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INTRODUCTION

Holoplanktonic gastropods spend their entire lives
as drifting plankton, unable to swim against currents,
but capable of adjusting their vertical position in the
water column (Lalli & Gilmer 1989). This allows them
to sink to depths, rise back to the surface or remain at a
preferential depth. However, it is still unclear to what
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ABSTRACT: Understanding the vertical distribution
and migratory behaviour of shelled holoplanktonic
gastropods is essential in determining the environ-
mental conditions to which they are exposed. This is
increasingly important in understanding the effects of
ocean acidification and climate change. Here we in-
vestigated the vertical distribution of atlantid hetero -
pods by collating data from publications and collec-
tions and using the oxygen isotope (δ18O) composition
of single aragonitic shells. Data from publications and
collections show 2 patterns of migration behaviour:
small species that reside in shallow water at all times,
and larger species that make diurnal migrations from
the surface at night to deep waters during the daytime.
The δ18O data show that all species analysed (n = 16)
calcify their shells close to the deep chlorophyll maxi-
mum. This was within the upper 110 m of the ocean for
15 species, and down to 146 m for a single species.
These findings confirm that many atlantid species are
exposed to large environmental variations over a diur-
nal cycle and may already be well adapted to face
ocean changes. However, all species analysed rely on
aragonite supersaturated waters in the upper <150 m
of the ocean to produce their shells, a region that is
projected to undergo the earliest and greatest changes
in response to increased anthropogenic CO2.

KEY WORDS:  Atlantidae · Gastropod · Vertical
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Young adult atlantid heteropod Oxygyrus inflatus collected
in the Atlantic Ocean during cruise AMT27. Maximum shell
diameter (excluding keel) 1.6 mm.

Photo: © K. Peijnenburg, E. Goetze, D. Wall-Palmer, L. Mekkes



Mar Ecol Prog Ser 587: 1–15, 2018

degree holoplanktonic gastropods take advantage of
this vertical freedom, for example, to avoid predation,
to reduce competition on finite food resources or to
seek preferential environmental conditions.

Two groups of holoplanktonic gastropods are rec-
ognized: the pteropods (Thecosomata and Gymnoso-
mata) and the heteropods (Pterotracheoidea). Both
groups contain shelled, partially shelled and shell-
less species, although even shell-less species have a
shell in the larval stage, which is subsequently dis-
carded (Lalli & Gilmer 1989). Holoplanktonic gastro-
pod shells are composed of aragonite, a form of cal-
cium carbonate that is susceptible to dissolution in
waters undersaturated with respect to aragonite
(Mucci 1983). These sensitive shells have highlighted
the euthecosome (fully shelled) pteropods as being
amongst the most vulnerable organisms to ocean
acidification, with effects already being detected in
field populations (Bednaršek & Ohman 2015). Ocean
acidification research has not yet included the het-
eropods, which also rely on aragonite shells and in-
habit the upper ocean, a realm of highly variable en-
vironmental parameters. This region will be greatly
affected by ocean acidification and climate change, so
it is beneficial to understand the vertical distribution
of holoplanktonic gastropods. This will help scientists
to determine the environmental conditions to which
they are frequently exposed and may demonstrate,
for example, that holoplanktonic gastropods are al-
ready exposed on a daily basis to undersaturated wa-
ters, with respect to aragonite, or to temperatures
more variable than those predicted to affect oceans
over the next 100 yr. Ultimately, holoplanktonic gas-
tropods may already have mechanisms for dealing
with a changing ocean (e.g. Maas et al. 2012). Con-
versely, ocean changes may present even more
severe vertical environmental gradients than pre-
dicted, which holoplanktonic gastropods may be un-
able to adapt to, potentially forcing them to modify
and constrain their vertical movements.

This study focusses on the shelled heteropods, or
 atlantids (family Atlantidae), which rely on a shell
throughout their life. Atlantids are small (<14 mm)
predatory holoplanktonic gastropods that feed on other
metazooplankton, including euthecosome pteropods
(Lalli & Gilmer 1989). Atlantids are able to fully retract
into their thin-walled (1.5−8 µm, D. Wall-Palmer pers.
obs.) aragonite shells, which are generally a broad,
flat disk shape that is necessary for efficient swim-
ming. The vertical distribution of atlantids has been
speculated upon by many working in the field. It is
generally accepted that atlantids live within the upper
250 m of the water column and often at much shal-

lower depths (Lalli & Gilmer 1989, Seapy 1990,
Michel & Michel 1991, Paulinose et al. 1992, Jivaluk
1998, Ossenbrügger 2010, Lemus-Santana et al. 2014,
Wall-Palmer et al. 2016c). However, many atlantids
are thought not to be static in their vertical position in
the water column, but to undergo some degree of
daily vertical migration. Studies based on sampling
with plankton nets at different depths suggest that the
depth and timing of this vertical migration are not
only species specific, but also are specific to the onto-
genetic stage and are probably influenced by seasonal
changes (Wall-Palmer et al. 2016c and references
therein). To date, the most extensive and thorough
study of atlantid vertical distributions and migratory
behaviour was conducted by Seapy (1990) offshore of
Hawaii (USA). Seapy (1990) demonstrated 2 patterns
of distribution: (1) small species that remained in shal-
low water of <140 m depth at all times, being active in
the daytime and generally inactive at night, and (2)
larger species that are inactive at depth during the
daytime, but migrate to the surface at night to feed.

