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Abstract—Vision is the first indicator for coaches to assess
the quality of a sport gesture. However, gesture analysis using
computer vision is often restricted to laboratory experiments, far
from the real conditions in which athletes train on a daily basis.
In this perspective, we introduce 3D ball trajectories analysis
using a single camera with very few acquisition constraints. A
key point of the proposal is the estimation of the apparent ball
size for obtaining ball to camera distance. For this purpose, a 2D
CNN is trained using a generated dataset that enables a reliable
ball size extraction, even in case of high motion blur. The final
objective is not only to be able to determine ball trajectories, but
most importantly to retrieve their relevant physical parameters.
Those kinematics parameters could help coaches and players
to better analyze strokes with strong rotation effects during
training sessions or matches. With a precise estimation of those
trajectories, it is indeed possible to extract the ball tangential and
rotation speed, related to the so-called Magnus effect. Validation
experiments for characterizing table tennis strokes are presented
on both a synthetic dataset and on real video sequences.

Index Terms—Video analysis, 3D trajectory reconstruction,
Magnus effect, Deep Learning, sport performance, Table Tennis

I. CONTEXT

The amount of sport contents is steadily growing on both
television and the Internet. Human pose estimation, as well as
classification of sport activities have rapidly become popular
areas of research in computer vision. Several datasets like
UCF-101 [7] have emerged to determine the type of action in a
video sequence. Great progress has been made with the advent
of convolutional neural networks for video analysis [4], [18],
which had led to a huge breakthrough in image classification.

In the field of computer vision, the fine-grained analysis
of human actions or gestures is often confined to laboratory
experiments, far from real conditions in which athletes train
on a daily basis. The presented work aims at developing sport
analysis tools that can be used in sports facilities and outdoor.
In particular, the athletes are practicing in ecological condi-
tions (i.e. natural conditions), without markers nor sensors that
could interfere with their practice.

Our case study is table tennis, and we are working together
with professional athletes and coaches to determine their
needs. In particular, stroke detection along with a precise
gesture analysis are of great interest to them. This task is
difficult, because table tennis has a large number of stroke

classes, with low inter-class variance. In order to classify these
strokes, a publicly available dataset was created [11].

To go a step further, the analysis of strokes can be improved
by studying the effects given on the ball by the player. Strokes
types are characterized by their rotation or translation speed,
and hence these physical parameters can be used to quantify
their efficiency. In this article, we present for this purpose a
method that reconstructs the 3D ball trajectory from a single
camera view and extracts physical parameters from those
trajectories.

Most classical 3D motion analysis methods using motion
capture [14] are far from real training conditions and can
alter how the player performs his strokes. A more valuable
alternative could be the use of multiple cameras [8], [12], but
these devices remain complex and costly to use in a standard
sport hall or outdoors.

Our proposal focuses on the study of the ball trajectory,
with a special care on the rotation speed estimation, which
is a clue of the effect given on the ball. Indeed, in most ball
sports, when a player hits the ball, it starts to spin on itself
which potentially modifies its trajectory. In the special case of
Table Tennis, due to the small size and low mass of the ball
compared to its speed (translation and rotation on itself), the
effect of this rotation is crucial for the players. It exceeds the
effects that can be given to tennis balls or baseballs, and the
use of spins of varying intensity is a key factor for success
in a match. It is worth noting that this rotation is not that
prominent in some other sports such as volleyball [2] where
balls are pushed with the arms and not hit by a racket: in these
cases, the ball trajectories can be reasonably approximated by
parabolas.

