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EMBEDDINGS OF LIPSCHITZ-FREE SPACES INTO `1

RAMÓN J. ALIAGA, COLIN PETITJEAN, AND ANTONÍN PROCHÁZKA

Abstract. We show that, for a separable and complete met-
ric space M , the Lipschitz-free space F(M) embeds linearly and
almost-isometrically into `1 if and only if M is a subset of an R-
tree with length measure 0. Moreover, it embeds isometrically if
and only if the length measure of the closure of the set of branch-
ing points of M (taken in any minimal R-tree that contains M)
is negligible. We also prove that, for any subset M of an R-tree,
every extreme point of the unit ball of F(M) is an element of the
form (δ(x)− δ(y))/d(x, y) for x 6= y ∈M .

1. Introduction

Our goal in this paper is to provide some contributions to the isomet-
ric and isomorphic classification of Lipschitz-free Banach spaces. Let
us start by giving some necessary definitions. Given a pointed metric
space (M,d), i.e. one where we have selected an element 0 as a base
point, we consider the space Lip0(M) of all real-valued Lipschitz func-
tions on M that map the base point to 0. Lip0(M) is then a Banach
space endowed with the norm given by the Lipschitz constant

‖f‖L = sup

{
|f(x)− f(y)|

d(x, y)
: x, y ∈M,x 6= y

}
for f ∈ Lip0(M). Let δ : M → Lip0(M)∗ map each x ∈ M to its
evaluation functional given by 〈f, δ(x)〉 = f(x) for f ∈ Lip0(M). Then
δ is an isometric embedding ofM into Lip0(M)∗, and the space F(M) =
span δ(M) is called the Lipschitz-free space over M . It is well known
that F(M) is an isometric predual of Lip0(M); see the monograph [25]
for reference (where F(M) is denoted Æ(M)).

The structure of Lipschitz-free spaces is not completely understood
to this day. One way to advance this knowledge is to study the possible
embeddings of classical Banach spaces into Lipschitz-free spaces or vice
versa. A major step in this direction was given by Godard [13] when he
proved that F(M) can be linearly isometrically embedded into an L1

space if and only if M can be isometrically embedded into an R-tree.
Let us just say for now that an R-tree is a metric space where each pair

2010 Mathematics Subject Classification. Primary 46B20, 05C05; Secondary
46B25, 54C25.
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of points is connected by a unique path that is isometric to a segment
of R.

In order to discuss the extensions of Godard’s result, we briefly intro-
duce two necessary concepts related to R-trees that will be developed
further later. First, a canonical measure λ called the length measure
may be defined on such a space that extends the concept of Lebesgue
measure in R. Second, an element x of an R-tree T is said to be a
branching point of T if T \ {x} has at least three connected compo-
nents.

Let us now consider the related problem of characterizing all com-
plete metric spaces M such that F(M) can be isometrically embedded
into `1. Since `1 is contained in L1, such a metric space must be a
subset of an R-tree. Godard also showed that if A is a subset of R with
positive measure then F(A) contains an isometric copy of L1. It follows
easily that the same is true for M if λ(M) > 0. Hence M must also
be negligible, i.e. λ(M) = 0. The question immediately arises whether
these necessary conditions are sufficient:

Question 1. If M is a closed subset of an R-tree such that λ(M) = 0,
is it true that F(M) embeds isometrically into some `1(Γ)?

In [9], Dalet, Kaufmann and Procházka provided further insight into
this problem. They showed that F(M) is isometric to `1(Γ) if and only
if M is negligible and moreover contains all branching points. As a
consequence, they gave a positive answer to Question 1 for compact
M based on the following observation: if M is compact and negligible,
then the closure of the set of branching points (taken in any minimal
R-tree that contains M) is also negligible. However, easy examples
show that the observation is not valid in general for non-compact M .

Our first main result shows that the failure of this observation indeed
creates an obstacle for isometric embedding of F(M) into `1. In what
follows, Br(M) denotes the set of branching points of M .

Theorem 1.1. Let M be a complete metric space. Then the following
are equivalent:

(i) F(M) is isometrically isomorphic to a subspace of `1(Γ) for some
set Γ,

(ii) M is a subset of an R-tree such that λ(M) = 0 and λ(Br(M)) = 0.