The shell geochemistry of some holoplanktonic gas-
tropods has been used successfully to identify the
depth at which shells are grown (e.g. Grossman et al.
1986, Juranek et al. 2003, Keul et al. 2017). The ratio
of the oxygen isotopes 18O and 16O (δ18O) incorporated
into an aragonite shell is a function of the δ18O of the
water in which a specimen lives (δ18Ow) and tempera-
ture (Grossman & Ku 1986). The δ18Ow is a conserva-
tive water mass tracer related to input (e.g. precipita-
tion and meltwater) and output (e.g. evaporation,
sea-ice and brine formation), and therefore is directly
relatable to seawater salinity (LeGrande & Schmidt
2006). Temperature plays a dominant role in the frac-
tionation between 18O and 16O during the formation of
aragonite. Therefore, the δ18O equilibrium (δ18Oeq) at
which aragonite is precipitated in seawater can be
calculated from salinity and temperature. Eutheco-
some pteropods and atlantid heteropods calcify at or
close to the aragonite−water isotopic equilibrium;
therefore, the δ18O of their shells directly records the
δ18Oeq of the water in which they live (Grossman et al.
1986, Juranek et al. 2003, Keul et al. 2017). Depth of
calcification can be inferred by comparing the δ18O of
the specimen to a δ18Oeq depth profile of the ambient
water in which the specimen lived (calculated using
temperature and salinity, LeGrande & Schmidt 2006).
This technique has been used in a single study on
 atlantids (Grossman et al. 1986). Grossman et al. (1986)
analysed 3 species of atlantid, Atlanta inclinata, A.
gaudichaudi and an unidentified species. The isotopic
compositions of the 3 species were comparable (apart
from a single specimen) and indicated calcification in
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the upper 75 m of the ocean. The geochemical meth-
ods of Grossman et al. (1986) have never been re-
peated or developed upon to include further atlantid
species. Here we investigated the depth distribution
of atlantid heteropods using 2 approaches. Firstly,
sampling depth and time information gathered from
publications and from collections was used to infer the
likely depth distribution of each species and patterns
of diurnal migration. Secondly, by building on the
findings of Grossman et al. (1986), δ18O values of
 single shells were used to determine the depth of cal-
cification for 16 atlantid species at different life stages.

MATERIALS AND METHODS

Vertical distributions from published data and
collections

Depth and (local) time data were gathered for 4086
specimens identified to species level in collections
held at Plymouth Marine Laboratory (Plymouth, UK),

Naturalis Biodiversity Center (Leiden, Netherlands),
the Natural History Museum (London), the Natural
History Museum of Denmark (Copenhagen) and
material collected during the SN105 cruise of the
OVR ‘Sagar Nidhi’ and the SO255 cruise of the RV
‘Sonne’. Published depth and time data for 718
atlantid specimens were also used (Tesch 1910,
Tokioka 1955, Furnestin 1961, Taki & Okutani 1962,
McGowan & Fraundorf 1966, Van der Spoel & Troost
1972, Michel & Michel 1991, Hernández et al. 1993,
Seapy & Richter 1993, Quesquén Liza 2005, De Vera
et al. 2006, De Vera & Seapy 2006, Ayón et al. 2008,
Ossenbrügger 2010, Howard et al. 2011, Wall-Palmer
et al. 2016a,b, Burridge et al. 2017). The gathered
data were from locations worldwide and from all sea-
sons (Fig. 1). Only specimens that were collected live
(using plankton nets) were included, and a maximum
sampling depth of 600 m was applied due to poor
temporal sample coverage below this depth. Samples
collected over a long period of time (over 2 h) were
also removed from the dataset. Depth measurements
represent the maximum depth of each particular

3

Fig. 1. Collection locations for atlantid specimens used in this study. White dots: specimens examined in collections and data
gathered from publications. Black dots: specimens analysed for stable oxygen isotopes to determine the depth of calcification.
Base map shows the difference in aragonite saturation state between the surface and 200 m created using data from Jiang & 

Feely (2015)
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sampling. For example, a net may have been towed
from 300 m to the surface, and therefore, specimens
may have been caught at any depth between 0 and
300 m. For this reason, the shallowest record for each
hourly interval was also determined (Table 1). This
indicates the minimum depth at which each species
has been found during each time interval.