In the following sections, we focus on physical parameters
estimation of fast moving table tennis balls using a 2D to
3D approach. Firstly, a convolutional neural network is used
to obtain accurate pixel size of the ball during its trajectory.
It proved to be robust enough to properly operate even in
presence of high motion blur. Secondly, this size estimation,
along with camera calibration matrices, are used for recovering
the 3D real-world coordinates of the ball from its image
coordinates. Finally, the temporal succession of extracted ball
positions generates piecewise 3D curves defined on intervals
separated either by a table bounce, or by a racket impact.
On each interval, knowing the physical forces applied on the



ball (gravity, Magnus effect and air drag effect), enables to
compute relevant physical parameters such as rotation speed.
These parameters are quantitative measures of the efficiency
of a stroke and can provide a feedback on the athlete’s
performance.

II. 3D BALL TRAJECTORY ESTIMATION

The trajectory of a table tennis ball can be represented by
a set of piecewise curves (altered parabolas). Each curve is
connected to its neighbors by a bounce of the ball on the table
or by its impact on a racket. The impact of the ball on the
racket usually corresponds to an abrupt change of direction.

Fig. 1. Piecewise trajectory of a ball during a match

Figure 1 shows an example of a ball trajectory composed
of three intervals: a first curve from the initial hit, off-camera,
to the bounce on the table at point A; a second curve from
point A to the impact on the player’s racket at point B; a
third curve from point B to a off-camera point. Point A is
characterized by a change of direction along the y axis in
the image frame and point B by an abrupt change of direction
along the x axis. Three typical stroke types will be considered
(see section IV-A), and we made the assumption that the ball
lies in a plane between two strokes (equation 2). Contrary to
[17], using a camera focused on half of the table does not
allows to estimate the trajectory plane between two rebounds
of the ball. The analysis of a stroke made by a player can be
induced by the ball trajectory from the impact on his racket till
its opponent’s stroke. Each of the two parts of this trajectory
can be analyzed separately (Fig. 1).

A. Forces and aerodynamics of the ball

Newton’s second law of motion states that the net force
F (the vector sum of all forces acting on the ball during
its trajectory) is equal to the mass m of the ball times its
acceleration a:

ma = m
dV

dt
= FG + FA(V) (1)

where V is the ball velocity vector, FG = −mg with g the
gravity vector field, and FA(V) the aerodynamic force applied
on the ball:

FA(V) = FL(V) + FD(V) (2)

Without this last force FA(V), the ball trajectory would be
a parabolic arc; when taking FA(V) into account, the parabola
is modified by the drag effect FD and by the Magnus effect
(lift) FL [9], [13], [16] (see Fig. 2).

The drag acts as a frictional force opposite to the relative
motion of the ball. Given CD the coefficient of friction, ρ the

Fig. 2. Forces applied on the ball (black) and ball velocity vector (red)

air density (1.2kg/m3), A = π.r2 the surface of friction with
the air for a ball of radius r (here r = 2cm), V the velocity
vector of norm V and polar angle θ (in the coordinate system
related to the center of mass of the ball, see Fig. 3), the drag
force FD is written as :

FD(V) = −1

2
CDρAVV (3)

Fig. 3. Forces applied on the ball are in the 2D plane that contains its
trajectory

When the ball spins, difference of air pressure on the
upper and lower sides of the ball causes a modification of its
trajectory called the Magnus force [1]. Given w the angular
velocity vector of the ball of norm w, and S0 the so-called
”lifting” parameter, the Magnus force is written as:

FL(V) = S0w ∧V (4)

This force, orthogonal to the velocity vector, induces topspin
or backspin. For the considered stroke types (section IV-A) [9],
it is reasonable to assert that between two strokes, the ball
moves in a 2D plane [9], [17]. The angular velocity vector w
is then orthogonal to the plane x−z during the ball trajectory.
The lift coefficient CL is written as:



CL =
2S0

ρA

w

V
(5)

and its magnitude:

FL(V ) =
1

2
CLρAV

2 (6)

From Newton’s second law (equations 1 and 2), horizontal
and vertical components of FD and FL, respectively (FDx,
FDz) and (FLx, FLz), write:


FDx = − 1

2CDρAV
2 cos(θ)

FDz = − 1
2CDρAV

2 sin(θ)