Despite the negative answer to Question 1, the second main result
in this paper states that, when M is separable, F(M) embeds almost
isometrically into `1 under the specified hypotheses:

Theorem 1.2. Let M be a complete separable metric space. Then the
following are equivalent:

(i) F(M) is (1 + ε)-isomorphic to a subspace of `1 for every ε > 0,
(ii) M is a subset of an R-tree such that λ(M) = 0.
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The proof of the implication (ii)⇒(i) in Theorem 1.2 is constructive.
It consists in perturbing M iteratively with arbitrarily small distortion
in such a way that the end result has its branching points confined into
a closed negligible set. The proof of the other direction is based on a
standard ultraproduct argument and Godard’s theorem.

As a consequence, we obtain the equivalence of the Schur and Radon-
Nikodým properties for Lipschitz-free spaces over subsets of R-trees.
Let us remark that they are known not to be equivalent in general for
subspaces of L1 (see e.g. [4]), and that it is an open problem whether
they are equivalent for all Lipschitz-free spaces.

In relation to this, we also prove that for complete, proper subsets of
R-trees (i.e. such that all closed balls in M are compact), being negli-
gible is equivalent to F(M) being a dual Banach space; see Theorem
4.3.

Finally, we extend a result of Kadets and Fonf [17] about subspaces
of `1 to prove that all extreme points of the unit ball of a subspace of
an L1 space are always preserved, i.e. they are also extreme points of
the bidual ball. Combining this with previous results by Aliaga and
Pernecká [2], we completely characterize the extreme points of the unit
ball of F(M) for any subset M of an R-tree (cf. Corollary 4.5).

Let us conclude this exposition with the obvious remark that R is
itself an R-tree, so all results in this paper apply in particular to closed
subsets M of R.

1.1. Preliminaries. Let us summarize the necessary background and
notation used in this paper. Given a Banach space X, BX will be its
closed unit ball. Let us remark that we will consider exclusively real
scalars. We let (M,d) be a metric space and if M is pointed, its base
point will be called 0. We will denote by

d(x,A) = inf {d(x, a) : a ∈ A}
d(A,B) = inf {d(a, b) : a ∈ A, b ∈ B}

the distance between a subset and either an element or another subset
of M . The characteristic function of a set A will be denoted by 1A.

We now introduce R-trees properly. An R-tree is an arc-connected
metric space (T, d) with the property that there is a unique arc con-
necting any pair of points x 6= y ∈ T and it moreover is isometric to
the real segment [0, d(x, y)] ⊂ R. Such an arc, denoted [x, y], is called
a segment of T and it is immediate that it coincides with the metric
segment

[x, y] = {p ∈ T : d(x, p) + d(p, y) = d(x, y)} .
Given a segment I = [x, y], we will write Io = (x, y) for its interior.

A point x ∈ T is called a leaf of T if T \ {x} is connected, and it
is called a branching point of T if T \ {x} has at least three connected
components. The set of all branching points of T is denoted Br(T ).
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If T is a separable R-tree, then Br(T ) is at most countable, and for
each b ∈ Br(T ) the set T \ {b} has at most countably many connected
components; see [21] for reference.

The isometries φxy : [x, y] → [0, d(x, y)] allow us to define an analog
of the Lebesgue measure, called the length measure, on T as follows.
Given an interval [x, y] in T , let us say that a set E ⊂ [x, y] is measur-
able if φxy(E) is Lebesgue measurable. Next define its length measure
as λ(E) = λ(φxy(E)), where λ also denotes the Lebesgue measure on R
(which coincides with its length measure when considering R as an R-
tree). For an arbitrary E ⊂ T , let us say that E is measurable if E ∩ I
is measurable for any segment I in T , and define its length measure as

λ(E) = sup

{
n∑
k=1

λ(E ∩ Ik) : Ik are disjoint segments in T

}
.

It is well known that R-trees satisfy the following four point condi-
tion: for any x, y, z, w ∈ T , the inequality

(1) d(x, y) + d(z, w) ≤ max {d(x, z) + d(y, w), d(y, z) + d(x,w)}

holds. It is immediate that any subset of an R-tree also satisfies this
condition. Conversely, any metric space M satisfying the four point
condition can be realized as a subspace of an R-tree [5]. In fact, up to
isometry there is a unique minimal R-tree containing M ; we will denote
it by conv(M). If M is a subset of an R-tree T , then conv(M) may be
realized as the union of the segments [x, y] ⊂ T for x, y ∈M , or alterna-
tively as the union of the segments [p, x], x ∈M for any fixed p ∈M ; in
particular, if M is separable then so is conv(M). We may then uniquely
define the length measure on M as the restriction to M of the length
measure on conv(M). We will also denote Br(M) = Br(conv(M)); note
that branching points of M do not necessarily belong to M .

