C. Milios and R. P. Winpenny, Cluster-Based Single-Molecule Magnets, In Molecular Nanomagnets and Related Phenomena

S. Gao, . Ed, and . Springer, , vol.164, pp.1-109, 2015.

N. Ishikawa, M. Sugita, T. Ishikawa, S. Koshihara, and K. Youkoh, Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level, J. Am. Chem. Soc, vol.125, pp.8694-8695, 2003.

J. D. Rinehart, K. R. Meihaus, and J. R. Long, Observation of a Secondary Slow Relaxation Process for the Field-Induced Single-Molecule Magnet U(H2BPz2)3, J. Am. Chem. Soc, vol.132, pp.7572-7573, 2010.

D. N. Woodruff, R. E. Winpenny, and R. A. Layfield, Lanthanide Single-Molecule Magnets, Chem. Rev, vol.113, pp.5110-5148, 2013.

R. A. Layfield, Organometallic Single-Molecule Magnets, Organometallics, vol.33, pp.1084-1099, 2014.

F. Guo, A. K. Bar, and R. A. Layfield, Main Group Chemistry at the Interface with Molecular Magnetism, Chem. Rev, vol.119, pp.8479-8505, 2019.

F. Guo, B. M. Day, Y. Chen, M. Tong, A. Mansikkamäki et al., Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet, Science, vol.362, pp.1400-1403, 2018.

M. Vonci, M. J. Giansiracusa, W. Van-den-heuvel, R. W. Gable, B. Moubaraki et al., Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study, Inorg. Chem, vol.56, pp.378-394, 2017.

M. A. Aldamen, S. Cardona-serra, J. M. Clemente-juan, E. Coronado, A. Gaita-ariño et al., Mononuclear Lanthanide Single Molecule Magnets Based on the Polyoxometalates, Inorg. Chem, vol.48, pp.3467-3479, 2009.

M. A. Aldamen, J. M. Clemente-juan, E. Coronado, C. Martí-gastaldo, and A. Gaita-ariño, Mononuclear Lanthanide Single-Molecule Magnets Based on Polyoxometalates, J. Am. Chem. Soc, vol.130, pp.8874-8875, 2008.

J. Jia, Q. Li, Y. Chen, J. Liu, and M. Tong, Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies, Coord. Chem. Rev, vol.378, pp.365-381, 2019.

Y. Meng, Y. Qiao, Y. Zhang, S. Jiang, Z. Meng et al., Can Non-Kramers TmIII Mononuclear Molecules be Single-Molecule Magnets (SMMs)?, Chem. Eur. J, vol.22, pp.4704-4708, 2016.

A. Amjad, A. Figuerola, and L. Sorace, Tm(III) complexes undergoing slow relaxation of magnetization: Exchange coupling and aging effects, Dalton Trans, vol.46, pp.3848-3856, 2017.

K. L. Harriman, I. Korobkov, and M. Murugesu, From a Piano Stool to a Sandwich: A Stepwise Route for Improving the Slow Magnetic Relaxation Properties of Thulium, Organometallics, vol.36, pp.4515-4518, 2017.

R. D. Peacock and T. J. Weakley, Heteropoly tungstate complexes of the lanthanide elements. Part I. Preparation and reactions, J. Chem. Soc. A, 1836.

G. M. Rozantsev and V. V. Ignatyeva, Mathematical modeling of equilibria and the state of holmium heteropoly tungstate ions, Russ. J. Inorg. Chem, vol.51, pp.1509-1515, 2006.

G. M. Rozantsev and V. V. Ignatyeva, Ionic equilibria for hetero-10-tungstoneodimates: Study and modeling, Russ. J. Coord. Chem, vol.33, pp.641-647, 2007.

G. M. Rozantsev and V. V. Ignatyeva, Study of ionic equilibria and computation of thermodynamic characteristics of heteropoly anion formation in GdW, vol.10, p.36

, ? solution, Russ. J. Inorg. Chem, vol.59, pp.1045-1054, 2014.