FLx = − 1
2CLρAV

2 sin(θ)

FLz
= + 1

2CLρAV
2 cos(θ)

(7)

At time t, we denote by V (t) the velocity vector norm,
θ(t) its angle with respect to the x axis, and CL(t) =
2S0

ρA
w
V (t) the lift coefficient. Using equation 1 with dV(t)

dt =(
d2x(t)
dt2 , d

2z(t)
dt2

)
, equations of motion projected on the x and

z axes write:
d2x(t)

dt2
= − 1

2m
ρAV (t)2(CD cos(θ(t)) + CL(t) sin(θ(t)))

d2z(t)

dt2
= −g − 1

2m
ρAV (t)2(CD sin(θ(t)) + CL(t) cos(θ(t)))

(8)

Given at t = 0 the initial position (x0, z0) of the ball , norm
V0 of the velocity vector, angle θ0 and the angular rotation
speed w, it is possible to use Euler’s method to iteratively
compute the successive positions (x(t), z(t)) of the ball center
of mass along the trajectory path. Let us note that w is required
to calculate the lift coefficient CL0

(5). Given a small time step
∆t, equation 8 leads to:

x(t+ ∆t) = x(t) + V (t) cos(θ(t))∆t

− 1

4m
ρAV (t)2(CD cos(θ(t)) + CL(t) sin(θ(t)))∆t2

z(t+ ∆t) = z(t) + V (t) sin(θ(t))∆t

− 1

2
(g +

1

2pm
ρAV (t)2(CD sin(θ(t))

+ CL(t) cos(θ(t))))∆t2

(9)

For computational purposes, these equations have to be
discretized. Given a positive integer i, successive ball positions
(x[i], z[i]) , rotation angle θ[i] , lift coefficient CL[i] and speed
norm V [i], equation 9 becomes:

x[i+ 1] = x[i] + V [i] cos(θ[i])∆t

− 1

4m
ρAV [i]2(CD cos(θ[i]) + CL[i] sin(θ[i]))∆t2

z[i+ 1] = z[i] + V [i] sin(θ[i])∆t

− 1

2
(g +

1

2m
ρAV [i]2(CD sin(θ[i])

+ CL[i] cos(θ[i])))∆t2

(10)

III. PROPOSED METHOD

In order to extract the kinematic parameters of the ball, an
accurate camera calibration is required to be able to project
the objects from the 3D world space to the 2D camera space.
To that end, we use a PyTorch [15] object detection library
Detectron2 [5] to detect the ball and initialize a robust
tracker, CSRT [10], to obtain continuous ball trajectories on
image sequences. A CNN is trained using cropped region
centered on the ball to obtain an accurate pixel-size estimation.
This information, together with calibration matrices allows to
infer the distance between the camera and the ball for each
frame. We are then able to apply our equations to the 3D
trajectory and obtain the physical parameters.

A. Camera Calibration

The first step of the proposed process is to correct geo-
metrical distortions by calibrating the camera. This is done
only once before starting any acquisition. Commonly, camera
parameters are split into intrinsic and extrinsic parameters.

The intrinsic matrix contains the focal length, image sensor
format, and principal point and is obtained using checkerboard
patterns [20].

The extrinsic matrix contains the information to transform
3D world coordinates to 2D camera coordinates. It is obtained
using the knowledge of some elements of the scene (standard
dimensions and heights of the table and the net) and by man-
ually locating their pixels coordinates in the images (shown in
Fig.4). This mapping is exploited by a ”Perspective-n-point”
type algorithm [6] with the Levenberg-Marquardt optimization
method.

