H. Akaike, Information theory and an extension of the maximum likelihood principle, Proceedings of Second international symposium on information theory, pp.267-281, 1973.

F. Brauer, Mathematical epidemiology: past, present, and future, Infectious Disease Modelling, vol.2, issue.2, pp.113-127, 2017.

O. Diekmann, J. A. Heesterbeek, and J. A. Metz, On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, vol.28, issue.4, pp.365-382, 1990.

J. Ducharme, A new study suggests covid-19 reinfection is possible. here's what to know, 2020.

R. G. Ghanem and P. D. Spanos, Stochastic finite elements: a spectral approach, 1991.

N. J. Higham, Accuracy and stability of numerical algorithms, Society for Industrial and Applied Mathematics, 2002.

. Instituto-brasileiro-de-geografia-e-estatística, Cidades e estados: Rio de Janeiro, 2020.

K. Konakli and B. Sudret, Global sensitivity analysis using low-rank tensor approximations. Reliability Engineering and System Safety, vol.156, pp.64-83, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01428988

E. Kuhl, Data-driven modeling of covid-19-lessons learned, Extreme Mechanics Letters, vol.40, p.100921, 2020.

S. Marelli and B. Sudret, UQLab user manualpolynomial chaos expansions. Chair of Risk, Safety and Uncertainty Quantification, 2018.

D. Okuonghae and A. Omame, Analysis of a mathematical model for covid-19 population dynamics in lagos, nigeria, Chaos, Solitons and Fractals, vol.139, p.110032, 2020.

A. Saltelli, K. Aleksankinac, W. Beckerd, P. Fennelle, F. F. Holstf et al., Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environmental Modelling and Software, vol.114, pp.29-39, 2019.

S. Simonato, Hc estuda casos de 7 pacientes que podem ter se reinfectado por coronavírus em são paulo: médica do abc relata que voltou a sentir os sintomas meses depois de ter sido infectada pela primeira vez, 2020.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling in Civil Engineering, vol.1, issue.4, pp.407-414, 1993.

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Mathematics and Computers in Simulation, vol.55, pp.271-280, 2001.

N. Sugiura, Further analysis of the data by akaike's information criterion and the finite corrections, Communications in Statistics -Theory and Methods, vol.7, pp.13-26, 1978.

G. Toscano, F. Palmerini, S. Ravaglia, L. Ruiz, P. Invernizzi et al., Guillain-barré syndrome associated with sarscov-2, New England Journal of Medicine, vol.382, issue.26, pp.2574-2576, 2020.

M. Tosin, A. M. Cortês, and A. Cunha, , 2020.

. Sobios--sobol,

M. Tosin, A. M. Cortês, and A. Cunha, , 2020.

, A tutorial on Sobol' global sensitivity analysis applied to biological models, pp.93-118

A. Wiratsudakul, P. Suparit, and C. Modchang, Dynamics of zika virus outbreaks: an overview of mathematical modeling approaches, PeerJ, vol.6, p.4526, 2018.

, WHO Coronavirus disease (COVID-19) dashboard, World Health Organization, 2020.

J. Wu, R. Dhingra, M. Gambhir, and J. V. Remais, Sensitivity analysis of infectious disease models: methods, advances and their application, Journal of the Royal Society Interface, vol.10, issue.86, 2013.

D. Xiu, Numerical methods for stochastic computations: a spectral method approach, 2010.

D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM Journal on Scientific Computing, vol.24, issue.2, pp.619-644, 2002.