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Abstract

Chimeric antigen receptor is an immunotherapy whereby T lympho-
cytes are engineered to selectively attack cancer cells. Image-based screens
of CAR-T cells, combining phase contrast and fluorescence microscopy,
suffer from the gradual quenching of the fluorescent signal, making the
reliable monitoring of cell populations across time-lapse imagery diffi-
cult. We propose to leverage the available fluorescent markers as an
experimentally-generated ground truth, without recourse to manual an-
notation. With some simple image processing, we are able to segment
and assign cell type classes automatically. This ground truth is suffi-
cient to train a neural object detection system from the phase contrast
signal alone, potentially eliminating the need for the cumbersome fluores-
cent markers. This approach will underpin the development of cheap and
robust microscope-based protocols to quantify CAR-T activity against
tumor cells in vitro.

Keywords— H igh Content Screening, deep learning, object detection, phase contrast

microscopy

1 Introduction

Therapies based on chimeric antigen receptor (CAR) show promise for improv-
ing the prognosis of cancers such as acute lymphoblastic leukemia, the most
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common and fatal form of pediatric cancer in the United States[1]. In a mi-
croscope setting where both transmitted light and fluorescence microscopy can
be taken for the same cells simultaneously, interesting opportunities arise. Re-
cently, successful attempts have been made ([2], [3]) to predict fluorescent sig-
nals from transmitted light images, demonstrating that for certain biological
experiments, the relevant information is wholly contained in the phase contrast
signal. This is an attractive prospect because fluorescence microscopy, despite
its power, has various drawbacks, with several experimental complications (such
as fading dyes), in particular when imaging assays are performed over several
days. In addition, the fluorescent marking of cells is expensive, time-consuming,
and potentially invasive to the experiment.

However, predicting fluorescence is only goes partway towards quantifying
the contents of the image. In our context, we would like to derive a quantitative
profile from live cell imaging data. Here we present a setup that allows us to
leverage fluorescence in order to automatically train a neural object detection
system without any manual annotation. Annotation by experiment is a promis-
ing strategy: we can easily collect a large ground truth and, in addition, the
“experimental ground truth” is much more objective than a manual one. A
similar strategy has already been applied to image segmentation [4].

In Section 2 we describe an acquisition and preprocessing pipeline for an
experimentally-generated object detection ground truth. In Section 3 we specify
our object detection system. In Section 4 we describe our evaluation methodol-
ogy and report model performance on two manually annotated datasets.

2 Experimentally-Generated Ground Truth

We obtained a set of time-lapse microscopy images from CAR-T experiments
performed on an IncuCyte machine. Images of cell populations in microplate
wells were taken every two hours over a three day period. In this paper we con-
sider the most basic setting, consisting only of cells from the Raji cell line, a can-
cer cell line originally derived from human B cells. Note that our methodology
should naturally extend to other experimental settings, such as those involving
T cells, which we intend to address in future work. Our learning task therefore
comprises two cell phenotypes: living and dead. The image frames consist of a

Figure 1: Aligned image channel crops (200× 200px) marking living Raji cells
in mCherry (left), dead cells in GFP (center), and phase contrast (right).
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phase contrast image and corresponding mCherry and green fluorescent protein
(GFP) overlays as shown in Figure 1. The mCherry fluorescence is present in
all Raji cells while the GFP only appears in dead cells. Our ultimate objective
is to track the respective cell phenotype numbers over time.

The fluorescent markers of our image set provide a quasi-ground truth anno-
tation for the corresponding phase contrast image. Such a provision in principle
obviates the need of laborious manual annotation, except for evaluation pur-
poses.

Our pipeline begins by applying a Gaussian filter (tuned to σ = 2) to the
phase contrast image. We then segment cells by subtracting a background image
formed with a mean filter of diameter 19px, before clipping to zero as in [5].
We fill object holes with a morphological reconstruction by erosion and use a
morphological opening to remove small details. We further filter objects outside
a reasonable size range (< 6× 6px ≈ 50µm2, determined by ranking cell areas),
as these tend to be dust and other non-cellular particles on the well surface. An
Otsu threshold on the distribution of averaged GFP signal per cell is then used
to allocate a class (living/dead) for each connected component. To train our
object detector (Section 3), we also randomly sample background crops from
the images, allowing for partial overlaps with cells.

3 Object detection system

In order to track cell phenotype populations over time, we require a robust
object detection system to identify individual cells. The core of our system is a
convolutional neural network and is detailed below.