We will consider any R-tree T to have a designated base point 0
which we shall call its root. This allows us to define a partial order 4
on T by saying that x 4 y if x ∈ [0, y]. We will also use the notation
x ≺ y to say that x 4 y and x 6= y. Given any two points x, y ∈ T ,
their order-theoretic meet x ∧ y exists in T with the property that,
for any z ∈ T , z 4 x ∧ y if and only if z 4 x and z 4 y; it is given
by [0, x ∧ y] = [0, x] ∩ [0, y]. If neither x ≺ y nor y ≺ x is true,
then x ∧ y ∈ Br(T ). Let us also mention that for any p ∈ T , the
map x 7→ x ∧ p is continuous. Note that 4 induces (by restriction) a
corresponding partial order on any subset M ⊂ T , with the difference
that meets do not necessarily belong to M .

When considering subsets of T (that contain 0) as pointed metric
spaces, the base point will always be assumed to be the root. We will
say that a mapping ψ : M → N between subsets of R-trees preserves the
order if p 4 q implies ψ(p) 4 ψ(q) for any p, q ∈ M . We will say that
it is an order isomorphism if moreover ψ(p) 4 ψ(q) also implies that
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p 4 q. Notice that any root-preserving isometry between subsets of
R-trees is an order isomorphism, since the order relation is completely
determined by the metric and the choice of the root. In particular,
if x ≺ y then φxy is an order isomorphism, and so it makes sense to
consider infima and suprema of subsets of the segment [x, y] ⊂ T .

Finally, let us collect a few additional facts about R-trees and their
subsets that will be useful later. We omit the simple proofs.

Fact 1.3. If M is a subset of an R-tree and A is a dense subset of M
then Br(A) = Br(M).

Fact 1.4. If M,N are subsets of R-trees and ψ : M → N preserves the
order, then ψ(conv(A)) ⊂ conv(ψ(A)) for any A ⊂M .

Fact 1.5. Let T be a complete R-tree that is a subspace of an R-tree T ′.
Then there is a unique metric projection πT : T ′ → T . In particular if
I is a segment in an R-tree T ′, then there is a metric projection (or
1-retraction) πI : T ′ → I.

Fact 1.6. The nested union of R-trees, the intersection of R-trees and
the completion of an R-tree are again R-trees.

Fact 1.7. Let (Ti, di), i ∈ I, be complete R-trees such that
⋂
i∈I Ti 6= ∅

and di = dj on Ti ∩ Tj for all i, j ∈ I. We define a metric d on
T ′ =

⋃
Ti by

d(x, y) = di(x, πij(x)) + di(πij(x), πij(y)) + dj(πij(y), y)

where i, j ∈ I are such that x ∈ Ti and y ∈ Tj, and πij = πTi∩Tj .
Then d is well defined, (T ′, d) is an R-tree and each (Ti, di) is a metric
subspace of (T ′, d).

2. Lipschitz free spaces over negligible subsets of R-trees

2.1. Isometric embeddings into `1(Γ). Let us start with the full
solution to Question 1. For the convenience of the reader we restate
the result here.

Theorem 1.1. Let M be a complete metric space. Then the following
are equivalent:

(i) F(M) is isometrically isomorphic to a subspace of `1(Γ) for some
set Γ,

(ii) M is a subset of an R-tree such that λ(M) = 0 and λ(Br(M)) = 0.

For a compact metric space M which is a subset of an R-tree,
λ(M) = 0 already implies λ(Br(M)) = 0 by [9, Lemma 7]. Also, there

are easy examples of proper M such that λ(M) = 0 and λ(Br(M)) > 0
(see Example 2.2 below). Finally, let us mention that general results
concerning subspaces of L1 which are isometric to subspaces of `1 ap-
pear in [10]. We prefer to provide a direct self-contained proof here.