Depth of calcification stable isotope analysis

For δ18O analysis, a total of 63 specimens from 16 at-
lantid species were collected using a variety of meth-
ods during 4 cruises (Fig. 1): the Atlantic Meridional
Transect in 2010 (AMT20) and 2014 (AMT24), the out-
bound Dutch-Indonesian ‘Snellius II’ G0 cruise (PG0)
and the first cruise of IIOE-2 (SN105). All specimens
were fixed and stored in ethanol prior to analysis.
Ethanol has been found not to affect either δ18O or the
carbon isotope composition (δ13C) (Serrano et al.
2008). Specimens were prepared for analysis by rins-
ing thoroughly in MilliQ water, drying in an oven at

40°C and leaving in a desiccator for 24 h. Soft tissues
were removed by placing specimens in an Emitech
K1050X plasma asher in glass vials for 2.5 h. Plasma
ashing does not affect the δ18O and δ13C of calcium
carbonate (Serrano et al. 2008); however, the internal
laboratory standard, Keyworth Carrera Marble (KCM),
was also plasma ashed to check for any artefacts in-
troduced using this method. The results of plasma
ashed and non-plasma ashed KCM were within in-
strument error. A paired t-test found that δ18O and
δ13C values were not significantly different between
plasma ashed (pa) and non-plasma-ashed (n-pa)
 values for KCM (δ18O: pa M (mean) = −1.72, var =
0.01; n-pa M = −1.73, var = 0.01; t = −0.33, p = 0.75;
δ13C: pa M = 2.01, var = 0.00; n-pa M = 2.00, var = 0.00;
t = −0.34, p = 0.74), confirming no effect on the iso -
topic composition from this preparatory technique.

The stable isotope analysis was carried out at the
Stable Isotope Facility (part of the NERC Isotope Geo-
science Laboratory) at the British Geological Survey.
Specimens ranging in weight between 13 and 200 µg
were analysed individually, although the small size of
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Time of 
day (h)

00:00−00:59 − 50 15 300 50 100 50 50 50 50 50 50 − 300 25 − − 200 300 50 10 100 −
01:00−01:59 70 50 − 50 400 50 35 50 300 50 − 35 600 50 25 50 400 − 50 50 0 − 50
02:00−02:59 − 50 − 50 50 50 50 50 50 50 50 25 200 50 0 − 50 100 50 50 0 50 50
03:00−03:59 216 50 − 50 50 50 50 50 50 50 50 0 50 50 25 50 0 100 50 50 50 0 50
04:00−04:59 200 50 210 50 50 50 50 50 50 50 55 50 50 0 50 50 0 200 50 50 50 50 100
05:00−05:59 − 100 − 55 100 55 50 55 55 18 55 18 − 55 25 55 − 300 18 55 25 − 100
06:00−06:59 − − − 100 100 50 10 − − 100 10 50 − 100 10 50 100 100 100 10 100 − 100
07:00−07:59 − 400 − − − − 50 10 10 10 400 10 − − 10 − − − 600 − 100 − 400
08:00−08:59 − − − − − − 50 − − 100 − 50 − − 32 − − − − − 100 − 100
09:00−09:59 − − − 396 396 − 50 459 396 − − 10 − 459 32 − 396 − 396 10 25 − 459
10:00−10:59 − 100 − 100 200 100 50 − 100 150 100 50 − 100 32 100 100 100 100 100 50 − 100
11:00−11:59 − − − 376 376 − 50 − − − − 50 − − 32 − 376 200 376 376 105 − 376
12:00−12:59 − − − − − − 50 − − 150 140 50 − − 31 − − 200 − − 140 − −
13:00−13:59 − 200 − − − − 50 − − 300 − 50 − − 32 − 100 200 − − 110 − −
14:00−14:59 − 400 150 − − − 50 411 411 366 411 50 − − 32 411 − − 411 411 2 − 200
15:00−15:59 − 140 − − − − 140 − − 400 140 140 − 566 32 566 − 100 − 140 140 − −
16:00−16:59 − 140 − − 200 370 50 400 200 600 140 50 − 370 140 − 370 200 − 140 100 − 100
17:00−17:59 − 140 − − − − 50 − − 310 140 10 − − 140 − − − − − 140 − −
18:00−18:59 − 100 10 100 50 50 10 50 50 10 10 10 50 50 10 100 50 11 50 0 0 50 10
19:00−19:59 20 50 − 50 23 50 0 50 50 50 50 23 100 50 23 50 50 80 0 0 10 50 50
20:00−20:59 − 10 − 50 15 50 50 50 50 0 10 50 60 0 0 50 50 100 25 50 0 50 10
21:00−21:59 − 50 − 50 50 50 50 40 50 19 50 0 50 50 0 50 19 200 50 50 0 19 50
22:00−22:59 − 50 50 50 50 50 50 50 50 50 140 25 50 50 25 100 50 − 100 50 50 − 50
23:00−23:59 − 50 210 0 100 50 50 50 50 50 0 0 50 50 0 50 50 − 100 0 50 − 100

