J. H. Tan, Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network', Inf. Sci, vol.420, pp.66-76, 2017.

J. Kaur and D. , A generalized method for the segmentation of exudates from pathological retinal fundus images, Biocybern. Biomed. Eng, vol.38, issue.1, pp.27-53, 2018.

Y. Zheng, M. He, and N. Congdon, The worldwide epidemic of diabetic retinopathy, Indian J. Ophthal, vol.60, issue.5, pp.428-431, 2012.

J. Amin, M. Sharif, M. Yasmin, H. Ali, and S. L. Fernandes, A method for the detection and classification of diabetic retinopathy using structural predictors of bright lesions, J. Comput. Sci, vol.19, pp.153-164, 2017.

W. Kusakunniran, Q. Wu, P. Ritthipravat, and J. Zhang, Hard exudates segmentation based on learned initial seeds and iterative graph cut, Comput. Methods Programs Biomed, vol.158, pp.173-183, 2018.

P. Prenta?i? and S. Lon?ari?, Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion, Comput. Methods Programs Biomed, vol.137, pp.281-292, 2016.

X. Zhang, Exudate detection in color retinal images for mass screening of diabetic retinopathy, Med. Image Anal, vol.18, issue.7, pp.1026-1043, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01082809

. Elloumi-y, . Akil-m, and . Kehtarnavaz-n, mobile computer aided system for optic nerve head detection.Computer Methods and Programs in Biomedicine (CMPB), vol.162, pp.139-148, 2018.

W. Zhou, C. Wu, Y. Yi, and W. Du, Automatic Detection of Exudates in Digital Color Fundus Images Using Superpixel Multi-Feature Classification, IEEE Access, vol.5, pp.17077-17088, 2017.

L. Giancardo, Exudate-based diabetic macular edema detection in fundus images using publicly available datasets, Med. Image Anal, vol.16, issue.1, pp.216-226, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00639756

K. Wisaeng and W. Sa, Improved fuzzy C-means clustering in the process of exudates detection using mathematical morphology, Soft Comput, vol.22, issue.8, pp.2753-2764, 2018.

S. Banerjee and D. , Detection of hard exudates using mean shift and normalized cut method, Biocybern. Biomed. Eng, vol.36, issue.4, pp.679-685, 2016.

M. S. Haleem, L. Han, J. Van-hemert, and L. B. , Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: a review, Comput Med Imaging Graph. Dec, vol.37, issue.7-8, pp.581-596, 2013.

E. Imani and H. Pourreza, A novel method for retinal exudate segmentation using signal separation algorithm, Comput. Methods Programs Biomed, vol.133, pp.195-205, 2016.

C. I. Sánchez, M. García, A. Mayo, M. I. López, and R. Hornero, Retinal image analysis based on mixture models to detect hard exudates, Med. Image Anal, vol.13, issue.4, pp.650-658, 2009.

D. Kayal and S. Banerjee, Detection of hard exudates using 2D Otsu algorithm in digital retinal fundus image, CSI Trans. ICT, vol.5, issue.1, pp.53-57, 2017.

I. N. Figueiredo, S. Kumar, C. M. Oliveira, J. D. Ramos, and B. Engquist, Automated lesion detectors in retinal fundus images, Comput. Biol. Med, vol.66, pp.47-65, 2015.

S. Ben, Y. Sayadia, M. Elloumi, M. H. Akil, and . Bedoui, Computational Efficiency of Optic Disk Detection on Fundus Image: A survey, SPIE Proceeding on Real-Time Image and Video Processing, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01796769

G. Fang, N. Yang, H. Lu, and K. Li, Automatic segmentation of hard exudates in fundus images based on boosted soft segmentation, 2010 International Conference on Intelligent Control and Information Processing, pp.633-638, 2010.

S. Joshi and P. T. Karule, A review on exudates detection methods for diabetic retinopathy, Biomed. Pharmacother. Biomedecine Pharmacother, vol.97, pp.1454-1460, 2018.