6 R. J. ALIAGA, C. PETITJEAN, AND A. PROCHÁZKA

Proof of Theorem 1.1. The implication (ii)⇒(i) follows immediately from
Godard’s work [13, Theorem 3.2]. We now turn to (i)⇒(ii). If F(M)
embeds isometrically into `1(Γ) for some set Γ, then it follows again
from Godard’s work that M is a subset of an R-tree such that λ(M) =

0. So we will assume that λ(Br(M)) > 0 and then show that F(M)
does not embed linearly isometrically into any `1(Γ). To achieve this
goal, we are going to present a two-dimensional subspace of F(M) that
does not embed linearly isometrically into `1 (and so not into any `1(Γ)
either). First, observe a particularity of 2-dimensional subspaces of `1:

Lemma 2.1. Let u, v ∈ `1 \ {0}. Then the second distributional deriv-
ative of R 3 t 7→ ‖u− tv‖1 is a discrete measure (concentrated on the

countable set
{
ui
vi

: i ∈ N, vi 6= 0
}

).

The standard details of the easy proof are left to the reader.
Now, since we assume that λ(Br(M)) > 0, there exists a segment

[a, b] ⊂ conv(M) such that λ([a, b] ∩ Br(M)) > 0. Without loss of
generality, we may assume that 0 4 a ≺ b.

Let π : conv(M) → [a, b] be the metric projection onto [a, b]. Note
that π(Br(M))∩(a, b) ⊂ Br(M). Thus we can find a sequence (qn)∞n=1 ⊂
Br(M) ∩ (a, b) dense in Br(M) ∩ (a, b).

Since b ∈ conv(M), there exists x ∈ M such that b 4 x. We set
v = δ(x). Further, for each n ∈ N there exists xn ∈ M such that
{qn} = Br({0, xn, x}). We set

u =
∞∑
n=1

δ(xn)

2nd(0, xn)
.

To finish the proof, it is enough to show that the second distributional
derivative of t 7→ ‖u− tv‖ has a continuous part. It follows from
Godard’s embedding that

‖u− tv‖ =

∫ d(b,0)

0

|f(s)− t| ds+
∞∑
n=1

d(qn, xn)

2nd(0, xn)
+ |t| d(x, b)

for every t ∈ R, where

f =
∞∑
n=1

1

2nd(0, xn)
1[0,d(0,qn)] ∈ L1[0, d(0, b)].

For every test function ϕ ∈ D(R) we have∫
R

(∫ d(0,b)

0

|f(s)− t| ds

)
ϕ′′(t) dt =

∫ d(0,b)

0

(∫
R
|f(s)− t|ϕ′′(t) dt

)
ds

=

∫ d(0,b)

0

2ϕ(f(s)) ds =

∫
R

2ϕ(s) dνf (s)
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where νf (B) = λ(f−1(B)) for all Borel subsets B of R, i.e. νf is
the push-forward by f of the Lebesgue measure. Thus the second
distributional derivative of t 7→ ‖u− tv‖ is given by 2νf . The set

[0, d(0, b)] \ {d(0, qn) : n ∈ N} is a countable union of relatively open
intervals (In)∞n=1. It is clear that for A = [0, d(0, b)] \

⋃∞
n=1 In we

have λ(A) > 0 and it follows from the definition of f and A that
f−1({f(a)}) = {a} for every a ∈ A. Thus νf is not discrete. �

The following example satisfies the negation of the equivalent condi-
tions stated in Theorem 1.1.

Example 2.2. Let (qn)∞n=1 be an enumeration of Q ∩ (0, 1), and let T
be an R-tree consisting of a segment S of length 1, with the root at
one of its ends, and a sequence of segments (Bn)∞n=1 such that Bn has
length n and is attached to S at a distance qn from the root. Now let
M consist of the leaves of T . Clearly M is closed, proper (its bounded
subsets are finite), and countable, hence λ(M) = 0. However Br(M) is

dense in S and so λ(Br(M)) = 1.
It thus follows from Theorem 1.1 that F(M) does not embed iso-

metrically into `1. Nevertheless, it embeds almost isometrically into `1.
This follows from our Theorem 1.2 but we choose here to provide a very
short proof based on the properness of M . By [18, Proposition 4.3], the
space F(M) is linearly (1 + ε)-isomorphic to a subspace of the `1-sum
of the spaces F(Mk), k ∈ Z, where Mk =

{
x ∈M : d(0, x) ≤ 2k

}
. But

Mk are negligible compact sets, hence each F(Mk) is isometric to a
subspace of `1 by the results in [9] and this is enough.