Table 1. Maximum depth (m) of shallowest plankton tows collected per hour for each species. Grey shading highlights general 
periods of darkness. Cells with ‘− ‘ denote time periods with no depth data. A. = Atlanta; O. = Oxygyrus; P. = Protatlanta
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some juvenile specimens meant that up to 3 specimens
of a single species were analysed together (Table 2).
Analysis was carried out using an IsoPrime dual inlet
mass spectrometer with a Multiprep device. Speci-

mens were loaded into glass vials and sealed with
septa. The automated system first evacuated the am-
bient air within the vials and sub sequently delivered
anhydrous phosphoric acid to the carbonate at 90°C.

5

Specimen code Species Speci- Description Latitude Longitude Specimen δ18O (‰) Depth of 
(Species_Cruise_ mens of Calculated as Mean SD calcification 
Station_Specimen) (n) specimens aragonite station−1 (m)

Abru_AMT20_07_01 Atlanta brunnea 1 Adult 34.23°N 29.73°W −0.96 −0.84 0.17 46.92
Abru_AMT20_07_02 1 Adult −0.72 61.91
Afro_SN105_01_01 A. frontieri 1 Adult 11.89°N 66.97°E −1.85 −1.84 0.07 96.57
Afro_SN105_01_02 1 Adult −1.91 91.94
Afro_SN105_01_03 1 Adult −1.77 99.31
Agib_SN105_04_01A A. gibbosa 0.5 Juvenile 8.02°N 67.08°E −1.73 −1.69 0.06 88.40
Agib_SN105_04_01B 0.5 Adult whorl only −1.71 88.91
Agib_SN105_04_02 1 Adult −1.72 88.66
Agib_SN105_04_03 1 Adult −1.60 93.93
Ahel_PG0_78_01 A. helicinoidea 1 Adult 26.62°N 34.72°E −0.91 − − 38.95
Ahel_PG0_86_01 1 Adult 21.45°N 37.87°E −0.94 − − 63.11
Ahel_PG0_88_01 1 Adult 19.93°N 38.87°E −1.10 − − 78.89
Ainc_AMT20_05/11_01 A. inclinata 1 Juvenile 4.89°S 25.03°W −1.47 −1.44 0.30 101.24
Ainc_AMT20_05/11_02 1 Juvenile −1.64 97.13
Ainc_AMT20_05/11_03 1 Juvenile −1.65 96.69
Ainc_AMT20_05/11_04 1 Juvenile −1.01 109.59
Ainf_PG0_141_01 A. inflata 1 Adult 8.00°N 74.34°E −2.14 −2.34 0.28 66.23
Ainf_PG0_141_02 1 Adult −2.54 58.45
Ainf_PG0_140_01 1 Adult 8.09°N 73.69°E −2.12 − − 66.54
Ales_PG0_94_01 A. lesueurii 1 Adult 15.78°N 41.51°E −1.84 −1.79 0.29 78.16
Ales_PG0_94_02 1 Adult −2.06 66.30
Ales_PG0_94_03 1 Adult −1.48 106.68
Aoli_SN105_08_01 A. oligogyra 1 Adult 4.38°N 67.00°E −2.30 −2.41 0.10 59.84
Aoli_SN105_08_02 1 Adult −2.49 57.70
Aoli_SN105_08_03 1 Adult −2.44 58.15
Apla_PG0_94_01 A. plana 1 Adult 15.78°N 41.51°E −1.79 −1.81 0.02 82.54
Apla_PG0_94_02 1 Adult −1.83 78.93
Aros_AMT20_23/10_01 A. rosea 1 Adult 30.29°N 34.17°W −0.42 −0.49 0.10 95.50
Aros_AMT20_23/10_02 1 Adult −0.46 92.77
Aros_AMT20_23/10_03 1 Adult −0.60 80.93
Asel_AMT20_11_01 A. selvagensis 1 Adult 25.99°N 38.79°W −0.94 − − 74.35
Asel_AMT20_26/10_01 1 Adult 22.96°N 40.53°W −1.28 − − Not possible
Asel_AMT20_23/10_01 1 Adult 30.29°N 34.17°W −0.99 − − 58.55
Atok_AMT20_09_01 A. tokiokai 1 Adult 30.29°N 34.19°W −0.58 − − 82.51
Atok_AMT20_26/10_01 1 Juvenile 22.96°N 40.53°W −1.09 −1.16 0.06 81.30
Atok_AMT20_26/10_02 1 Juvenile −1.22 72.73
Atok_AMT20_26/10_03 1 Juvenile −1.17 77.12
Atur_SN105_01_01 A. turriculata 1 Adult 11.89°N 66.97°E −1.69 −1.72 0.08 100.30
Atur_SN105_01_02 1 Adult −1.74 99.69
Atur_SN105_01_03 1 Adult −1.63 100.99
Atur_SN105_01_04 3 Juvenile −1.83 97.46
Oinf_SN105_08_01 Oxygyrus inflatus 2 Juvenile 4.38°N 67.00°E −1.90 −1.83 0.07 68.05
Oinf_SN105_08_02 1 Juvenile −1.91 67.86
Oinf_SN105_08_03 2 Juvenile −1.77 72.73
Oinf_SN105_08_04 2 Juvenile −1.83 69.58
Oinf_SN105_08_05 2 Juvenile −1.77 72.73
Pscu_AMT24_13_01 Protatlanta sculpta 4 Juvenile 7.29°N 26.49°W −0.32 −0.38 0.08 100.56
Pscu_AMT24_13_02 5 Juvenile −0.44 93.23
Psou_AMT20_23_01 P. souleyeti 1 Adult 12.54°S 19.03°W −0.48 − − 145.56
Psou_AMT20_11_01 1 Adult 25.99°N 38.79°W −0.72 − − 89.83
Psou_AMT20_12_01 1 Adult 23.77°N 41.11°W −0.51 − − 133.06