Fig. 4. Reference points used in the 3D to 2D projection matrix

B. Ball tracking and trajectory segmentation

The next step is to track the ball through the image
sequence. Even with a high frame rate (in our case 240



frames per second), the ball is often perceived as a blurred
and ellipsoidal shape (see Fig. 6). To initialize a ball tracker
in our sequences, we used Detectron2 [5]. Detectron2
is performing well for ball detection, even with reasonable
motion blur, but fails when motion blur is too important
(for some Top Spin strokes for example). Once detected,
associated with a fast and reliable tracker, CSRT [10], the ball
is successfully tracked in all our video sequences. The ball,
when bouncing off the table or hit by a racket, quickly changes
its trajectory. This information is used to temporally segment
the data. Figure 1 illustrates such a typical situation.

C. Ball size estimation using CNN

Knowing the ball positions in the images is insufficient to
estimate its 3D positions, as the ball to camera distance is
unknown. Intuitively, when the ball gets closer to the camera
in the 3D scene, its pixel size in the images increases, and
decreases when it moves away from it. The size estimation in
pixels of the ball is then crucial, as it provides information on
its distance from the camera. Given H the real size of the ball,
f the focal length of the camera obtained at the calibration
step, and h the apparent size of the ball in pixels, the ball to
camera distance D is computed using a simple homothety:

D = f ×H/h (11)

Knowing distance D, the intersection between the line
passing through the center of the ball and the camera optical
center allows to position the ball in the 3D read world space
by applying the extrinsic calibration matrix.

Due to high speed and motion blur, exact ball size in
pixels is hard to obtain. As a small error on this estimation
results in a consequent error on the ball-to-camera distance,
the estimation of the ball location in the 3D space can be
erroneous. To solve this issue, we designed a convolutional
neural network trained on a generated dataset created with the
Blender software (section IV-B). A generated dataset has many
advantages: to train the network, as many sequences can be
generated as needed and the exact 3D position of the ball and
the type of strokes are known.

The architecture of the proposed CNN is summarized in
Table I. This network uses 5 consecutive cropped areas of
128 × 128 pixels centered on the ball to estimate its size on
each frame. The ball size does not vary much for consecutive
frames, and using a time window of 5 frames helps to
regularize ball size estimation. It must be noted that due to the
required size accuracy, the video was not spatially downscaled.
The size ground truth was extracted from the actual 3D
position using equation (11) and was used to compute the
loss function (Mean Square Error).

IV. DATASETS USED

Two different datasets were used for building up experi-
ments: a real one filmed in a sport hall with teachers and
players from La Rochelle Table Tennis club, and a generated
one, mainly for training purposes.

TABLE I
NETWORK ARCHITECTURE FOR BALL SIZE ESTIMATION

Input Size Operator In-channels/Out-channels
128x128 Conv 3x3 5/32
128x128 Leaky Relu 32/32
128x128 MaxPool 2x2 32/32
64x64 Conv 3x3 32/64
64x64 Leaky Relu 64/64
64x64 MaxPool 2x2 64/64
32x32 Conv 3x3 64/128
32x32 Leaky Relu 128/128
32x32 MaxPool 2x2 128/128
16x16 Flatten 128/-
32768 FullyConnected -
8192 Relu -
8192 Dropout -
8192 FullyConnected -

A. The real Dataset

Several stroke sequences focusing on a single player were
recorded, using two high speed synchronized cameras (240
fps). 29 sequences were annotated in total, and each video
represents a shot sequence between two players. The three
considered strokes are: Top Spin, Counter Attack, and
Push shown in Fig. 5.

Fig. 5. Extracted frames of a Top Spin (left), a Counter Attack
(center) and a Push (right)

Those strokes have typical trajectories that differ from each
other by translation and rotation speeds. Top Spin is an
offensive stroke, that causes the ball to move fast with a
high forward rotation speed. Push is a defensive stroke,
that slows down the ball speed and makes the ball rotates
backward. Counter attack is intermediate between those
two strokes, and causes the ball to move at medium trans-
lation and rotation speed. Table tennis rackets usually have
a surface made of rubber to maximize the grip on the ball
to convey a spin. Video samples of such strokes can be seen
online1. The angle of the racket face when a player hit the
ball creates a spinning motion of the ball and is visually
distinctive, especially for Top Spin. Each sequence starts
when the ball appears in the camera field of view, and stops
when it disappears. Their duration is in average 0.6 second
(145 frames). Knowing the two extrinsic camera calibration
matrices, 3D reconstruction of the scene is possible using
triangulation. The pixel size of the ball can also be estimated
and will be used as ground truth in experiments of section V-C.
Each sequence is labeled with the stroke performed, however,
rotation or translation speed of the ball are unknown.