If we let all segments Bn have a constant length instead, a similar
example is obtained where M is bounded but not proper.

2.2. Almost-isometric embeddings into `1. We now turn to the
second main result. The proof will follow from two more general results
where M is not necessarily negligible. The first one is a version of the
inverse direction of the equivalence stated in Theorem 1.2:

Proposition 2.3. Let M be a pointed metric space such that for every
ε > 0 there is a measure space (Ω,Σ, µ) such that F(M) is (1 + ε)-
isomorphic to a subspace of L1(µ). Then M is a subset of an R-tree.

Proof. For every n ∈ N, let µn be a measure such that there is a linear
operator Tn : F(M)→ L1(µn) satisfying

‖u‖ ≤ ‖Tn(u)‖L1
≤
(

1 +
1

n

)
‖u‖

for every u ∈ F(M). Let U be a non-principal ultrafilter on N and let
(L1(µn))U be the corresponding ultraproduct of the spaces L1(µn). It
is a well known fact that any ultraproduct of L1-spaces is an L1-space.
(see [15, Theorem 3.3]). We define T (x) = [(Tn(x))n] ∈ (L1(µn))U . It
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is standard to check that T is a linear isometric embedding. Thus,
applying [13, Theorem 4.2] we get the conclusion. �

For the opposite direction, we will actually prove a more general re-
sult which shows that separable subsets M of R-trees may be distorted
with an arbitrarily small Lipschitz constant in order to concentrate the
closure of its branching points around M up to a negligible set. The
precise statement follows:

Theorem 2.4. Let M be a complete separable metric space that is a
subset of an R-tree. Then, for every ε > 0, M is (1 + ε)-Lipschitz
homeomorphic to a subset N of an R-tree such that λ(N) = λ(M) and

λ(Br(N) \N) = 0, where the closure is taken in conv(N).

The proof of Theorem 2.4 will be provided in the next section. It is
straightforward to obtain Theorem 1.2 as a consequence. For conve-
nience of the reader, we recall here the statement:

Theorem 1.2. Let M be a complete separable metric space. Then the
following are equivalent:

(i) F(M) is (1 + ε)-isomorphic to a subspace of `1 for every ε > 0,
(ii) M is a subset of an R-tree such that λ(M) = 0.

Proof. Assume (i). Then, on one hand, applying Proposition 2.3, we
know that M is a subset of an R-tree. And on the other hand, M must
be negligible as `1 does not contain L1. Thus (ii) follows.

Now assume (ii), fix ε > 0 and let N be the metric space given by
Theorem 2.4. Then F(M) is linearly (1+ε)-isomorphic to F(N), which

is linearly isometric to a subspace of F(N ∪ Br(N)). Now F(N ∪ Br(N))

is linearly isometric to `1 by [13, Corollary 3.4] as both N and Br(N)
are negligible and closed in conv(N). Hence we get (i). �

As a consequence of Theorem 1.2 we obtain the following:

Corollary 2.5. Let M be a closed subset of an R-tree. Then the fol-
lowing are equivalent:

(i) λ(M) = 0,
(ii) F(M) has the Schur property,

(iii) F(M) has the Radon-Nikodým property.
(iv) F(M) does not contain an isomorphic copy of L1.

Proof. If λ(M) > 0 then F(M) contains L1 isometrically by [13, Corol-
lary 3.4], so (iv) implies (i). Clearly, (ii) or (iii) imply (iv). Now assume
(i). To prove (ii) and (iii), it suffices to show that every closed separable
subspace X of F(M) has the Schur and Radon-Nikodým properties.
But it is easy to see that for any such X there is a closed separable set
K ⊂M such that X ⊂ F(K), and clearly λ(K) = 0 so X is isomorphic
to a subspace of `1 by Theorem 1.2. �
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It is currently unknown whether any of the equivalences (ii)⇔(iii),
(ii)⇔(iv), (iii)⇔(iv) hold in general for Lipschitz-free spaces.