Table 2. Stable oxygen isotope analysis of atlantid specimens and the depth of calcification determined by comparison of specimen values
to the aragonite equilibrium of the water column. Cells with ‘− ‘ denote stations with only a single specimen where mean and SD are not 

applicable. For a single specimen, the calculated depth of calcification was above sea level and therefore ‘not possible’
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The evolved CO2 was collected for 15 min, cryogeni-
cally trapped, cleaned of impurities and water vapour
and passed to the mass spectrometer. Isotope values
(δ13C [not discussed herein], δ18O) are reported in per
mille (‰) deviations of the isotopic ratios (R = 18O/16O)
against a standard gas calculated to the Vienna
PeeDee Belemnite (V-PDB) scale using a within-
run in-house laboratory standard calibrated against
the National Bureau of Standards No. 19 (NBS-19).
The aragonite-acid fractionation factor (1000 ln
αCO2(ACID)-Aragonite) applied to the liberated gas values is
1.00855. Due to the long run time of 21 h, a drift cor-
rection was applied across the run, calculated using
the KCM standards that bracket the samples. The
 correction of Craig (1957) was applied to account for
17O. The average analytical reproducibility of the stan-
dard calcite (KCM) within run was <0.1‰ for δ18O.

Conversion of water column profiles into δ18Oeq

Calcification depth was determined by comparing
the measured isotope values to a likely equilibrium
oxygen isotope value (δ18Oeq) calculated using salin-
ity and temperature (Grossman et al. 1986, Juranek
et al. 2003). δ18Ow was determined using salinity and
temperature data collected with depth for each site
(research cruises AMT20, AMT24, SN105). However,
for PG0 sites, these data were not available. There-
fore, seawater temperature and salinity profiles for
these regions collected at a comparable time of year
to the specimens analysed were extracted from the
World Ocean Database (Boyer et al. 2013). For exam-
ple, specimens were collected at station PG0-78
(26.62° N, 34.72° E) on 7 October 1988, and tempera-
ture and salinity data were collected in the same
region (26.60° N, 34.98° E) on 26 September 1975.
The regional δ18O-salinity relationships of LeGrande
& Schmidt (2006) were applied (for example, Eq. 1).
δ18Ow was then converted from Vienna Standard
Mean Ocean Water (V-SMOW) to V-PDB by sub-
tracting 0.27‰ (Hut 1987). The method of Grossman
et al. (1986), which uses the equation of O’Neil et al.
(1969) with a correction factor of 0.6‰ for arago-
nite−calcite fractionation, was applied to calculate
the aragonite equilibrium (δ18Oeq) with depth for each
station (Eq. 2). Because atlantids produce  ara gonite
in equilibrium with the seawater, the δ18O of the

specimen was directly compared to the δ18Oeq depth
profiles to determine the depth of  calcification.

δ18Ow = (0.55 × S) − 18.98 
(for North Atlantic stations) − 0.27 (1)

δ18Oeq = [(−4.38 − √ Δ) / (2 × 0.1)] + δ18Ow − 0.6‰
when: Δ = 4.382 − [(4 × 0.1) × (16.9 − T) (2)

In these equations, S is salinity and T is tem perature.
These calculations do not take into account that the

specimens may have formed their shells throughout
different seasons of the year. The δ18Ow is a function
of salinity and therefore can vary seasonally, particu-
larly in regions of high river runoff. However, in the
open ocean where atlantids live, and away from
polar regions that are greatly influenced by ice for-
mation and melting, salinity does not show consider-
able seasonal or annual variation (Zweng et al. 2013).
Therefore, we assumed here that there have been
negligible seasonal and/or inter-annual variations in
the δ18Ow at each station.

