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RESONANCES IN HYPERBOLIC DYNAMICS

S N

Abstract

The study of wave propagation outside bounded obstacles uncovers the existence
of resonances for the Laplace operator, which are complex-valued generalized eigen-
values, relevant to estimate the long time asymptotics of the wave. In order to un-
derstand distribution of these resonances at high frequency, we employ semiclassical
tools, which leads to considering the classical scattering problem, and in particular
the set of trapped trajectories. We focus on “chaotic” situations, where this set is a hy-
perbolic repeller, generally with a fractal geometry. In this context, we derive fractal
Weyl upper bounds for the resonance counting; we also obtain dynamical criteria en-
suring the presence of a resonance gap. We also address situations where the trapped
set is a normally hyperbolic submanifold, a case which can help analyzing the long
time properties of (classical) Anosov contact flows through semiclassical methods.

1 Introduction

Spectral geometry attemps to understand the connection between the shape (geometry) of a
smooth Riemannian manifold (M; g), and the spectrum of the positive Laplace-Beltrami
operator �∆ on this manifold. When M is compact, the spectrum is made of discrete
eigenvalues of finitemultiplicities (�2

k
)k�0, associatedwith an orthonormal basis of smooth

eigenfunctions (�k)k�0. What is the role of this spectrum? It allows to explicitly de-
scribe the time evolution of the waves waves, e.g. evolved through the wave equation
(@2t t � ∆)u = 0. The connection comes as follows: taking as any initial datum u(0) = 0,
@t u(0) = u0 2 L2(M ), the wave at any time t � 0 is given by the exact expansion

(1) u(t; x) =
� sin(tp�∆)

p
�∆

u0

�
(x) =

X
k�1

h�k ; u0i �k(x)
sin(t�k)

�k

; x 2 M; t � 0 :

Hence, any information on the eigenvalues and eigenfunctions allows to better character-
ize the evolved wave u(t).
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Figure 1: Scattering of a wave by obstacles Ω = [iΩi � Rd . Parallel lines
indicate incoming and outgoing wave trains (arrows indicate the direction of propa-
gation). The blue box indicates a ”detector”.

1.1 Scattering. In many physical experiments, the waves (or wavefunctions) are not
confined to compact domains, but can spread towards spatial infinity. The ambient man-
ifold (M; g) therefore has infinite volume, and in general its geometry towards infin-
ity is ”simple”. For instance, a physically relevant situation consists of the case where
M = Rd n Ω, with Ω an open bounded subset of Rd , representing a bounded ”obstacle”
(or a set of several obstacles). These obstacles will scatter an incoming flux of waves
arriving from a certain direction at infinity, resulting in a flux of outgoing waves propagat-
ing towards infinity along all possible directions (see Figure 1). In actual experiments, the
experimentalist can produce incoming waves with definite frequency and direction, and
can detect the outgoing waves, along one or several directions. Such an experiment aims
at reconstructing the shape of the obstacle, from the analysis of the outgoing waves.

1.2 Resonances. Our objective will not be this ambitious inverse problem, but we will
try characterize quantitatively this scattering phenomenon, assuming some geometric and
dynamical properties of the obstacles. This will imply a spectral study of the Laplacian�∆

on M (say, with Dirichlet boundary conditions on @Ω). Due to the infinite volume of M ,
the spectrum of�∆ is purely continuous onR+ with no embedded eigenvalues. However,
one can exhibit a form of discrete expansion resembling (1) by uncovering resonances (see
e.g. the incoming book Dyatlov and Zworski [2018] on scattering and resonances, or the
recent comprehensive review Zworski [2017]).

Let us assume that the initial datum u0 2 C 1
c (M ); its time evolution can be expressed

through Stone’s formula:

(2) u(t; x) =
1

2i�

Z
R

d� e�it� R(�)u0 ;

MSC2010: primary 81Q50; secondary 81Q20, 35P25, 37D20, 37D40, 81Q12.
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where R(�) is the resolvent operator (�∆ � �2)�1, first defined in the upper half-plane
Im� > 0, and then continued down to � 2 R as an operatorL2

comp ! L2
loc

. R(�) actually
admits a meromorphic extension from Im� > 0 to the full lower half-planeC� = fIm� <

0g (with a logarithmic singularity at � = 0 in even dimensions d ), with the possibility of
discrete poles f�k 2 C�g of finite multiplicities, called the resonances of the system.

This meromorphic extension encourages us to deform the contour of the above integral
towards a line C = �i + R, thereby collecting the contributions of the residues at the
�k . Assuming that all resonances have multiplicity 1, we obtain the expansion

(3) u(t) =
X

Im�k��

e�it�k Π�k
u0 + I (t; C ) ; where Π�k

=
1

2i�

I
�k

R(�) d�;

and I (t; C ) is the integral in (2) taken along the contour C .

Figure 2: Contour deformation uncovering resonances of �∆.
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Resonances come in symmetric pairs �k $ ��̄k (see Figure 2). Each �k corresponds
to a resonant stateuk 2 C 1

c (M ), which satisfies the equation�∆uk = �kuk and behaves
as ∼ ei�k jxj when jxj ! 1, so it diverges exponentially, showing that uk 62 L2(M ). If
Re�k > 0 the state uk is said to be purely outgoing; the complex conjugate function ūk(x)

corresponds to the dual resonance ��̄k of negative real part: it is purely incoming. The
resonant state uk allows to express the ”spectral projector” Π�k

(which acts L2
comp !

L2
loc

) as Π�k
u0 = hūk ; u0iuk (the bracket hūk ; u0i =

R
dx uk(x)u0(x) makes sense

since u0 has compact support).
Assuming we control the size of the remainder term (the contour integral I (t; C )),

the expansion (3) provides informations on the shape and intensity of the wave u(t; x),
particularly in the asymptotic t � 1: it can explain at which rate the wave leaks (disperses)
out of a given bounded region (say, a large ball B(R)), by providing some quantitative
bounds on u(t) �B(R). To control the remainder I (t; C ), one needs to control the size
of the truncated resolvent operator 1lB(R)R(�)1lB(R) for � 2 C , in particular the contour
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should avoid hitting resonances, which requires to control the location of the resonance
cloud in the vicinity of C .