Remark 2.6. Another equivalent condition in Corollary 2.5 can be
stated in terms of the set SNA(M) ⊂ Lip0(M) of strongly norm at-
taining Lipschitz functions on M , i.e. those that attain their Lipschitz
constant between two points of M . By [6, Theorem 2.3 and The-
orem 3.1], we get that the conditions (i)-(iv) are also equivalent to

SNA(M) = Lip0(M).

3. Rearrangements of subsets of R-trees

This section is devoted to proving Theorem 2.4. The proof will be
constructive, repeatedly applying a certain procedure on the tree that
“clears” the branching points contained in a given segment of the tree
so that their measure becomes 0, while keeping the other components
of the tree unmodified. For the sake of economy of language, we shall
give a name to this transformation:

Definition 3.1. Let M be a subset of an R-tree T . A rearrangement
of (M,T ) is a pair (ψ, T ′) where T ′ is an R-tree that contains T and
ψ : T → T ′ is a root-preserving mapping that satisfies the following:

(I) ψ preserves the order on T ,
(II) ψ|M is an order isomorphism, and

(III) there is a constant C > 0 such that

d(p, q) ≤ d(ψ(p), ψ(q)) ≤ C · d(p, q)

for all p, q ∈M .

We will say that the rearrangement has constant C.

It is clear that the composition of rearrangements is again a re-
arrangement, the constant of the result being bounded by the prod-
uct of the respective constants. Condition (III) shows that ψ|M is a
C-Lipschitz homeomorphism between M and ψ(M), and so ψ(M) is
complete if M is. In particular, ψ|M is continuous and injective. How-
ever, ψ need not (and will not) be either, and may e.g. map different
branching points into the same one, or intervals of T into disconnected
sets.

One consequence of the definition is that ψ does not decrease the
length measure of M :

Lemma 3.2. Let M be a closed subset of an R-tree T and let (ψ, T ′)
be a rearrangement of (M,T ). Then λ(ψ(M)) ≥ λ(M).

Proof. We first claim that

(2) λ(M ∩ [x, y]) ≤ λ(ψ(M) ∩ [ψ(x), ψ(y)])
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for any x, y ∈ M such that x 4 y. Indeed, property (II) implies that
ψ(M ∩ [x, y]) = ψ(M) ∩ [ψ(x), ψ(y)]. The desired inequality (2) thus
follows from a corresponding inequality for the Lebesgue measure on R.

Now fix ε > 0 and let Ik for k = 1, . . . , n be disjoint segments in T
such that

λ(M) <
n∑
k=1

λ(M ∩ Ik) + ε.

We may assume that the segments Ik are of the form [x, y] for x ≺ y,
as we may replace [x, y] by [x′, x]∪ [y′, y] where x′ ∈ [x∧ y, x] and y′ ∈
[x∧ y, y] are suitably chosen. Since M is closed, for every k = 1, . . . , n
we have M ∩ Ik = M ∩ [pk, qk] for some pk, qk ∈ M such that pk 4 qk.
Hence (2) implies

n∑
k=1

λ(M ∩ Ik) =
n∑
k=1

λ(M ∩ [pk, qk]) ≤
n∑
k=1

λ(ψ(M) ∩ [ψ(pk), ψ(qk)])

Condition (II) implies that the sets ψ(M) ∩ [ψ(pk), ψ(qk)] are pairwise
disjoint, hence we get λ(M) < λ(ψ(M)) + ε. This completes the proof.

�

Under the same assumptions, we actually also have that λ(ψ(M)) ≤
C · λ(M). Since we do not need this last fact in what follows, we omit
its proof.

Let us now fix a separable R-tree T and a closed subset M ⊂ T . For
points x 6= y ∈ T , we will denote by Txy the union of the connected
components of T \ {x} that do not contain y. Note that Txy = Txy ∪
{x}, and that Txy is connected if and only if x /∈ Br(T ). We will
consider a specific type of rearrangement that modifies the topology of
the branching points contained within a given segment.

Definition 3.3. Let (ψ, T ′) be a rearrangement of (M,T ). We will
say that the rearrangement is subordinated to an interval [x, y] ⊂ T if
it satisfies the following:

(IV) the images under ψ of disjoint connected subsets of T \ [x, y]
are disjoint,

(V) the restriction of ψ to each connected subset of T \ [x, y] is an
isometry, and

(VI) the restriction of ψ to Txy ∪ [x, y] ∪ Tyx is the identity.

