainty is absolute and logic has the role of
accessing knowledge and solving philosophical problems. It is then sufficient to compute
an answer to access knowledge.

45



Stars and constellations Computational objects used in the transcendental syntax.
The terminology comes from the fact that the stars are objects with can be connected
to other ones along its branches. It could also be called atom or molecule but this would
be less poetic.

Subjective rays The objective rays are the ordinary rays. We then arbitrarily distin-
guish another class of subjective rays which are used to discriminate some constellations
so that it is possible to define notions of truth or logical correctness.

Synthetic In reference to Kant’s epistemology. Space where a meaning is given to
meaningless computational objects. In the transcendental syntax, it is represented by
typing by finite testing and interactive typing. It is what allows us to design formulas/-
types or questions/properties.

Test Way to assert that an object has a specific property or computational behaviour
we expected.

Type Same as formula by the Curry-Howard correspondence but more used in the
context of programming and the theory of computation where types (sometimes called
specifications) are used as labels preventing ill behaviours or unwanted situations to
happen during computation.

Usage See Use.

Use Refers to how logical definitions can be used in practice. In the transcendental
syntax it appears in interactive typing where constellations are given a meaning de-
pending on how can they can be used (how they can interact with other constellations).
According to Girard’s, Gödel’s incompleteness theorems state that tests cannot always
guarantee the use we wish for.

Usine See Factory.

Vehicle The computational content of a proof. In the theory of proof-nets, it corre-
sponds to the set of axioms of a proof-structure. It is the part which interacts with tests.
The tests will then ensure that the vehicle has a specific computational behaviours when
interacting with other objects (the vehicle of another proof). For instance, MLL+MIX
correctness guarantees strong normalisation of cut-elimination.

Wire Analogy used by Girard in order to talk about logic in a more concrete and down-
to-earth way. In particular, the theory of proof-nets sees proofs as wiring of formulas and
the cut-elimination as a resolution of wiring. The transcendental syntax extends this
analogy since, in the stellar resolution, wires are terms c(x) which can be divided into
infinitely many sub-wires, for instance c(l · x) and c(r · x), while keeping finite objects.
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