1.3 Semiclassical regime. These arguments hint at our main objective: to determine,
as precisely as possible, the distribution of the resonances f�kg, and possibly also obtain
bounds on the meromorphically continued resolvent R(�). We will be mostly interested
in the high frequency regime jRe�j � 1, which we choose to rephrase as a semiclassical
regime with small parameter h � 1. To avoid having to deal with both signs of Re�, we
replace the wave equation by the half-wave equation, written in this semiclassical setting
as:

(4) ih@t u(t) = Phu(t); with the semiclassical operator Ph =
p

�h2∆ :

The small parameter 0 < h � 1 is usually called ”Planck’s constant”, since the above
equation has the form of a semiclassical Schrödinger equation (see below). Here h is just a
bookkeeping parameter: we will study the resonances zk = zk(h)

def
= h�k of the operator

Ph near some fixed energy E > 0 (typically E = 1 for the above half-wave equation),
indicating that Re�k ∼ h�1.

We will use the same notations when considering the ”true” semiclassical Schrödinger
equation, describing the evolution of a quantum particle on M , subject to an electric po-
tential V (x):

(5) ih@t u(t) = Phu(t); Ph = �h2∆+ V (x) ; V 2 C 1
c (M; R) :

The Schrödinger operator Ph also admits resonances zk(h) in the lower half-plane, ob-
tained as the poles of the resolvent (Ph � z)�1, meromorphically extended from fRez >

0; Imz > 0g to fImz < 0g; now the zk(h) depend nontrivially of h. In these semiclassical
notations, the time evolution operator now reads e�itPh/h, so each term hūk ; u0iuk in (3)
will evolve at a rate e�itzk/h, hence decay at a rate et Imzk/h. The deeper the resonance
(� the larger jImzkj), the faster this term will decay. We call �k(h)

def
= h

jImzk j
the lifetime

of the resonance. As we will see below, we will be mostly interested in resonances with
lifetimes bounded from below, �k � c > 0, which corresponds to studying the resonances
in strips of width fImzk = O(h)g.

1.3.1 Semiclassical evolution of wavepackets. This semiclassical regime allows us to
use the powerful machinery of semiclassical/microlocal analysis Zworski [2012], which
relates the Schrödinger evolution (4) with the evolution of classical particles through the
Hamiltonian flow 't

p on the phase space T �M 3 (x; �). This flow is generated by the
classical Hamiltonian p(x; �), given by the principal symbol of the operator Ph (in the
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Figure 3: Left: a wavepacket of wavelength h is scattered by an obstacle. Right:
scattering of classical trajectories (light rays following broken geodesics).
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above examples p(x; �) = j�j, respectively p(x; �) = j�j2 + V (x)). To illustrate this
connection, we represent on the left of Figure 3 the propagation of a minimum-uncertainty
wavepacket u0(x) through the half-wave equation on M = Rd n Ω. The wavepacket
can be chosen for instance as a minimum-uncertainty Gaussian wavepacket, also called a
coherent state

u0(x) = Ch e�
jx�x0j2

2h ei�0�x/h:

This wavepacket is essentially localized in an h1/2-neighbourhood of the point x0, while
its semiclassical Fourier transform Fhu0(�) is localized in an h1/2-neighbourhood of the
momentum �0 (materialized by the red and pink arrows in the Figure); we say that this
state is microlocalized (or centered) on the phase space point �0 = (x0; �0). Heisenberg’s
uncertainty principle shows that the concentration of such a wavepacket is maximal, equiv-
alently the “uncertainty” in its position and momentum is minimal. For a given time win-
dow t 2 [0; T ], in the semicassical limit the evolved state u(t) = e�itPh/hu0 will remain
a microscopic wavepacket, centered at the point �(t) = 't (�0), where 't is the broken
geodesic flow shown on the figure. If we replace the hard obstacles by a smooth potential,
the geodesic flow will be replaced by the Hamiltonian flow 't

p .

1.3.2 Introducing the trapped set. In order to analyze the quantum scattering and its
associated resonances, it will be crucial to understand the corresponding classical dynam-
ical system, that is the scattering of classical particles induced by obstacles, potentials or
metric perturbations, as sketched on the right of Figure 3. In particular, the distribution of
resonances will depend on the dynamics of the trajectories remaining in a bounded region
of phase space for very long times. For a given energy value E > 0, we thus introduce
the set of points which are trapped forever in the past (resp. in the future, resp. in both
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time directions):

(6) Γ˙
E

def
= f� 2 p�1(E); 't

p(�) 6! 1; t ! �1g; KE = Γ+
E \ Γ�

E :

Our assumptions on the structure of M near infinity will always imply that the trapped
set KE is a compact subset of the energy shell p�1(E); this set is invariant through the
flow 't

p . The distribution of the resonances in the semiclassical limit will be impacted by
the dynamics of the flow 't

p on KE . The punchline of the present notes could be:

In the semiclassical regime, the distribution of the resonance fzk(h)g near
the energy E strongly depends on the structure of the trapped set KE , and of
the dynamical properties of the flow 't

p near KE .

1.4 Hyperbolicity. In these notes dedicated to “quantum chaos”, we will mostly focus
on systems for which the flow 't

p �KE
is hyperbolic (Section 5 will contain examples

of partial hyperbolicity). What does hyperbolicity mean? It describes the rate at which
nearby trajectories depart from each other: for a hyperbolic flow, they separate at an ex-
ponential rate, either in the past direction, or in the future, or (most commonly) in both
time directions. The trajectories are therefore unstable w.r.t. perturbations of the initial
conditions. More precisely, an orbit O(�0) = ('t (�0))t2R � p�1(E) is hyperbolic if
and only if, at each point � 2 O(�0), the 2d � 1-dimensional tangent space T�p�1(E)

splits into three subspaces,

T�p�1(E) = RXp(�) ˚ Eu(�) ˚ Es(�);

where Xp(�) is the Hamiltonian vector field generating the flow, Es(�) (resp. Eu(�))
is the stable (resp. unstable) subspace at �, characterized by the following contraction
properties in the future, resp. in the past:

(7) 9C; � > 0; 8t � 0; kd't
p �Es(�) k � C e��t ; kd'�t

p �Eu(�) k � C e��t :

The trapped set KE is said to be (uniformly) hyperbolic if each orbit O(�) � KE is hy-
perbolic, with the coefficients C; � being uniform w.r.t. � 2 KE . In general the unstable
subspaces Eu

� are only Hölder-continuous w.r.t. � 2 KE , even if the flow 't is smooth;
this poor regularity jumps to a smooth (actually, real analytic) dependence in the setting
of hyperbolic surfaces described in the next section. Such a uniformly hyperbolic flow
't

p �KE
satisfies Smale’s Axiom A; its long time dynamical properties have been studied

since the 1960s, using the tools of symbolic dynamics and the thermodynamical formal-
ism Bowen and Ruelle [1975]. Below we will use some ”thermodynamical” quantities
associated to the flow, namely the topological entropy and pressures. The Anosov flows
we will mention in the last section are particular examples of such Axiom A flows.
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Figure 4: Hyperbolicity of the orbit O(�), with the stable an unstable subspaces
transverse to the vector Xp(�).
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2 Examples of hyperbolic flows