RESULTS AND DISCUSSION

Depth distributions and vertical migrations

Temporal and spatial sampling coverage of collec-
tion data was well spread, with 289 different
time−depth points during the day (07:00−18:59 h)
and 1092 different time−depth points during the
night (19:00−06:59 h, Fig. 2). Spatial sampling in -
cluded 409 time−depth points for the upper 99 m, and
341, 154, 258, 49, 170 and 120 time−depth points for
depths of 100−199, 200−299, 300−399, 400−499 and
500−600 m, respectively (Fig. 2).

Most species have a good temporal coverage of
sampling, with records available for the majority of
hourly intervals. Only 4 species (Atlanta ariejans seni,
A. californiensis, A. meteori and Protatlanta sculpta)
have considerable gaps in sampling time, with <50%
coverage for the hourly intervals (Fig. 2). The lack of
sampling for 3 of these species (A. ariejansseni, A. cal-
iforniensis, P. sculpta) can be explained because they
occupy small regions relative to other atlantid species
and have only been recently described (or reinstated).
It is un certain why there is a lack of sampling records
of A. meteori during hours of daylight. For the re -
maining species, 2 main patterns of depth distribution

6

Fig. 2. Collated depth and time data from publications and collections. White diamonds: the maximum collection depth of all
plankton net samples for each species. Black shaded areas: the maximum depth at which specimens were caught. Grey shaded
areas: shallowest depth (sometimes the only depth) at which specimens were caught for each hourly interval. Original data are 

presented in Table S1 in the Supplement at www.int-res.com/articles/suppl/ m587p001_ supp. xlsx

http://www.int-res.com/articles/suppl/m587p001_supp.xlsx
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with time were found. These are generally in agree-
ment with the patterns of depth distribution found by
Seapy (1990) offshore of Hawaii, i.e. species that re-
main in shallow waters at all times, and species that
migrate to deeper waters during the daytime.

Constant shallow water distribution

Three species (A. peronii, A. gaudichaudi and A.
lesueurii) did not undergo any diurnal migration, be-
ing present in shallow waters of <50 m at most times
(Fig. 2). The only deviation from this depth was be-
tween 15:00 and 18:00 h for all 3 species, when the
maximum depth was <140 m. Although slightly
deeper, A. selvagensis also showed a constant depth
distribution, being present at <200 m during the day
and at night. Seapy (1990) and Lalli & Gilmer (1989)
also found that several smaller atlantid species were
confined to shallow waters at all times. This supports
the distributions of A. gaudichaudi, A. lesueurii and
A. selvagensis. However, A. peronii, being one of the
largest atlantid species, is generally considered to
 inhabit deeper waters (>200 m) and to be a diurnal
migrator (Seapy 1990). Data presented here show
that specimens were found in shallow water at all
times (Fig. 2). Wall-Palmer et al. (in press) have shown
that A. peronii is genetically diverse and may repre-
sent a collection of sub-species (or even species), each
with a particular geographical distribution, and po-
tentially each having a different depth distribution.
Therefore, data presented here are probably a colla-
tion of all of these genetically different groups.

Two further species, A. inflata and Oxygyrus infla-
tus, were restricted to shallow water at all times, but
also underwent a short-distance diurnal migration
(Fig. 2). A. inflata showed a migration from <50 m at
night to <140 m during the daytime; however, 2 peri-
ods of potentially deeper distribution occurred at
07:00−08:00 h and 14:00−15:00 h when the shallow-
est records were <400 m. O. inflatus varied in depth
from <50 m during the night to <140 m during the
day. Richter (1982) and Ossenbrügger (2010) also
found O. inflatus to be restricted to the upper 100 m,
and most abundant in the upper 50 m, and Seapy
(1990) found O. inflatus to be restricted to the upper
90 m offshore of Oahu, Hawaii.

Deep water diurnal migration

Thirteen species displayed a consistent diurnal mi-
gration pattern (Fig. 2). These species had a shallow

distribution, generally in the upper 50 m, between
~19:00 and 07:00 h, and a deeper distribution, in at
least the upper 100 m, between 07:00 and 19:00 h.
During parts of the daytime, each of these species
was collected at depths of between 300 and 600 m but
not in shallower water, despite the good temporal
coverage of sampling at shallower depths. This sug-
gests a diurnal migration that agrees with that pro-
posed by several authors (Oberwimmer 1898, Seapy
1990, Michel & Michel 1991, Seapy & Richter 1993).
However, a number of these species, including A.
brunnea, A. helicinoidea and A. oligogyra were re-
ported to be shallow non-migrators by Seapy (1990).
None of the deep water migrating atlantid species
 exhibit the exact same migration path over time, rein-
forcing the view that migratory behaviour is species
specific in atlantids (Richter 1973, Seapy 1990).