1https://vimeo.com/jordancalandre



B. Generated dataset

Due to the absence of table tennis datasets with ground
truth on ball trajectories and speed (translation and rotation),
we have generated a dataset using the Blender software
[3]. Camera calibration matrices obtained on the real dataset
(section IV-A) contain all geometric information required to
generate close to reality images. To be close to real sequences,
we have used 3D models of table tennis ball and table, and the
virtual camera was put at the same location and orientation as
the one provided by the extrinsic matrix (Fig. 4). To improve
the virtual camera configuration, the focal lengths given by
the intrinsic matrix of the real dataset were used.

Each of the three considered stroke types (Top Spin,
Counter attack, Push) are defined by translation and
rotation speed. Ranges have been chosen based on our prior
knowledge and are presented in Table II.

TABLE II
VALUE RANGES (TRANSLATION AND ROTATION) FOR EACH STROKE CLASS

Stroke Translation (m/s) Rotation (rotations/s)
min max min max

Top Spin 10.00 16.66 30.00 70.00
Counter attack 4.17 10.00 10.00 20.00

Push 1.38 5.55 -15.00 0.00

As already mentioned, the main difficulty for ball size
estimation is the motion blur effect. To generate photorealistic
images, the Cycles rendering tool was used2. The blur
parameter depends on the camera acquisition framerate, and
was tuned to match real sequences, as illustrated in Figure 6.

Fig. 6. Real motion blur (left) and generated frame (right)

The dataset is composed of 200 videos (representing a total
of 30,807 frames). The sequence generation process is as
follows:
– An initial position above the opponent table side is randomly
chosen. Initial parameters (speed and rotation of the ball) are
chosen within the range of the counter-attack stroke
using a uniform distribution (Table II).
– Using equation 10, the ball trajectory simulation is done,
checking at each step the correctness of the stroke: the ball
must bounce off the table only once and must not touch the
net. In case of failure, a new random set of parameters is
chosen with the same initial position until the stroke is valid.

2https://docs.blender.org/manual/en/latest/render/cycles/index.html

– When the ball is two meters away from the net, a new stroke
is simulated. One type of stroke is randomly chosen among
its three possible types. As in the first step, parameters are
chosen within the range of the given stroke.
– If the trajectory is not valid (the ball does not touch the
table, hit the wrong side of the table, touches the net...), a
new random set of parameters with the same stroke type is
generated until the trajectory is valid.

For each valid shot sequence, exact 3D positions of the
ball and the used parameters are stored. The 2D positions of
the ball in the image and its pixel size are obtained from the
camera calibration matrix (equation 11).

V. EXPERIMENTS

Each step was analyzed for evaluating our approach. The
first step evaluates the precision of the 3D ball position
estimation on our synthetic dataset. The second step, is the
validation of the parameters extracted by fitting equations on
the trajectory. Finally, we used our CNN and fine-tuned it on
real sequences to do an action recognition task.

A. Ball size and 3D position estimation

To evaluate the 3D position of the ball, several experiments
were conducted using the generated dataset (section IV-B).
The goal was to estimate in the frame the ball size as close
as possible to the observed one, even in presence of strong
motion blur. A reliable ball size estimation is indeed important
for obtaining a precise ball to camera distance. The dataset
is composed of 133 train sequences and 67 test sequences.
Implementation was done using the PyTorch framework [15],
running on a GPU GeForce GTX 1070 with 48GB RAM and
an Intel i7-7700HQ processor.