3.1 Training as a classifier

Our preprocessing pipeline is imperfect and does not give a complete annotation
of the cell populations as would be required by state-of-the-art detection systems
such as [6]. We therefore opt for crop-wise training, where the bounding boxes
of successfully segmented cells are padded, to create 24 × 24px crops, centered
on the cells. Due to the low image resolution, we found this sizing provided
sufficient contextual information to the network. Combined with background
crops, this amounts to approximately 100,000 training examples in three classes.
Samples are given in Figure 2.

Our network architecture is detailed in Table 1. All weighted layers have a
ReLU activation, except Outputo and Outputc, which have softmax activations,
and Outputb, which remains linear. The convolutions are all valid, and a 24×
24px input image is reduced to 1 × 1px by the final layer. We implement this
network in the Keras deep learning framework[7] and all code for our system is
publicly available1. We train the network with stochastic gradient descent with
learning rate 5× 10−3 and Nesterov momentum (µ = 0.9). Mini-batches of size
128 are sampled stochastically and simple data augmentation (horizontal and

1https://github.com/jcboyd/detecting-lymphocytes
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Figure 2: Samples of living Raji cells (top), dead cells (middle), background
(bottom) annotated with bounding boxes. Fluorescence is included for clarity
only and is not used in training.

vertical flipping) is performed on the fly. We regularise the network with batch
normalisation [8] and weight decay (λ = 3× 10−5).

Layer Connection Size Output (w × h× d)
Input - - 24× 24× 1
Conv1 Input 3× 3 22× 22× 16
Conv2 Conv1 3× 3 20× 20× 16

MaxPool1 Conv2 2× 2 10× 10× 16
Conv3 MaxPool1 3× 3 8× 8× 64
Conv4 Conv3 3× 3 6× 6× 64

MaxPool2 Conv4 2× 2 3× 3× 64
Conv5 MaxPool2 1× 1 1× 1× 128
Conv6 Conv5 1× 1 1× 1× 128

Outputo Conv6 1× 1 1× 1× 1
Outputc Conv6 1× 1 1× 1× 1
Outputb Conv6 1× 1 1× 1× 2

Table 1: Specification of the network architecture. We distinguish three multi-
task outputs.

Inspired by [6], we formulate a multi-task prediction in which we predict
Pr(o), where o indicates the presence of an object in the center of the receptive
field and, separately, Pr(c|o), that is, the probability of cell phenotype class c
given the presence of an object. These probabilities are combined at inference
time (Section 3.2). In addition, our network performs regression on the height h
and width w of the bounding box of the cell, measured as a fraction of the crop
size from the crop centre. This information is readily available when generating
the training set. Note that we make the assumption that our chosen crop size
represents a hard maximum on the size of a cell’s bounding box, a reasonable
simplification for our dataset. Our network is therefore trained to minimise the
loss function,
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Figure 3: The processing of a test image. From left to right: phase contrast input
image; raw model bounding box predictions; non-maximum suppression post-
processing; finally, for comparison, the corresponding full fluorescence image.

L(xi, oi, ci, wi, hi; θ) = lo(ôi, oi) + 1i
o

[
lc(ĉi, ci)

]
(1)

+ 1i
o

[
lb(ŵi, wi, ĥi, hi)

]
with respect to model parameters θ, where lo and lc are each a standard

cross entropy and lb(ŵi, wi, ĥi, hi) = (ŵi − wi)
2 + (ĥi − hi)

2. The estimates

ôi, ĉi ŵi, and ĥi are the network outputs for object presence, object class, and
bounding box width and height. The indicator function 1i

o = 1 when training
example xi contains an object and 1i

o = 0 otherwise.
We benchmarked our network as a classifier of cropped cells against a logistic

regression trained on features extracted from a pre-trained 50-layer ResNet[9].
In order to do this, we resized our cropped cells to 32× 32px and recorded the
final convolutional layer of the ResNet, a vector of dimension 2048. This baseline
achieved an accuracy of 0.83 on balanced test data, whereas our own network
achieved 0.96. Though deep pre-trained networks are known to be powerful
general-purpose feature extractors[10], they may also be over-parameterised for
many problems[11].

3.2 Inference as a detector

Following [12] we designed our network to be fully convolutional (FCN). A FCN
is capable of performing inference on any size of input, and is extended naturally
to object detection. Thus, once trained on cell crops as a classifier, inference
may be performed on an entire image in a single forward pass, producing a
map of softmax probabilities at every location in the image. Note that even
on CPU, a full 1408 × 1040px image is processed by the network in about 1s.
Fully-convolutional whole-image inference emulates sliding-window detection,
albeit without the tremendous inefficiency of executing the model separately at
every spatial position. Note that the resolution of the output will depend on
the number of pooling layers in the network. For example, our network includes
two max pooling layers, hence we make detections at a stride of 4 across the
input image domain.
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At inference time, the object and conditional class probabilities are com-
bined to give the marginal class probabilities Pr(c) = Pr(c|o) · Pr(o). Note
that Pr(c|¬o) = 0. These probabilities are thresholded and pruned with non-
maximum suppression (NMS), providing a final detection mask for each class.
For the NMS algorithm, we use an intersection over union threshold of 0.35. An
example of this procedure is shown in Figure 3.