2.1 A single hyperbolic periodic orbit. The simplest example of hyperbolic set oc-
curs in the scattering by the union of two disjoint strictly convex obstacles in Rd : in that
case the trapped set is made of a single orbit bouncing periodically between the two ob-
stacles (see Figure 5). For this simple situation, the resonances of Ph = �h2∆ can be
computed very precisely in the semiclassical limit Ikawa [1983] and Gérard and Sjöstrand
[1987]; in dimension d = 2, in a small neighbourhood of the classical energyE = 1, they
asymptotically form a half-lattice:
(8)

z`;k(h) = E(h)+
2�hk

T
� ih�(1/2+ `)+O(h2); ` 2 N; k 2 Z; E(h) = 1+O(h) :

Here T is the period of the bouncing orbit, while � > 0 is the rate of unstability along

Figure 5: Left: the simplest case of hyperbolic set: scattering between two strictly
convex obstacles. Right: semiclassical resonances for this system

E

λ

0

h   /2

the orbit, meaning that kd'T
p �Eu(�) k = e�T . Obtaining such explicit formulas for the

resonances is specific to this very simple situation, but it already presents two interesting
features. First, the number of resonances in any rectangle R(E; C h; h) of the type (11)
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is uniformly bounded when h ! 0, and it is nonzero if  and C are large enough. Second,
if  < �/2 (and if h is small enough), the box R(E; C h; h) will be empty of resonances:
this is the first instance of a resonance gap connected with the hyperbolicity of the flow
on the trapped set.

2.2 Fully developed chaos: fractal hyperbolic trapped set. Beside hyperbolicity, the
second ingredient of “chaos” is the complexity of the flow, which can be characterized by
a positive topological entropy, indicating an exponential proliferation of long periodic
orbits:

(9) Htop('
t �K1

) = lim
T !1

1

T
log #f 2 Per(K1); T � T � T + 1g ;

where Per(K1) denotes the set of periodic orbits in K1, and T is the period of the orbit  .
A simple example of system featuring such a chaotic trapped set is obtained by adding one
convex obstacle to the 2-obstacle example of the previous paragraph. Provided this third
obstacle is well-placed with respect to the other two (so that the three obstacles satisfy
a “no-eclipse condition”, like in Figure 6, left), the trapped trajectories at energy E =

1 form a hyperbolic set K1, which contains a countable number of periodic orbits, and
uncountably many nonperiodic ones. A way to account for this complexity is to construct
a symbolic representation of the orbits. Label each obstacle by a number ˛ 2 f0; 1; 2g;
then to each bi-infinite word � � � ˛�1˛0˛1˛2 � � � such that ˛i ¤ ˛i+1, corresponds a unique
trapped orbit in K1, which hits the obstacles sequentially in the order indicated by the
word. Periodic words correspond to periodic orbits, nonperiodic words to nonperiodic
orbits. This correspondence between words and orbits allows to quantitatively estimate
the complexity of the flow on K1. In turn, the strict convexity of the obstacles ensures
that all trapped orbits are hyperbolic, the instability arising at the bounces.

The trapped set K1 has a fractal geometry, which can be described by some fractal
dimension. It is foliated by the trajectories (which accounts for one ”smooth” dimension),
so its fractal nature occurs in the transverse directions to the flow, visible in its intersection
with a Poincaré section Σ � S�X (see Figure 6). This intersection KE \ Σ (represented
by the union of black squares) has the structure of a horseshoe; as the intersection of stable
(Γ�) and unstable (Γ+) manifolds, it locally has a “product structure”.

In space dimension d = 2, the dimension ofK1 can be expressed by using a topological
pressure. This pressure, a “thermodynamical” quantity of the flow, is defined in terms of
the unstable Jacobian of the flow, J u

t (�) = j det(d't �Eu(�))j. For a periodic orbit  of
period T , we denote J u() = J u

T
(� ), where � is any point in  . Now, for any s 2 R,

we may define the pressure as

(10) P (s) = P (s; 't �K1
) = lim

T !1

1

T
log

X
T �T �T+1

J u()�s ;
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Figure 6: Left: three convex obstacles on R2, leading to a fractal hyperbolic re-
peller. Right: intersection of KE with a Poincaré section Σ.
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where the sum runs over all periodic orbits  2 Per(K1) of periods in the interval [T; T +1].
P (0) is equal to the topological entropy (9), which is positive. When increasing s, the
factors J u()�s decay exponentially when T ! 1, hence the hyperbolicity embodied
by these factors balances the complexity characterized by the large number of orbits. The
pressure P (s) is smooth and strictly decreasing with s, and one can show that P (1) < 0;
hence, it vanishes at a single value ı 2 (0; 1). In the 2-dimensional setting (for which
Eu/s(�) are 1-dimensional), the Hausdorff dimension ofK1 is given by Bowen’s formula:

dimK1 = 1 + 2ı () P (ı) = 0 :

The topological pressure will pop up again when studying resonance gaps, see Theorem 2.

2.3 An interesting class of examples: hyperbolic surfaces of infinite area. We have
mentioned above that one way to ”scatter” a wave, or a classical particle, was to modify the
metric on M in some compact neighbourhood. Because we are interested in hyperbolic
dynamics, an obvious way to generate hyperbolicity is to consider metrics g of negative
sectional curvature (giving M locally the surface the aspect of a “saddle”). Such a metric
automatically induces the hyperbolicity of the orbits, the instability rate being proportional
to the square-root of the curvature.

Such surfaces can be constructed Borthwick [2016] by starting from the Poincaré hyper-
bolic diskD = fz 2 C; jzj < 1g, equipped with the metric g = 4 dz dz̄

(1�zz̄)2
: the curvature is

then equal to �1 everywhere. The Lie group SL(2; R) acts on this disk isometrically. By
choosing a discrete subgroup Γ < SL(2; R) of the Schottky type, the quotientM = ΓnD
is a smooth surface of infinite volume, without cusps. On the left of Figure 6 we represent
the Poincaré disk, tiled by fundamental domains of such a Schottky subgroup Γ (the grey
area is one fundamental domain), the boundaries of the domains being given by geodesics
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Figure 7: Construction of a hyperbolic surfaceM = ΓnC of infinite volume. Left:
fundamental domains of the action of Γ on D. Right: representation of M .

on D (which corresond to Euclidean circles hitting @D orthogonally). On the figure we
also notice the accumulation of small circles towards a subset ΛΓ � @D, called the limit
set of the group Γ. This limit set is a fractal set of dimension ı = ıΓ 2 (0; 1).