The ball size estimation is done using the proposed CNN
with a sliding window of five consecutive frames. No other
information is used in the network during the training stage
(like ball speed or the stroke type). Due to the different
motion blurs induced by slow and fast strokes, results for the
three stroke types are presented separately in Table III. The
average camera to ball distance error between the estimated
3D position and the ground truth increases when the ball is
moving faster (average error of 6.43 cm for the Top Spin,
compared to 5.27 cm for a Push stroke).

TABLE III
AVERAGE DISTANCE ERROR BETWEEN THE REAL AND ESTIMATED 3D

POSITION OF THE BALL (IN CM)

Stroke 3D estimation Planar regression
Top Spin 6.43 4.28

Counter attack 5.84 3.86
Push 5.27 3.52

However the estimated ball size value oscillates around its
correct size, leading to errors in the estimated 3D position (see
Fig.7). As the ball is assumed to have a trajectory that lies in
a plane, a planar regression is used to project those 3D points
onto a 2D plane. The resulting ’smooth’ positions of the ball



are located at the intersection between the regression plane
and the ray from the camera to the 3D points. This leads to
a smoothed trajectory on which the average error for a Top
Spin decreases from 6.43 to 4.28 cm. This error represent less
than 2% of the distance between the camera and the center of
the table (that is 248.65 cm).

Fig. 7. Comparison with the ground truth of reconstructed 3D trajectory and
smooth trajectory obtained after planar regression

Figure 8 shows a plot of the ball size estimation for a Top
Spin stroke. The corresponding estimated 3D trajectory is
shown in Figure 7. As expected, a small variation on the size of
the ball impacts its estimated 3D position due to an error on the
camera to ball distance. However, the trajectory resulting from
the proposed smoothing process is very close to the ground
truth.

Fig. 8. Extracted ball size in pixel using proposed CNN

B. Estimation of forces applied on the ball

The estimation of forces applied on the ball is now restricted
to the previous estimated 2D plane. On this 2D plane, the
successive positions of the ball along its trajectory can be
computed, given initial values for equations 10 and using
Euler’s method. The required initial values are: the position of
the ball in the 2D space, the velocity vector (magnitude and
direction), and the rotation speed. Position in the 2D space is
the only known initial value. The other initial values are found
by grid search minimization of the quadratic error between the
predicted parameters using Euler’s method and the estimated
2D plane positions. The grid search minimization uses two
successive coarseness to fit the target curve. A first search
is done between the min and max values of each parameters
(translation: from 1.4 to 16.6 m/s, and rotation speed: from
-15 to 70 rotations per second), with a step of one unit. After
this rough approximation of the parameters, a more accurate
grid is used around the obtained values (-5/+5) using a step
of 0.1, which better fits the trajectory.

Table IV presents the errors obtained between the ground
truth and the estimated parameters using grid search minimiza-
tion.

An example of obtained trajectories for a Counter
Attack and a Push stroke is presented on Figure 9. The
impact of the Magnus effect on the ball trajectory is very no-
ticeable when comparing the estimated trajectory with the one
estimated without taking into account the aerodynamic force
FA(V) (same angle and initial speed). During a Counter
Attack, the rotation speed causes a drop in the trajectory
of the ball due to the interaction with the air. The ball falls
earlier and faster when the Magnus effect is taken into account
(∆x < 0). On the other hand, during a Push, the rotation
on itself prevents the ball to quickly drop, and has a longer
trajectory (∆x > 0).