H. Jelinek and M. J. Cree, Automated Image Detection of Retinal Pathology, 1 edition, 2009.

A. Osareh, B. Shadgar, and R. Markham, A Computational-Intelligence-Based Approach for Detection of Exudates in Diabetic Retinopathy Images, IEEE Trans. Inf. Technol. Biomed, vol.13, issue.4, pp.535-545, 2009.

R. P. Shahri, M. Tavakoli, and N. Kehtarnavaz, Computationally efficient optic nerve head detection in retinal fundus images, Biomedical Signal Processing and Control, vol.11, pp.63-73, 2014.

S. Resnikoff, W. Felch, T. Gauthier, and B. Spivey, The number of ophthalmologists in practice and training worldwide: a growing gap despite more than 200,000 practitioners, J. Ophthalmol, vol.96, issue.6, pp.783-787, 2012.

J. M. Micheletti, A. M. Hendrick, F. N. Khan, D. C. Ziemer, and F. J. Pasquel, Current and Next Generation Portable Screening Devices for Diabetic Retinopathy, J. Diabetes Sci. Technol, vol.10, issue.2, pp.295-300, 2016.

S. Darma, F. Zantvoord, and F. D. Verbraak, The quality and usability of smartphone and hand-held fundus photography, compared to standard fundus photography, Acta Ophthalmol. (Copenh.), vol.93, issue.4, pp.310-311, 2015.

Y. Zhang, X. Li, X. Gao, and C. Zhang, A Simple Algorithm of Superpixel Segmentation With Boundary Constraint, IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol.27, issue.7, 2017.

M. Ayinala and K. K. Parhi, Low complexity algorithm for seizure prediction using Adaboost, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1061-1064, 2012.

A. Bastawrous and B. D. Hennig, The global inverse care law: a distorted map of blindness, Br. J. Ophtha, vol.96, issue.10, pp.1357-1358, 2012.

N. Panwar, Fundus Photography in the 21st Century--A Review of Recent Technological Advances and Their Implications for Worldwide Healthcare, Telemed. J. E-Health Off. J. Am. Telemed. Assoc, vol.22, issue.3, pp.198-208, 2016.

M. L. Muiesan, Ocular fundus photography with a smartphone device in acute hypertension, J. Hypertens, vol.35, issue.8, pp.1660-1665, 2017.

N. M. Bolster, M. E. Giardini, I. A. Livingstone, and A. Bastawrous, How the smartphone is driving the eye-health imaging revolution, Expert Rev. Ophthalmol, vol.9, issue.6, pp.475-485, 2014.

M. E. Ryan, Comparison Among Methods of Retinopathy Assessment (CAMRA) Study: Smartphone, Nonmydriatic, and Mydriatic Photography, Ophthalmology, vol.122, issue.10, pp.2038-2043, 2015.

R. Rajalakshmi, Validation of Smartphone Based Retinal Photography for Diabetic Retinopathy Screening, PLoS ONE, vol.10, issue.9, 2015.

A. Russo, Comparison of Smartphone Ophthalmoscopy With Slit-Lamp Biomicroscopy for Grading Vertical Cup-to-Disc Ratio, J. Glaucoma, vol.25, issue.9, pp.777-781, 2016.

M. A. Hudelist, C. Cobârzan, and K. Schoeffmann, OpenCV Performance Measurements on Mobile Devices, Proceedings of International Conference on Multimedia Retrieval, vol.479, p.482, 2014.

S. Majumder, Y. Elloumi, M. Akil, R. Kachouri, and N. Kehtarnavaz, A deep learning-based smartphone app for real-time detection of five stages of Diabetic Retinopathy, Real-Time Image Processing and Deep Learning 2020, pp.27-28, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02556991

C. I. Sánchez, R. Hornero, M. I. López, M. Aboy, J. Poza et al., A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis, Med. Eng. Phys, vol.30, issue.3, pp.350-357, 2008.

M. Van-den, X. Bergh, G. Boix, L. Roig, and . Van-gool, SEEDS: Superpixels Extracted Via Energy-Driven Sampling, Int. J. Comput. Vis, vol.111, issue.3, pp.298-314, 2015.