K. Sawada and T. Yamase, Nonasodium decatungstodysprosate pentatriacontahydrate. Acta Cryst. C, vol.58, pp.149-151, 2002.

M. Vonci, M. J. Giansiracusa, R. W. Gable, W. Van-den-heuvel, K. Latham et al., Ab initio calculations as a quantitative tool in the inelastic neutron scattering study of a single-molecule magnet analogue, Chem. Commun, vol.52, pp.2091-2094, 2016.

S. Moriyasu and Y. Toshihiro, Crystal Structure and Luminescence Site of Na9[EuW10O36]·32H2O, Bull. Chem. Soc. Jpn, vol.66, pp.444-449, 1993.

T. Ozeki and T. Yamase, Effect of lanthanide contraction on the structures of the decatungstolanthanoate anions in K 3 Na 4 H 2, Dy) crystals. Acta Cryst. B, vol.50, pp.128-134, 1994.

T. Yamase, T. Ozeki, and M. Tosaka, Octasodium hydrogen decatungstogadolinate triacontahydrate. Acta Cryst. C, vol.50, pp.1849-1852, 1994.

T. Yamase and T. Ozeki, Structure of K 3 Na 4 H 2 [GdW 10 O 36 ].21H 2 O. Acta Cryst. C, vol.49, pp.1577-1580, 1993.

R. Shiozaki, A. Inagaki, A. Ozaki, H. Kominami, S. Yamaguchi et al., Catalytic behavior of a series of lanthanide decatungstates [Ln(III)W 10 O 36 9? ; Ln: La-Yb] for H 2 O 2 -oxidations of alcohols and olefins. Some chemical effects of the 4f n -electron in the lanthanide(III) ion on the catalyses, J. Alloys Comp, vol.261, pp.132-139, 1997.

T. Ozeki and T. Yamase, Hexasodium trihydrogen decatungstosamarate octacosahydrate. Acta Cryst. C, vol.50, pp.327-330, 1994.

D. Casanova, P. Alemany, J. M. Bofill, and S. Alvarez, Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends, Chem. Eur. J, vol.9, 1281.

S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell et al., Shape maps and polyhedral interconversion paths in transition metal chemistry, Coord. Chem. Rev, vol.249, pp.1693-1708, 2005.

M. C. Llunell, J. Cirera, P. Alemany, S. Alvarez, . Shape et al., , 2010.

W. Huang, J. Xu, D. Wu, X. Huang, and J. Jiang, Rhodamine-based field-induced single molecule magnets in Yb(iii) and Dy(iii) series, New J. Chem, vol.39, pp.8650-8657, 2015.

A. V. Gavrikov, P. S. Koroteev, N. N. Efimov, Z. V. Dobrokhotova, A. B. Ilyukhin et al., Novel mononuclear and 1D-polymeric derivatives of lanthanides and (? 6 -benzoic acid)tricarbonylchromium: Synthesis, structure and magnetism, vol.46, pp.3369-3380, 2017.

O. Kahn, Molecular Magnetism; VCH: Weinheim, 1993.

C. Benelli and D. Gatteschi, Introduction to Molecular Magnetism: From Transition Metals to Lanthanides, 2015.

C. Dekker, A. F. Arts, H. W. De-wijn, A. J. Van-duyneveldt, and J. A. Mydosh, Activated dynamics in a two-dimensional Ising spin glass, Phys. Rev. B, vol.40, pp.11243-11251, 1989.

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, J. Chem. Phys, vol.9, pp.341-351, 1941.

J. Pescia and . La, Relaxation des spins électroniques avec le réseau (Théorie élémentaire et méthodes de mesure du temps T1), J. Phys. France, vol.27, pp.782-800, 1966.