The idea here is to change the positions within [x, y] where the con-
nected subtrees are attached, without modifying the subtrees them-
selves. In particular, the length measure of M is preserved by such a
rearrangement:

Lemma 3.4. Let M be a subset of a separable R-tree T and (ψ, T ′) be a
rearrangement of (M,T ) subordinated to an interval. Then λ(ψ(M)) =
λ(M).
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Proof. Since T is separable, Br(T ) is countable and T \ {p} has count-
ably many connected components for any p ∈ T . In particular, if
(ψ, T ′) is subordinated to [x, y] then T \ (Txy ∪ [x, y] ∪ Tyx) has count-
ably many connected components. Enumerate them as An, n ∈ I,
where I is countable. Then

λ(M) = λ(M ∩ (Txy ∪ [x, y] ∪ Tyx)) +
∑
n∈I

λ(M ∩ An).

By conditions (IV)-(VI), ψ is an isometry when restricted to any of
these sets and their images are disjoint, hence

λ(M) = λ(ψ(M ∩ (Txy ∪ [x, y] ∪ Tyx))) +
∑
n∈I

λ(ψ(M ∩ An))

which is clearly equal to λ(ψ(M)). �

3.1. Construction of rearrangements. We will now proceed to prove
a series of lemmas where rearrangements are constructed so that they
are subordinated to intervals of T of increasing coverage.

Lemma 3.5. Let x ≺ y ∈ T \Br(M) be such that [x, y]∩M = ∅, and
ε > 0. Then there is a rearrangement (ψ, T ′) of (M,T ) with constant
1+ε, subordinated to [x, y], such that the set Br(ψ(M))∩ [x, y] is finite.

Proof. Let L = d(M, [x, y]) ·ε/3 and note that L > 0 (since [x, y]∩M =
∅ and M is closed). Find a finite sequence of points

x = z0 ≺ z1 ≺ . . . ≺ zm = y

in [x, y] such that d(zk−1, zk) ≤ L and zk /∈ Br(T ) for k = 1, . . . ,m;
this is possible because Br(T ) is countable.

For any b ∈ Br(T ) ∩ (x, y) consider the connected components of
T \ {b} that contain neither x nor y. There are at most countably
many such components; enumerate them as (An)n and let (bn)n be
the corresponding branching points in [x, y], which we now consider as
their respective roots. Note that we possibly have bm = bn if Am and
An share the same root. We construct a new R-tree T ′ as follows: for
each n, take an isometric copy A′n ∪ {b′n} of An ∪ {bn}, add a segment
B′n of length L at b′n, and attach the end of this segment to zkn , where
kn ∈ N is chosen so that zkn−1 ≺ bn ≺ zkn . Now define the mapping ψ
as follows: for

p ∈ Txy ∪ [x, y] ∪ Tyx = T \
∞⋃
n=1

An

let ψ(p) = p, and for p ∈ An for some n, let ψ(p) = ψn(p) where
ψn : An ∪ {bn} → A′n ∪ {b′n} is the corresponding isometry. The effect
of ψ may also be described as follows: for each p ∈M in a component
An, its distance to [x, y] is increased by L and its meet with y is moved
from bn to zkn . See Figure 1 for reference.
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x = z0 z1 z2 zm−1 y = zm
b1

A1

b2

A2

b3

A3

b4

A4

b5

A5

b6

A6

Txy Tyx

ψ

x = z0 z1 z2 zm−1 y = zm

b′1

L

A′
1

b′2

L

A′
2

b′3

L

A′
3

b′4

L

A′
4

b′5

L

A′
5

b′6

L

A′
6

Txy Tyx

Figure 1. Representation of the construction in Lemma 3.5.

Let us show that (ψ, T ′) is the desired rearrangement of (M,T ).
Indeed, conditions (IV)-(VI) hold trivially. For condition (I), notice
that p 4 q implies that either

• p, q ∈ An for some n, in which case ψ|An∪{bn} = ψn is an isome-
try and therefore an order isomorphism,
• p, q ∈ Txy ∪ [x, y] ∪ Tyx, with a similar conclusion, or
• p ∈ Txy ∪ [x, y] and q ∈ An, in which case p 4 bn ≺ q and
ψ(p) = p 4 bn 4 zkn ≺ ψ(q).