On the right of the figure we plot the quotient surface M = Γ n D, composed of
a compact part (the ”core”) and of three “hyperbolic funnels” leading to infinity. The
trapped geodesics of M are fully contained in the compact core, they can be represented
by geodesics on D connecting two points of ΛΓ (red geodesic on the figure). On the
opposite, geodesics on D crossing @D nΛΓ correspond to transient geodesics on M (blue
geodesic on the figure) which start and end in a funnel. The trapped set can therefore be
identified as K1 � ΛΓ � ΛΓ � R, and its Hausdorff dimension dimK1 = 1 + 2ı.

The Laplace-Beltrami operator �∆M has a continuous spectrum on [1/4; 1), which
is usually represented by the values s(1 � s), for a spectral parameter s 2

1
2
+ iR. The

resolvent operator R(s) = (�∆M � s(1 � s))�1 can be meromorphically extended from
fRes > 1/2g to fRes < 1/2g. The resonances are given by a discrete set fskg in the half-
space fRes < 1/2g. A huge advantage of this model, is that these resonances are given
by the zeros of the Selberg zeta function

ZΓ(s)
def
=

Y
2Per�

1Y
m=0

(1 � e�(s+m)j j) ;

where Per� denotes the set of primitive periodic geodesics on M . This exact connection
between geometric data (lengths of the periodic geodesics) and spectral data (resonances
of �∆) is specific to the case of surfaces of constant curvature. Another particular feature
of the constant curvature is the fact that the stable/unstable directions Es/u(�) can be
defined at any point � 2 M , and depend smoothly on the base point �.
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The identification of the resonances with the zeros of ZΓ(s) provides powerful tech-
niques to study their distribution, with purely ”classical” techniques, without any use of
PDEmethods. These zeros can be obtained by studying a 1-dimensional map on the circle,
called the Bowen-Series map, constructed from the generators of the group ΓNaud [2005].
This map induces a family of transfer operators Ls indexed by the spectral parameter; one
shows that these operators, when acting on appropriate spaces of analytic functions, are
nuclear (in the sense of Grothendieck), and that the Selberg zeta function can be obtained
as the Fredholm determinant ZΓ(s) = det(1 � Ls). The spectral study of the classical
transfer operatorsLs can therefore deliver informations on the resonance spectrum, which
are often more precise than what is achievable through PDE techniques.

3 Fractal Weyl upper bounds

3.1 Counting long living resonances. We are interested in the distribution of the res-
onances (�j ) (for �∆) or (zk(h)) (for Ph) in the lower half-plane. Because we want
to use these resonances in dynamics estimates as in (3), we will focus on the long living
resonances, such that Imzk(h) � �h for some fixed  > 0, or equivalently such that
the corresponding lifetimes �k(h) � 1/ > 0. We will also focus on resonances such
that Rezk lies in some small energy window [E � �; E + �]: this will allow us to connect
their distribution with the properties of the classical flow at energy E. Figure 8 sketches
the more precise spectral region we will study, centered at E > 0: we will count the
resonances in rectangles of the type

(11) R(E; C h; h) = [E � C h; E + C h] � i [0; h]; C;  > 0 independent of h:

In the present section, our main result is a fractal Weyl upper bound (see Theorem 1) for
the number of resonances in those rectangles. In the next section we will be especially
interested in situations for which such a rectangle contains no resonance, like in the rect-
angle R(E; C h; gh) of Figure 8: we will then speak of a (semiclassical) resonance gap
near the energy E.

3.2 Complex deformation of Ph: turning resonances into eigenvalues. For simplic-
ity we consider manifolds M which, outside some big ball B(R0/2), is equal to the Eu-
clidean space Rd n B(R0/2). To analyze the resonances of Ph in R(E; C h; h), a conve-
nient method consists in twisting the selfadjoint operatorPh into a nonselfadjoint operator
Ph;� , through a “complex deformation” procedure Aguilar and Combes [1971]. Outside
a large ball B(R0), the differential operator Ph;� is equal to �h2e�2i�∆, while it is equal
to the original Ph inside B(R0/2). In our applications the angle parameter � 2 (0; �/4)

will be assumed small. Through the twisting Ph ! Ph;� , the continuous spectrum has
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Figure 8: Resonances of a semiclassical operatorPh in the rectangleR(E; C h; h).
Right: spectrum of the twisted operator Ph;� .
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been tilted fromR+ to e�2i� R+, and by doing so has uncovered the resonances zj (h) con-
tained in this corresponding sector: these resonances have been turned into eigenvalues,
with eigenfunctions ũj 2 L2. For h > 0 small enough, the rectangle R(E; C h; h) will
be contained in the e�2i� sector, so we are lead to analyze the (discrete) L2 spectrum of
the nonselfadjoint semiclassical operator Ph;� inside this rectangle.

Let us analyze the twisted Schrödinger evolution. We have seen in Section 1.3 that a
wavepacketu�0

centered at a phase space point �0 is transported by the unitary Schrödinger
propagator e�itPh/h along the trajectory �(t) = 't

p(�0). The twisted propagator Ut
�
=

e�itPh;�/h also transports the wavepacket along the trajectory (�(t)), but the nonselfad-
joint character of Ph;� will have the effect to modify the norm of the wavepacket:

d

dt
ku(t)k2 =

2

h
Imhu(t); Ph;� u(t)i �

2Imp� (�(t))

h
ku(t)k2 ;

where p� is the principal symbol of Ph;� . When x(t) is outside B(R0), this symbol reads
p� (x; �) = e�2i� j�j2, so at the point �(t) its imaginary part is � sin(2�)E < 0. As a
result, the norm of u(t) decreases very fast: its norm is reduced to O(h1) as soon as �(t)

exits B(R0): the twisted propagator is strongly absorbing outside B(R0).

3.3 Resonances vs. classical trapped set. As explained before, the distribution of
resonances in rectangles R(E; C h; h) depend crucially on the dynamics of 't

p on the
trapped set KE . Let us explain more precisely how this connection operates, starting with
the simple case of a nontrapping dynamics.