Y. Rechkemmer, F. D. Breitgoff, M. Van-der-meer, M. Atanasov, M. Hakl et al., A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier, Nat. Commun, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01992694

S. Cardona-serra, J. M. Clemente-juan, E. Coronado, A. Gaita-ariño, A. Camón et al., Lanthanoid Single-Ion Magnets Based on Polyoxometalates with a 5-fold Symmetry: The Series [LnP5W30O110]12-(Ln3+ = Tb, vol.134, pp.14982-14990, 2012.

J. Jung, M. A. Islam, V. L. Pecoraro, T. Mallah, C. Berthon et al., Derivation of Lanthanide Series Crystal Field Parameters From First Principles, Chem. Eur. J, vol.25, pp.15112-15122, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02381772

J. D. Rinehart and J. R. Long, Exploiting single-ion anisotropy in the design of f-element single-molecule magnets, Chem. Sci, 2011.

P. P. Korostelev, Preparation of Solutions for Chemical Analysis. Nauka Mosc, p.401, 1964.

G. Shvartsenbakh and G. Flashka, Complexometric Titration

U. K. Oxfordshire, Khimiya Mosc. 1970, 360. 43. CrysAlisPro; Agilent Technologies Ltd, 2014.

R. C. Clark and J. S. Reid, The analytical calculation of absorption in multifaceted crystals, Acta Cryst. A, vol.51, pp.887-897, 1995.

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Cryst, vol.42, pp.339-341, 2009.

G. Sheldrick, Crystal structure refinement with SHELXL. Acta Cryst. C, vol.71, pp.3-8, 2015.

G. Sheldrick, SHELXT-Integrated space-group and crystal-structure determination, Acta Cryst. A, vol.71, pp.3-8, 2015.

B. O. Roos, R. Lindh, P. A. Malmqvist, V. Veryazov, and P. O. Widmark, Main group atoms and dimers studied with a new relativistic ANO basis set, J. Phys. Chem. A, vol.108, pp.2851-2858, 2004.

B. O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, New relativistic ANO basis sets for actinide atoms, Chem. Phys. Lett, vol.409, pp.295-299, 2005.

M. Casarrubios and L. Seijo, The ab initio model potential method: Third-series transition metal elements, J. Chem. Phys, vol.110, pp.784-796, 1999.

B. O. Roos, P. R. Taylor, and P. E. Sigbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chem. Phys, vol.48, pp.157-173, 1980.

P. Å. Malmqvist, B. O. Roos, and B. Schimmelpfennig, The restricted active space (RAS) state interaction approach with spin-orbit coupling, Chem. Phys. Lett, vol.357, pp.230-240, 2002.

B. A. Hess, Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators, Phys. Rev. A, vol.33, pp.3742-3748, 1986.

B. A. Heß, C. M. Marian, U. Wahlgren, and O. Gropen, A mean-field spin-orbit method applicable to correlated wavefunctions, Chem. Phys. Lett, pp.365-371, 1996.

H. Bolvin, An Alternative Approach to the g-Matrix: Theory and Applications, Chem. Phys. Chem, vol.7, pp.1575-1589, 2006.

L. Ungur and L. F. Chibotaru, Ab Initio Crystal Field for Lanthanides, Chem. Eur. J, vol.23, pp.3708-3718, 2017.

M. J. Martínez-pérez, S. Cardona-serra, C. Schlegel, F. Moro, P. J. Alonso et al., Gd-Based Single-Ion Magnets with Tunable Magnetic Anisotropy: Molecular Design of Spin Qubits, Phys. Rev. Lett, vol.108, 2012.

J. J. Baldoví, J. M. Clemente-juan, E. Coronado, Y. Duan, A. Gaita-ariño et al., Construction of a General Library for the Rational Design of Nanomagnets and Spin Qubits Based on Mononuclear f-Block Complexes. The Polyoxometalate Case, Inorg. Chem, vol.53, pp.9976-9980, 2014.