3.3 Smoothing probabilities in time

Because the cells are relatively stationary, we can improve the prediction of
our system by leveraging information across time. We find a simple weighted
average of prediction probabilities from consecutive frames, computed prior to
NMS, improves overall performance. We thus define the smoothed probability

p
(t)
ij ← 1/4 · p(t−1)

ij + 1/2 · p(t)ij + 1/4 · p(t+1)
ij for the probability at image position

(i, j) at time t. The weights were tuned manually for both performance and
parsimony.

4 Results

4.1 Evaluation strategy

To evaluate our system, we manually annotated three days worth of frames of
size 256× 256px from each of two independent experimental replicates, totaling
72 images and approximately 7,000 test object detections. The replicates were
chosen to represent different population dynamics: the first exhibits higher levels
of cell mitosis; the second exhibits higher levels of cell apoptosis. We henceforth
refer to these two datasets as Mitosis and Apoptosis respectively. The annota-
tions consist of manually annotated bounding boxes around the cells. We make
this dataset publicly available along with the images used to train the network2.
Note that despite this manually annotated evaluation dataset, our model is still
trained on a ground truth that is automatically generated from the experiment.

We score our detections in terms of the distance of the bounding box centers
to the ground truth bounding box centers. We define the following metrics:

• True positive (TP) - a cell is detected in the vicinity of a ground truth
cell.

• False positive (FP) - a cell is detected outside the vicinity of any ground
truth cell.

• False negative (FN) - no cell is detected within the vicinity of a ground
truth cell.

Here we define vicinity to be ≤ 10px, the maximum distance a predicted cell
center may fall from a ground true center while still falling within the typical

2https://zenodo.org/record/3515446
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cell bounding box (14× 14px). These metrics are computed per cell class, from
which we calculate precision, recall, and F1 scores. Note the F1 score prevails
over the commonly used Matthews correlation coefficient as it does not require
us to define true negatives (a meaningless quantity in our framework). These
are displayed in Tables 2 and 3 for the Mitosis and Apoptosis test sets. We see
the effect of smoothing is globally positive, significantly improving the precision
of the dead cell class, and giving the highest average F1 scores of 83.86 for
Mitosis and 81.19 for Apoptosis. Note that the results on the dead cell class are
markedly worse. We postulate this is due to the class imbalance at test time,
as well as the difficulty of discerning individual cells from cell clusters.

Method Class Precision Recall F1

Without
smoothing

Living 0.8534 0.8636 0.8585
Dead 0.7179 0.8693 0.7864

With
smoothing

Living 0.8466 0.8883 0.8669
Dead 0.7702 0.8549 0.8103

Table 2: Detection performance on the Mitosis test set, stratified by object
class. Best results in bold.

Method Class Precision Recall F1

Without
smoothing

Living 0.9451 0.7778 0.8533
Dead 0.6253 0.8935 0.7357

With
smoothing

Living 0.9447 0.7957 0.8638
Dead 0.6628 0.8904 0.7600

Table 3: Detection performance on the Apoptosis test set, stratified by object
class. Best results in bold.

4.2 Tracking population numbers over time

Our detection system is ultimately used to enumerate cell phenotypes over the
course of CAR-T experiments. In Figure 4 we plot ground truth population
numbers against the numbers inferred by our system. One can see the increasing
number of living cells in Figure 4a, corresponding to increasing amounts of cell
division, whereas in Figure 4b, one can see increasing amounts of apoptosis. In
the former, our system achieves a mean relative error percentage of 5.95% and
5.56% (resp. living and dead cells) and 5.81% and 5.37% in the latter.
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(a)

(b)

Figure 4: Population curves for manually-annotated test sets Mitosis (a) and
Apoptosis (b), compared with system outputs.

5 Perspectives

In this paper we have shown the viability of predicting phenotypes in the absence
of fluorescence, as well as how fluorescence may be used to generate a robust
ground truth for machine learning. We have trained a neural object detection
system and tested it on two manually annotated datasets. We have also given an
example of how time information can be incorporated into the prediction task.
We feel the system can be further improved with a more precise and expanded
dataset, something we intend to address in future work.
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