3.3.1 Case of a nontrapping dynamics. If KE = ¿, any point �0 2 p�1(E) will
leave B(R0) within a finite time T0. As a result, a wavepacket u�0

microlocalized on �0

will be transported byUt
�
outside ofB(R0), and will be absorbed. Let us now assume that

vz 2 L2(M ) satisfies (Ph;� � z)vz = 0, for some z 2 R(E; C h; h). Elliptic estimates
show that vz can be decomposed as a sum of (normalized) coherent states centered inside
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a small neighbourhood U (E) of p�1(E) \ T �B(R0):

(12) vz =

Z
U (E)

d�

(2�h)d
hu�; vzi u� + O(h1) :

Let us apply the propagator UT0

�
to the above equality. On the right hand side each

evolved wavepacket UT0

�
u� = O(h1) from the above discussion, while on the left

hand side we get UT0

�
vz = e�izT0/hvz . The equality between both sides contradicts

our assumption Imz � �h. This argument shows that if KE = ¿, deeper rectangles
R(E; C h; hj log hj) are also empty of resonances Martinez [2002].

3.3.2 Fractal hyperbolic trapped set. Wenow consider a nontrivial hyperbolic trapped
set KE . In this cases resonances generally exist in R(E; C h; h), at least when C and 

are large enough. In Section 2 we have mentioned the case where KE is composed of a
single hyperbolic periodic orbit, for which one can derive explicit asymptotic expressions
for the resonances. In case of a more complex, fractal chaotic trapped set, we don’t have
any explicit expressions at our disposal. Yet, semiclassical methods provide upper bounds
for the number of resonances inside R(E; C h; h), in terms of the Minkowski dimension
of the trapped set KE .

Theorem 1 (Fractal Weyl upper bound). Assume the trapped set KE is a hyperbolic re-
peller of upper Minkowski dimension 1+2ı. Then, for any C;  > 0, there exits CC; > 0

and h0 such that

(13) 8h < h0; #Res(Ph) \ R(E; C h; h) � CC; h�ı :

TheMinkowski dimension is a type of fractal dimension, often called ”box dimension”.
Essentially, it indicates that the volumes of the �-neighbourhoods of KE (inside p�1(E))
decay as �2d�1�(1+2ı) when � ! 0.

The above theoremwas first proved in Sjöstrand [1990] (for wider rectangles), and then
refined by Sjöstrand and Zworski [2007], both in the case of smooth symbols p(x; �). The
case of Schottky hyperbolic surfaces was addressed by Zworski [1999] using semiclassical
methods, and generalized to hyperbolic manifolds of higher dimension in Guillopé, Lin,
and Zworski [2004] by using transfer operators. The case of scattering by N � 3 convex
obstacles was tackled in Nonnenmacher, Sjöstrand, and Zworski [2014], using quantum
monodromy operators (quantizations of Poincaré maps).

The bound (13) is called a fractal Weyl upper bound, by analogy with the selfadjoint
semiclassical Weyl’s law. Indeed, assume we add to Ph a confining potential Ṽ (x), so
that any energy shell p̃�1(E) is compact. The spectrum of P̃h is then discrete, and the
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following semiclassical Weyl’s law holds near noncritical energies E:
(14)
Spec(P̃h)\ [E � C h; E +C h] =

1

(2�h)d
Vol

�
p̃�1([E � C h; E +C h])

�
+O(h�d+1) :

The volume on the right hand side behaves as C VE h�d+1 for some VE > 0, while the
trapped set K̃E has dimension 1 + 2(d � 1), so the power in the above estimate agrees
with (13).

The result (13) and the above selfadjoint Weyl’s law differ on several aspects:

1. (13) is an upper bound, not an asymptotics. Numerical studies have suggested that
this upper bound should be sharp at the level of the order h�ı , at least if  is large
enough. Yet, proved lower bounds for the counting function are of smaller order
O(1), similar with the case of a single hyperbolic orbit. A counting function � h�ı

could already be called a fractal Weyl’s law.

2. If a more precise estimate should hold, what could be the optimal constant CC;?
How does it depend on the depth ? This question is related with the gap question
discussed in the next section.

This conjectural fractalWeyl’s law has been tested numerically on various chaotic systems,
with variable success: Schrödinger operator with a smooth potential Lin [2002], hyper-
bolic surfaces by Guillopé, Lin, and Zworski [2004] and Borthwick [2014], discrete time
analogues of scattering systems (quantized open maps) in Nonnenmacher and Zworski
[2007], and even experimentally in the case of the scattering by N disks, see Potzuweit,
Weich, Barkhofen, Kuhl, Stöckmann, and Zworski [2012].

3.3.3 Sketch of the proof of the Fractal Weyl upper bound. The spectrum of a non-
selfadjoint operator Q is notoriously harder to identify than in the selfadjoint case. To
study the spectrum of Q near some value z0, one method is to ”hermitize” the operator Q,
namely study the bottom of the spectrum of the positive operator (Q � z0)

�(Q � z0), or
equivalently the small singular values of the operator Q � z0; estimates on the number of
singular values will then, through Weyl’s inequalities, deliver upper bounds on the num-
ber of small eigenvalues of Q � z0. It is much more difficult to obtain lower bounds on
the number of eigenvalues: this difficulty explains the large gap between upper and lower
bounds.

In our problem, to obtain a sharp upper bound we need to twist again the operator
Ph;� , by conjugating it with an operator Gh obtained by quantizing a well-chosen escape
function g(x; �):

Ph;G
def
= e�GhPh;� eGh :
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Through this conjugation, the symbol of the operator can be expanded as

pG = p� � ihfp� ; gg + smal ler ;

where the Poisson bracket fp� ; gg represents the time derivative of g(�(t)). Using the
hyperbolicity of the flow, for any  > 0 it is possible to construct a function g such that
fp� ; gg(�) � 2h as soon as dist(�; KE ) � h1/2: this function is called an “escape
function”, because it grows along the flow, strictly so outside of the neighbourhood

KE (h1/2)
def
= f� 2 p�1(E); dist(�; KE ) � h1/2

g:

As a result, ImpG(�) � �3/2h for � outside KE (h1/2). The above hermitization tech-
niques imply that the eigenstates of Ph;G with eigenvalues z 2 R(E; C h; h) must be
concentrated in KE (h1/2). Applying the selfadjoint Weyl’s law (14) to this set (thickened
to an h-energy slab), and expressing its volume in terms of the Minkowski dimension of
KE , leads to the bound (13).

3.3.4 Improved fractal upper bounds on hyperbolic surfaces. Eventhough the dy-
namics of 't

p on KE is used to construct the escape function, the upper bound (13) only
depends on the geometry of KE , and not really on the flow 't

p itself. More recently,
finer techniques have been developed in the special case of hyperbolic surfaces, taking
into account more efficiently the dynamics on KE Naud [2014] and Dyatlov [2015]. In
this case the Minkowski dimension of KE is given by 1 + 2ı, with ı 2 (0; 1) the dimen-
sion of the limit set ΛΓ. The upper bound now has a threshold at the value th = 1�ı

2
,

which corresponds to the decay rate of a cloud of classical particles. For  � th (”deep
resonances”) the upper bound remains O(h�ı), but for  < th (“shallow resonances”)
the upper bound is of the form O(h�˛()), with ˛() < ı an explicit function, which
decreases when  & 0. Jakobson and Naud [2012] have actually conjectured that for
 < th and h small enough, the rectangle R(E; C h; h) should be empty of resonances.
This conjectured gap has not been confirmed numerically.