Despite the overall good spatial coverage of sam-
pling points during the daytime, particularly in the
upper 300 m, many of the migrating species were only
caught in very deep net samples during the  daytime,
well below the 250−300 m assumed maximum depth.
For example, A. tokiokai and A. inclinata, 2 species
with very similar shell morphology, were only caught
in net samples of >400 m during some time intervals
during the daytime (Fig. 2). Some species were only
caught at even greater depth, up to 1000 m. Michel &
Michel (1991) also caught A. inclinata in opening-
closing nets at a depth of 400−650 m during the day-
time. These  species are commonly caught in plankton
samples (403 records presented here) and have a
global distribution (Wall-Palmer et al. in press); there-
fore, if they were present in shallower waters during
daylight hours, they would have likely been caught
there. While it is improbable that atlantids descend
into the aphotic zone (below 1000 m), because their
complex eyes determine that they rely on light, it
is possible that they do migrate well below the eu-
photic zone (200 m) into the deeper waters of the dys-
photic zone (200−1000 m). Previous studies have noted
that larger atlantid species, some with larger eyes that
may be adaptations to low light levels (e.g. A. fragilis,
A. gibbosa), are often caught in deeper waters than
smaller species. Seapy (1990) found that larger spe -
cies offshore of Oahu migrated to deeper waters dur-
ing the daytime. Similar trends of larger taxa with depth
have been found in other mesopelagic zooplankton
(Dai et al. 2017), and larger eyes relative to body size
are thought to in crease photon capture (and hence
detection of predators and prey) in deeper dwelling
mesopelagic fishes (de Busserolles et al. 2013).

Deep water migrations over 300 m suggest that
some atlantids are exposed to large environmental

9
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gradients on a daily basis. The temperature differ-
ence from the ocean surface to 400 m is in the order
of 5−20°C (from CTD data used in this study), far
greater than the predicted anthropogenic change in
ocean temperature. Even within the upper 200 m,
and particularly in the tropical regions, atlantids are
experiencing variation in the aragonite saturation state
of up to 2.5 units during diurnal migrations (Fig. 1).
This means that deep migrating species may already
be adapted to cope with large environmental changes.
However, deep water migrating species may also be
affected by the shallowing of the aragonite lysocline,
which is predicted to be within a few hundred metres
of the ocean surface globally by the year 2300 (Cal -
deira & Wickett 2005, Orr et al. 2005, Raven et al.
2005). This will potentially alter atlantid migratory be -
haviour by reducing the depth to which they travel,
and will undoubtedly have consequences for food
availability, competition and predator inter actions.

Nine of the deep water migrating species (A. echin-
ogyra, A. frontieri, A. rosea, A. fragilis, A. helici-
noidea, A. oligogyra, A. selvagensis, A. tokiokai and
P. souleyeti), also display a brief deepening of their
distribution at around midnight (Fig. 2). This phe-
nomenon, described by Richter (1973) as the ‘mid-
night sinking’, has been observed by several authors
(Oberwimmer 1898, Richter 1973, Seapy & Richter

1993) and is thought to be caused by a lack of illumi-
nation which causes disorientation (Russell 1927).
However, Richter (1973) found that the timing of this
brief movement to deeper waters was species spe-
cific in atlantid larvae, being approximately 2 h after
a species appeared in surface waters and not corre-
lating with light conditions. This behaviour may
therefore be more of a resting period during feeding,
rather than a general disorientation caused by low
light levels. Six species (A. brunnea, A. echi nogyra,
A. oligogyra, A. rosea, A. tokiokai and P. souleyeti)
displayed a shallowing in their distribution at around
10:00−11:00 h, which has not been ob served in previ-
ous studies. This could potentially be a period of
swimming in between resting to avoid sinking into
much deeper waters where environmental condi-
tions (e.g. temperature, pH) are more hostile.

Depth of calcification

δ18O of atlantid heteropods yielded values between
−0.32 and −2.54‰ (Table 2, Fig. 3). In agreement
with the findings of Grossman et al. (1986), the δ18O
of specimens is comparable to the δ18Oeq for each sta-
tion. The calculated depth of calcification is remark-
ably consistent between species and between sta-
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Fig. 3. Results of oxygen isotope analysis calculated as aragonite for all specimens. See Table 2 for values. These data include 
juvenile shells (filled circles) and adult shells (open circles). A. = Atlanta; O. = Oxygyrus; P. = Protatlanta
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tions (Fig. 4). All species, with the exception of P.
souleyeti, were found to calcify in the upper 38−110 m.
These depths are comparable to the analysis of
Grossman et al. (1986), who found calcification depths
of 75 m for A. inclinata and A. gaudichaudi. P. sou -
leyeti produced a range of depths of 89.83−145.56 m.