TABLE IV
AVERAGE ESTIMATED ERROR OF THE EXTRACTED PARAMETERS FOR

EACH OF THE THREE STROKE TYPES

Stroke Translation speed Rotation speed
(m/s) (rotations per second)

Top Spin 0.75 4.48
Counter attack 0.16 2.70

Push 0.09 0.99
Global 0.41 3.04

C. Action recognition from extracted ball kinematic parame-
ters

The relevance of the extracted ball kinematic parameters
have been tested for fine-grained action recognition on the real
dataset introduced in section IV-A. On these sequences, the
stroke type has been labelled by expert knowledge, velocity
or rotation speed of the ball are however unknown. These
physical parameters are obtained as follows. For each video
sequence of the dataset, the 3D ball positions are obtained by
triangulation as described in section IV-A. As the calibration
matrices are known, the size of the ball in pixel can be



Fig. 9. Comparison between estimated trajectories with and without Magnus effect on Counter Attack (left) and Push (right) strokes

calculated for each frame. The proposed CNN, pre-trained on
the generated dataset is then fine-tuned on 20 stereo sequences
from the real dataset. Once this transfer learning process is
achieved, the estimation of ball kinematic parameters can be
done on real images from a single camera. In order to validate
the approach, the rotation and translation parameters calculated
on 9 other sequences (three sequences for each stroke type)
are presented in Table V.

TABLE V
CLASSIFICATION RESULTS FROM EXTRACTED KINEMATIC PARAMETERS

ON THE REAL DATASET

Name Speed Rotation Ground Naive Bayes Prediction
(m/s) per sec. truth TS Counter Push

Seq. 1 13.00 38.50 Top Spin 1.00 0.00 0.00
Seq. 2 14.00 32.50 Top Spin 1.00 0.00 0.00
Seq. 3 13.00 32.00 Top Spin 1.00 0.00 0.00
Seq. 4 10.00 10.00 Counter 0.03 0.97 0.00
Seq. 5 9.80 9.50 Counter 0.00 1.00 0.00
Seq. 6 9.00 9.00 Counter 0.00 1.00 0.00
Seq. 7 5.00 -15.00 Push 0.00 0.00 1.00
Seq. 8 4.80 -13.50 Push 0.00 0.00 1.00
Seq. 9 5.00 -14.00 Push 0.00 0.00 1.00

It can be observed that these two kinematic parameters
are sufficient to identify the types of strokes: using a simple
classifier such as a Naive Bayes Classifier [19] leads to perfect
classification results.

VI. CONCLUSION

Using a single camera, the proposed method allows to
compute 3D kinematic parameters of table tennis balls. It relies
on the knowledge of the standard dimensions of the objects
of interest (ball and table). Contrary to most approaches for
sport gesture analysis, which perform this 3D reconstruction
using stereo cameras or markers that involve many practical
constraints, our approach greatly simplifies the setup of the
capture devices. The calibration process to obtain the intrinsic

parameters of the camera can be indeed performed only once,
the placement of the camera being then relatively free as
long as at least 4 points of interest (table corners, net ...)
are visible. Increasing the number of points increases the
calibration accuracy. This approach satisfies a strong demand
from sports coaches that expect to study sports gestures in
ecological conditions without constraints for the players. With
an average translation speed error of 0.41 m/s (2.6% on a
scale from 1.4 to 16.6 m/s), and a rotation error of 3.04
rotations per second (3.5% on a scale from -15 to 70) on
the synthetic dataset, our model allows a precise estimation
of the forces applied to the ball in three dimensions. It can
thus potentially be of great help to coaches for analyzing
player strokes during their training. On the real dataset, all
the kinematic parameters extracted from the video sequences
are correlated to our knowledge on the considered strokes.

This paper opens perspectives for the analysis of sports
gestures without markers: the kinematic parameters of the
ball could be used as characteristics for action recognition
tasks, performance indicators or clues for automatic summaries
of players’ actions during a match. There are still many
possible improvements on the proposed method. For instance,
the calibration process could be improved and made fully
automatic by improving points of interest detection in the
calibration stage. The estimation of the Magnus effect could
also be obtained more efficiently by improving the equation
solver.
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