4 Dynamical criteria for resonance gaps

Let us now come to the question of resonance gaps. As explained in the introduction (see
(3)), in the case of the wave equation in odd dimension, a global resonance gap ensures
that the time evolved wave locally decays at a precise rate. Such a gap therefore reflects
the phenomenon of dispersion of the wave, which spreads (leaks) outside any given ball.
In the semiclassical setting, we have seen in Section 3.3.1 that this leakage is easy to
understand if the classical flow is nontrapping: in that case the leakage operates in a finite
time T0, following the classical escape of all trajectories.
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When there exist trapped trajectories, the explanation of this leakage is more subtle,
and requires to take into account the dynamics for long times. In the present situation, this
dispersion is induced by a combination of two factors: the hyperbolicity of the classical
flow on KE , and Heisenberg’s uncertainty principle, which asserts that a quantum state
cannot be localized in a phase space ball of radius smaller than h1/2.

Our main result, reproduced from Nonnenmacher and Zworski [2009], shows that
the rate of this dispersion can be estimated by a certain topological pressure of the flow
't

p �KE
(see (10)), which combines both the unstability of the flow with its complexity.

Theorem 2 (Pressure gap). Assume that the trapped set KE is a hyperbolic repeller, and
that the topological pressure P (1/2) < 0. Then, for any � > 0, C > 0, and for h > 0

small enough, the operator Ph has no resonance in the rectangle R(E; C h; (jP (1/2)j �

�)h).

According to our discussion in Section 2.2, the pressure P (1/2) can take either posi-
tive or negative values, respectively in the case of ”thick” or ”thin” trapped sets. So the
condition P (1/2) < 0 characterizes systems with a ”thin” enough trapped set. We notice
that this bound is sharp in the case KE consists in a single hyperbolic orbit (Section 2.1):
in dimension d = 2, the pressure P (1/2) = ��/2, which asymptotically corresponds to
the first line of resonances.

This pressure bound was proved by Patterson [1976] in the case of hyperbolic surfaces,
by showing that the zeros of the Selberg zeta function satisfy Resj � ı. In this case, the
negativity of the pressure is equivalent with the bound ı < 1/2 (see Section 2.3 for the
notations).

This pressure bound was proved in the case of scattering by N � 3 disks in R2, almost
simultaneously and independently by Ikawa [1988] and by Gaspard and Rice [1989] (al-
though the latter article does not satisfy the standards of mathematical rigour, it contains
the crucial ideas of the proof, and was the first one to identify the pressure). The method
used in Nonnenmacher and Zworski [2009], which we sketch below, relies on similar
ideas as these articles, carried out in the general setting of a Schrödinger operator Ph.

4.1 Evolution of an individual wavepacket. Our aim is to show that if vz is an eigen-
state of Ph;� with eigenvalue z � E, then Imz/h � P (1/2) + �. To do so we will study
the propagation of vz by the Schrödinger flow Ut

�
= e�itPh;�/h for long times (we will

need to push the evolution up to logarithmic times t ∼ C j log hj, with C > 0 independent
of h). From the decomposition (12) into wavepackets, we see that it makes sense to study
in a first step the evolution of individual wavepackets u�, centered at some point � in the
neighbourhood U (E).
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4.1.1 Hyperbolic dispersion of a wavepacket. Take a wavepacket u0 centered on a
point �0 2 KE ; its semiclassical evolution transports it along 't

p(�0), but also stretches
the wavepacket along the unstable direction Eu(�(t)), following the linearized evolu-
tion d't

p(�0).This spreading can be understood from a simple 1-dimensional toy model,
namely the Hamiltonian q(x; �) = �x� , generating the Hamiltonian flow x(t) = e�t x0,
�(t) = e��t �0, a clearly hyperbolic dynamics. The quantum evolution is generated by
Ph = �(x h

i
@x � ih/2); its propagator is a unitary dilation:

(15) e�itPh/hu0(x) = e�t�/2u0(e
�t�x) :

If we start from a the coherent stateu0(x) = Che� x2

2h centered at the origin, thewavepacket
at time t > 0 will have a horizontal (=unstable) width et�h1/2, while its amplitude will
be reduced by a factor e�t�/2. The dynamics has dispersed the wavepacket along Eu.

Let us come back to our flow 't
p , and assume for simplicity that all the orbits of KE

have the same expansion rate � > 0, in all unstable directions; this is the case for instance
for the geodesic flow in constant curvature � = ��2. In that case, the evolved wavepacket
u(t) spreads on a length ∼ et�h1/2 along the unstable directions. By the time

(16) TE =
j loghj

2�
; which we call the Ehrenfest time;

the wavepacket u(t) spreads on a distance ∼ 1 along the unstable manifold W u(�(t)), it
is no more microscopic but becomes macroscopic. Some parts of u(t) are now at finite
distance from KE ; after a few time steps they will exit the ball B(R0) and hence be ab-
sorbed by the nonunitary propagator (see the left of Figure 9 for a sketch of this evolution).

Figure 9: Left: evolution of a minimal-uncertainty wavepacket: the evolved state
stretches exponentially along the unstable directions. By the time TE the state
spreads outside a single cell Va. Right: sketch of the partition (Va), representing
only the elements covering KE .
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4.1.2 Introducing a quantum partition. In order to precisely estimate the decay of
ku(t)k, one needs to partition the phase space, such as to keep track of the portions of u(t)

which exit B(R0) (and are absorbed), and the ones which stay near KE . One cooks up a
finite partition (Va)a2A of the phase space T �M (making it more precise near KE ), and
quantizes the functions 1lVa

to produce a family of microlocal truncations Πa, satisfyingP
a2A Πa = IdL2 . The family (Πa)a2A is called a quantum partition.
We may insert this quantum partition at each integer step of the evolution: calling

U� = e�iPh;�/h, we have for any time N 2 N:

(U� )
N =

X
Ea=a0;��� ;aN

UEa; UEa = ΠaN
U� � � �Πa2

U�Πa1
U�Πa0

;

where we sum over all possible words Ea of length N + 1. We can control the action of
the truncated propagators UEa on our wavepacket. For times N < TE , the evolved state
u(N ) = UN