The smaller species of Atlanta (adult shell
1.5−3 mm), including A. brunnea, A. helicinoidea, A.
in flata, A. oligogyra and A. selvagensis, consistently

calcify in shallower water (38−79 m) relative to larger
species (adult shell 5−10 mm) such as A. frontieri,
A. gibbosa, A. inclinata and A. rosea (81−110 m). A
significant correlation was found between the aver-
age calcification depth and maximum adult shell size
for species of the genus Atlanta (Fig. 5a, r = 0.66, p =
0.015, n = 13). Calcification for all specimens, across
all species and locations, was found to take place
within the thermohalocline. For stations with chlo -
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rophyll−depth data (stations from research cruises
AMT20 and AMT24), the concentration of chloro-
phyll a at the depth of calcification was significantly
correlated to the concentration of chlorophyll a at the

deep chlorophyll maximum (DCM, Figs. 5b & 6). This
could explain the deep calcification depth of P. sou -
leyeti at stations AMT20-12 and AMT20-23 (133.06
and 145.56 m, respectively), where the thermohalo-
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cline and DCM are deep relative to other stations.
Preference to calcify within this nutrient-rich layer is
likely linked to food availability. This is consistent
with the findings of Keul et al. (2017), who demon-
strated that the pteropod Heliconoides inflatus, a
potential prey species for atlantids, calcifies at a
depth of ~75 m in the Atlantic Ocean.

Several of these data are based on whole adult
shells; therefore, the calcifying depth is averaged
over the entire life of the atlantid and may represent
an average of deeper and shallower depths, as well
as an average of different seasons and geographical
areas. Particularly in adult specimens, shells may
have been produced long before they were collected
(e.g. in a different season when waters were warmer).
The life cycle of atlantids is not well understood and
the typical life span of an adult atlantid is unknown.
The size and complexity of the velum in juvenile
atlantids is characteristic of long-lived veligers (Thiriot-
Quiévreux 1973, Lalli & Gilmer 1989) and may give
an indication that their overall life span is long rela-
tive to other zooplankton groups. As a comparison,
euthecosome pteropods are thought to have a life
cycle of around 1.5−2 yr (Lalli & Gilmer 1989). In this
study, juvenile specimens were used for 30% of the
δ18O analyses. In general, the depth of calcification in
the juvenile stage (67.86 to 109.59 m) was compara-
ble to the depth of calcification for the adult shells
(38.95 to 106.68 m, excluding P. souleyeti) across dif-
ferent species and different geographical regions.
For A. turriculata and A. gibbosa, both juvenile and
adult shells were analysed for the same station. The
δ18O (and depth of calcification) for both life stages
was comparable (Table 2, Fig. 3). Grossman et al.
(1986) also found no difference in the δ18O com -
position between 3 sections representing different
life stages of a single Atlanta specimen. Therefore,
although based here on a limited number of speci-
mens, our results suggest that atlantids may calcify
at the same depth throughout their lives (and stay
within a small geographical region). This similarity
between the δ18O of juvenile and adult shells could
also have been produced if atlantids do not calcify at
or close to the aragonite−water isotopic equilibrium
throughout their lives, having varying metabolic
effects on the isotopic composition throughout onto -
geny—for example, if atlantids preferentially incor-
porate a higher proportion of O16 that originates from
their own respired CO2 during shell growth. This has
been found for some foraminiferan species (Pearson
2012). However, Grossman et al. (1986) found that
the depths at which specimens were captured in sed-
iment traps were in agreement with the depths at

which the δ18O values of specimens were recorded,
suggesting that there are very few or no metabolic
effects upon specimen uptake of δ18O.

CONCLUSIONS

This study combines collated collection data with
stable oxygen isotope analysis of in situ collected ma-
terial. Depth distribution data reveal 2 clear patterns
of vertical distribution. The first pattern is of small at-
lantid species that reside in the upper 140 m of the
ocean at all times and generally do not mi grate. The
second broad pattern of atlantid distribution, which
the majority of species exhibit, is of larger species that
carry out long diurnal migrations. During the night,
these atlantids inhabit shallow waters, whereas
during the daytime, they move to deeper waters.
Some species may also move to very deep waters of
over 300 m, and several migrating species exhibit a
‘midnight sinking’ and/or a ‘midday shallowing’.

The δ18O of the aragonite shells provides a first ap-
proximation to the depth of calcification, which ap-
pears to consistently represent a depth close to the
DCM and within the upper 150 m, for juvenile and
adult specimens. This region is projected to undergo
the earliest and greatest change in pH in response to
increased anthropogenic CO2 and strongly indicates
that atlantid heteropods will be adversely affected by
ocean acidification of surface waters in the near
 future.
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