, American Optometric Association. Evidence-based Clinical Practice Guideline

, Grading diabetic retinopathy from stereoscopic color fundus photographs-an extension of the modified Airlie House classification: ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research roup, Ophthalmology, vol.98, issue.5, pp.786-806, 1991.

L. Zhengqin and C. Jiansheng, Superpixel segmentation using Linear Spectral Clustering, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1356-1363, 2015.

S. Gupta and S. Mazumdar, Sobel Edge Detection Algorithm, 2013.

V. Vijayakumari and N. Suriyanarayanan, Exudates Detection Methods in Retinal Images Using Image Processing Techniques, vol.1, p.6, 2010.

O. Vincent and O. Folorunso, A Descriptive Algorithm for Sobel Image Edge Detection, 2009.

W. Zhou, C. Wu, D. Chen, Z. Wang, Y. Yi et al., Automated Detection of Red Lesions Using Superpixel Multichannel Multifeature, Computational and Mathematical Methods in Medicine, 2017.

A. R. Harwood and A. J. , Parallelisation of an interactive lattice-Boltzmann method on an Androidpowered mobile device, Adv. Eng. Softw, vol.104, pp.38-50, 2017.

S. Lahmiri and M. Boukadoum, Automated detection of circinate exudates in retina digital images using empirical mode decomposition and the entropy and uniformity of the intrinsic mode functions, Biomed. Tech. (Berl), vol.59, issue.4, pp.357-366, 2014.

M. García, C. I. Sánchez, J. Poza, M. I. López, and R. Hornero, Detection of Hard Exudates in Retinal Images Using a Radial Basis Function Classifier, Ann. Biomed. Eng, vol.37, issue.7, pp.1448-1463, 2009.

S. Rajan, T. Das, and R. Krishnakumar, An Analytical Method for the Detection of Exudates in Retinal Images Using Invertible Orientation Scores, 2016.

D. E. , R. V. , and J. Pa, Identification of hard exudates in retinal images, Biomed. Res, vol.0, issue.0, 2017.

G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with OpenCV Library, 2008.

V. Gulshan, Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, JAMA, vol.316, issue.22, p.2016

V. Vapnik, The Nature of Statistical Learning Theory, 2000.

M. V. Bergh, D. Carton, and L. V. Gool, Depth SEEDS: Recovering incomplete depth data using superpixels, 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp.363-368, 2013.

L. Xu and S. Luo, Support vector machine based method for identifying hard exudates in retinal images', in Computing and Telecommunication, pp.138-141, 2009.

D. Stutz, A. Hermans, and B. Leibe, Superpixels: An Evaluation of the State-of-the-Art, Comput. Vis. Image Underst, vol.166, pp.1-27, 2018.

K. Tbarki, S. B. Said, R. Ksantini, and Z. Lachiri, RBF kernel based SVM classification for landmine detection and discrimination, 2016 International Image Processing, Applications and Systems (IPAS), pp.1-6, 2016.

S. Long, X. Huang, Z. Chen, S. Pardhan, and D. Zheng, Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation, BioMed Research International, vol.2019

K. Adem, Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks, Expert Systems with Applications, vol.114, pp.289-295, 2018.

M. M. Fraz, W. Jahangir, S. Zahid, M. M. Hamayun, and S. A. Barman, Multiscale segmentation of exudates in retinal images using contextual cues and ensemble classification, Biomed. Signal Process. Control, vol.35, pp.50-62, 2017.

B. Harangi and A. Hajdu, Automatic exudate detection by fusing multiple active contours and regionwise classification, Comput. Biol. Med, vol.54, pp.156-171, 2014.

E. Recep, . Hacisoftaoglu, A. B. Mahmutkarakaya, and . Sallam, Deep Learning Frameworks for Diabetic Retinopathy Detection with Smartphone-based Retinal Imaging Systems, Pattern Recognition Letters, vol.135, pp.409-417, 2020.

E. Saeed, M. Szymkowski, K. Saeed, and Z. Mariak, An Approach to Automatic Hard Exudate Detection in Retina Color Images by a Telemedicine System Based on the d-Eye Sensor and Image Processing Algorithms, Sensors (Basel), vol.19, issue.3, p.695, 2019.