�
u0 is dominated by a single term UEa u0, where the word Ea is such that each

point �(j ) 2 Vaj
. Around the Ehrenfest time u(TE ) becomes macroscopic, so it is no

more concentrated inside a single set Va; the truncationsΠa will cut this state into several
pieces, each one carrying a reduced norm. At each following time step, the evolution
U� continues to stretch the pieces UEa u0 by a factor e� along the unstable directions,
so several truncations will again act nontrivially. The norms of the pieces UEa u0 can be
estimated by the decay of the amplitude of the wavepacket, similarly as in the linear model
(15) (there are now (d � 1) unstable directions):
(17)

kUEa u0k � exp
�

�
�(d � 1)

2
(N � TE )

�
ku0k + O(h1); N � TE ; Ea = a0 � � � aN :

For most words Ea, this bound is not sharp. For instance, the symbols aj corresponding
to partition elements Vaj

outside of B(R0) indicate that the state is absorbed fast, and
lead to O(h1) terms. As a result, for N > TE the nonnegligible pieces correspond to
words Ea such that almost all the elements Vaj

intersect the trapped set. Keeping only
those ”trapped” words, we obtain

UN
� u0 =

X
Ea trapped

UEa u0 + negligible ;

with each term bounded as in (17). A more careful analysis (involving a ”good” choice
of partition) shows that for long logarithmic times N = C j log hj, C � 1, the number
of relevant words is bounded above by exp(N (Htop + �)), where Htop is the topological
entropy (9), and � > 0 can be made arbitrary small by taking C large enough.

4.2 Evolving a general state. Take an eigenstate vz with eigenvalue z near E. Being
microlocalized near p�1(E), vz can be decomposed into wavepackets u� as in (12). By
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linearity, we find

UN
� vz =

1

(2�h)d

X
Ea trapped

Z
U (E)

d� hu�; vzi UEa u� + O(h1) ;

where each term UEa u� is bounded as in (17). Applying the triangle inequality, we find

kUN
� vzk �

Vol(U (E))

(2�h)d
eN (Htop+�)e�

�(d�1)
2 (N �TE) :

For a constant expansion rate, P (1/2) = Htop �
�(d�1)

2
, so the above bound can be recast

as h�ˇ eN (P (1/2)+�) for some ˇ > 0. Taking N = C j log hj with C large enough, we can
have hˇ � eN� , thereby giving a bound eN (P (1/2)+2�). This bound is nontrivial if P (1/2)

is negative. Using the fact that vz is an eigenstate of eigenvalue z � E, we get for such a
time N :

jeN Imz/h
j � eN (P (1/2)+2�)

H) Imz/h � P (1/2) + 2� :

4.3 Improving the pressure gap. In the case of a fractal hyperbolic repeller, the pres-
sure bound of Theorem 2 is believed to be nonoptimal, at least for generic hyperbolic
systems. Estimating ku(N )k by adding the norms of the terms UEau� does not take into
account the partial cancellations between these terms. Indeed, when N = C j log hj with
C � 1, many of those terms are almost proportional to each other, essentially differing
by complex valued prefactors. The norm of their sum is hence governed by a sum of many
complex factors, which is generally much smaller than the sum of their moduli.

Such partial cancellations (or “destructive interferences”) are at the heart of Dologopyat’s
proof of the exponential decay of correlations for Anosov flows Dolgopyat [1998], when
analyzing the spectrum of a family of transfer operators. Naud [2005] adaptedDolgopyat’s
method to show an improved high frequency resonance gap for the Laplacian on Schottky
hyperbolic surfaces, still working at the level of transfer operators. By a similar (yet, more
involved) method, Petkov and Stoyanov improved the high frequency resonance gap for
scattering by convex obstacles on Rd ; these authors managed to establish a semiclassi-
cal connection between the quantum propagator and a transfer operator, thereby applying
Dolgopyat’s method to the former. All the above works improve the pressure bound by
some small, not very explicit �1 > 0.

In the case of hyperbolic surfaces, a recent breakthrough was obtained by Dyatlov and
his collaborators. 2016 showed that a nontrivial gap for a hyperbolic surface with param-
eter ı 2 (0; 1) results from a fractal uncertainty principle (FUP), a new type of estimate
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in 1-dimensional harmonic analysis. This FUP states that if K � [0; 1] is a Cantor set of
dimension ı and K(h) its h-neighbourhood, then there exists ˇ > 0 such that

k1lK(h)Fh1lK(h)kL2!L2 � C hˇ ;

where Fh is the semiclassical Fourier transform. This estimate shows that a function u 2

L2(R) and its semiclassical Fourier transform cannot be both concentrated onK(h). This
FUP obviously holds when ı < 1/2, giving back the pressure bound. In a ground-breaking
work Bourgain and Dyatlov [2016] managed to prove this FUP in the full range ı 2 (0; 1),
thereby showing a resonance gap on any Schottky hyperbolic surface. The improved gap
is not very explicit, it is much smaller than the gap 1�ı

2
conjectured by Jakobson-Naud.

Although themethods of Dyatlov and Zahl [2016] strongly rely on the constant negative
curvature, it seems plausible to prove a resonance gap for any hyperbolic repeller in two
space dimensions. On the other hand, the extension of an FUP to higher dimensional
systems is at present rather unclear, partly due to the more complicated structure of the
trapped sets.

5 Normally hyperbolic trapped set

In this last section, we focus on a different type of trapped set. We assume that for some
energy window [E1; E2], the trapped set K = K[E1;E2] = [E2[E1;E2]KE is a smooth,
normally hyperbolic, symplectic submanifold of the energy slab p�1([E1; E2]). What
does this all mean? If K is a symplectic submanifold of T �M , at each point � 2 K

the tangent space T�(T
�M ) splits into T�K ˚ (T�K)?, where both are symplectic sub-

spaces. Normal hyperbolicity means that the flow 't
p is hyperbolic transversely to K:

the transverse subspace (T�K)? = Ẽs(�) ˚ Ẽu(�), such that d't
p �TK? contracts

exponentially along Ẽs(�), and expands along Ẽu(�) (see Figure 10). We denote by
J̃ u

t (�) = j det(d't
p �Ẽu

�
)j the normal unstable Jacobian.

5.1 Examples of normally hyperbolic trapped sets.

5.1.1 Examples in chemistry and general relativity. This dynamical situation may
occur in quantum chemistry, when modeling certain reaction dynamics. The reactants and
products of the chemical reaction are two parts of phase space, connected by a hyperbolic
“saddle” along two conjugate coordinates (x1; �1), similar with the linear dynamics of
Section 4.1.1, while the evolution of the other coordinates remains bounded Waalkens,
Schubert, and Wiggins [2008]. The trapped set K[E1;E2] is then a bounded piece of the
space fx1 = �1 = 0g.
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Figure 10: Sketch of a normally hyperbolic trapped set K.
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This dynamical situation also occurs in general relativity, namely when describing time-
like trajectories in the Kerr or Kerr-de Sitter black holes Wunsch and Zworski [2011] and
Dyatlov [2012]. The trapped set is a normally hyperbolicmanifold diffeomorphic toT �S2.
In this situation resonances are replaced by quasinormal modes, obtained by solving a gen-
eralized spectral problem P (z)u = 0. Yet, the semiclassical methods sketched below can
be easily adapted to this context.

5.1.2 From classical to quantum resonances. An original application of this dynam-
ical assumption concerns the study of contact Anosov flows. A flow �t defined on a
compact manifold M is said to be Anosov if at any point x 2 M , the tangent space TxM

splits into RΞ(x)˚ Eu(x)˚ Es(x), where Ξ(x) is the vector generating the flow, while
Es(x), Eu(x) are the stable/unstable subspaces, satisfying the properties (7). The as-
sumption that �t preserves a contact 1-form ˛, implies that the subspace Eu(x)˚ Es(x),
which forms the kernel of d˛(x), depends smoothly on x.

The long time properties of such a flow are governed by a set of so-called Ruelle-
Pollicott (RP) resonances f�k � C�g, which share many properties with the quantum
resonances we have studied so far. Considering two test functions u; v 2 C 1(M ), their
correlation function Cv;u(t)

def
=

R
M

dx v(x)u(�t (x)) �
R

dx v(x)
R

dx u(x) can be ex-
panded in terms of these RP resonances:

(18) Cv;u(t) =
X

Im�k��

e�i�k t
hv;Π�k

ui + Ou;v(e
�t ) ;

Hence, if the RP resonances �k satisfy a uniform gap, the correlation decays exponentially
(one speaks of exponential mixing). Such a resonance gap has been first proved by Dol-
gopyat [1998] and Liverani [2004], while Tsujii [2010] proved an explicit bound for the
high frequency gap.
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Comparing (18) with (3), Faure and Sjöstrand [2011] had the idea to interpret the RP
resonances (or rather zk = h�k) as the “quantum resonances” of the “quantum Hamil-
tonian” Ph = �ihΞ. Notice that e�itPh/hu(x) = u(��t (x)). What do we gain from
this interpretation? The principal symbol of Ph, p(x; �) = �(Ξ(x)), generates on T �M

the symplectic lift of �t : 't
p(x; �) = (�t (x);Td�t (x)�1�). As opposed to the scattering

situation, each energy shell p�1(E) goes to infinity along the fibers of T �M . Hence, for
any energy E 2 R, the trapped set KE is given by the points � = (x; �) 2 p�1(E) such
that Td�t (x)�1� remains bounded when t ! ˙1. From the hyperbolicity structure, this
is possible only if � = E˛x . Hence, KE = f(x; � = E˛x); x 2 M g, a smooth sub-
manifold of p�1(E). It is easy to check that K = [E KE is symplectic, and normally
hyperbolic (the subspaces Ẽs/u are lifts of the subspaces Es/u of TM ). The resonances
of the quantum Hamiltonian Ph can thus be connected with the properties of this trapped
set.

The main difficulty when analyzing this classical dynamical problem as a “quantum
scattering” one Faure and Sjöstrand [ibid.], is to twist the selfadjoint operator Ph, such
as to transform the resonances into eigenvalues. This was done by constructing spaces
of anisotropic distributions Hm � D0(M ), such that Ph : Hm ! Hm has discrete spec-
trum in fImz � �mhg, made of ”uncovered” Ruelle-Pollicott resonances. We will not
detail this construction, which can also be presented as a twist of the operator Ph into a
nonselfadjoint operator Ph;m on L2(M ).

5.2 An explicit resonance gap for normal hyperbolic trapped sets. Let us come back
to our general setting, and start again to propagate minimum-uncertainty wavepackets u�

centered on a point � 2 K. Due to the normal hyperbolicity, the state e�itPh/hu� spreads
exponentially fast along the transverse unstable direction Ẽu. Similarly as what we did
in Section 3.3.3, one can twist the operator Ph by a microlocal weight Gh, such that the
twisted operatorPh;G is absorbing outside the neighbourhoodK(C h1/2). After a few time
steps, the evolved wavepacket will leak outside of this neighbourhood, and be partially
absorbed: their norms will decay at the rate

ke�itPh;G/hu�k � C J̃ u
t (�)

�1/2 ; t > 0:

If we call Λ̃min = lim inft!1
1
t
inf�2K log J̃ u

t (�) theminimal growth rate of the transverse
unstable Jacobian, for any � > 0 and t > t� large enough, the above right hand sides are
bounded by e�t(Λ̃min/2��). With more work, one can show that this uniform decay of
our individual wavepackets induces the same decay of any state microlocalized on K, in
particular of any eigenstate vz of Ph;G . One then obtains the following gap estimate for
the eigenvalues ofPh;G , or equivalently the resonances ofPh Nonnenmacher and Zworski
[2015]:
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Theorem 3 (Resonance gap, normally hyperbolic trapped set). Assume the trapped set
K = K[E�c;E+c] is normally hyperbolic, with minimal transverse growth rate Λ̃min. Then,
for any � > 0 and h > 0 small enough, the rectangle R(E; c; (Λ̃min/2� �)h) contains no
resonance.

Like in the case of Theorem 2 and its improvements, we also obtain a bound for the
truncated resolvent operator inside the rectangle, of the form k�(Ph �z)�1�k � h�ˇ , � 2

C 1
c (M ). When applying this result to the situation of Section 5.1.2 (mixing of contact

Anosov flows), we exactly recover Tsujii’s gap for the high frequency RP resonances.

In two of the settings presented above (the resonances of Kerr-de Sitter spacetimes Dy-
atlov [2016], respectively the Ruelle-Pollicott for contact Anosov flows Faure and Tsujii
[2013], the spectrum of resonances has been shown to enjoy a richer structure, provided
certain bunching conditions on the rates of expansion are satisfied. Namely, beyond the
first gap stated in the above theorem, resonances are gathered in a (usually finite) sequence
of parallel strips, separated by secundary resonance free strips. The widths of the strips are
expressed in terms of maximal and minimal expansion rates similar with Λmin. Besides,
the number of resonances along each of the strips satisfies a Weyl’s law, corresponding to
the volume of the h1/2 neighbourhood of K.
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