Similar reasoning shows that condition (II) holds, taking into account
that neither M nor ψ(M) intersect the segment [x, y]. It is also clear
by construction that ψ(M) intersects no An and so

Br(ψ(M)) ∩ [x, y] ⊂ {z0, z1, . . . , zm} .

Finally, we will prove that condition (III) holds with C = 1 + ε by
considering all possible pairs of points in M . We have already seen
that ψ|M is an isometry when restricted to Txy ∪Tyx or to any An. For
the remaining cases:

• If a ∈ An and c ∈ Txy ∪Tyx then d(a, c) = d(a, bn)+d(bn, c) and

d(ψ(a), ψ(c)) = d(ψ(a), b′n) + d(b′n, zkn) + d(zkn , c)

= d(a, bn) + L+ d(zkn , c)

= d(a, c) + L+ d(zkn , c)− d(bn, c)

= d(a, c) + L± d(bn, zkn)
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where the sign depends on whether c ∈ Txy or c ∈ Tyx. Since
d(bn, zkn) < L, we get in any case

1 ≤ d(ψ(a), ψ(c))

d(a, c)
≤ 1 +

2L

d(a, c)
< 1 + ε.

• If a ∈ An and â ∈ An̂ with kn = kn̂ = k, then we have

d(a, â) = d(a, bn) + d(bn, bn̂) + d(bn̂, â)

and

d(ψ(a), ψ(â)) = d(ψ(a), b′n) + d(b′n, zk) + d(zk, b
′
n̂) + d(b′n̂, ψ(â))

= d(a, bn) + 2L+ d(bn̂, â)

= d(a, â) + 2L− d(bn, bn̂).

Since d(bn, bn̂) < L, we obtain

1 ≤ d(ψ(a), ψ(â))

d(a, â)
≤ 1 +

2L

d(a, â)
< 1 + ε.

• If a ∈ An and â ∈ An̂ where kn 6= kn̂, then again

d(a, â) = d(a, bn) + d(bn, bn̂) + d(bn̂, â)

and

d(ψ(a), ψ(â)) = d(ψ(a), b′n) + d(b′n, zkn) + d(zkn , zkn̂)

+ d(zkn̂ , b
′
n̂) + d(b′n̂, ψ(â))

= d(a, bn) + L+ d(zkn , zkn̂) + L+ d(bn̂, â)

= d(a, â) + 2L+ d(zkn , zkn̂)− d(bn, bn̂)

= d(a, â) + 2L± (d(bn, zkn)− d(bn̂, zkn̂))

where the sign depends on which of kn, kn̂ is greater. In any
case

1 ≤ d(ψ(a), ψ(â))

d(a, â)
≤ 1 +

3L

d(a, â)
≤ 1 + ε.

This covers all cases and ends the proof. �

In the following lemma we will deal with the situation when x and
y are allowed to be elements of M .

Lemma 3.6. Let x ≺ y ∈M be such that (x, y) ∩M = ∅, and ε > 0.
Then there is a rearrangement (ψ, T ′) of (M,T ) with constant 1 + ε,
subordinated to [x, y], such that the set Br(ψ(M)) ∩ (x, y) is countable
and its accumulation points are contained in {x, y}.

Proof. Choose a doubly infinite sequence (zk)k∈Z of elements in (x, y)
such that zk ≺ zk′ if k < k′, limk→−∞ zk = x, and limk→∞ zk = y.
Since Br(T ) is countable, we may choose them so that Br(T ) does not
intersect Z = {zk : k ∈ Z}. Then (x, y) \ Z is the disjoint union of the
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open intervals Iok = (zk−1, zk) for k ∈ Z. Express T \ Z as a partition
into connected components

T \ Z = A−∞ ∪

(
∞⋃

k=−∞

Ak

)
∪ A∞

where Iok ⊂ Ak for k ∈ Z and we denote A−∞ = Txy, A∞ = Tyx,
z−∞ = x and z∞ = y.

For each k ∈ Z, let Ik = [zk−1, zk] and

εk = ε ·min

{
dk

dk + d(zk−1, x)
,

dk
dk + d(zk, y)

}
< ε

where dk = d(M, Ik) > 0, and use Lemma 3.5 to obtain a rearrangement
(ψk, Tk) of (M,T ) subordinated to Ik with constant 1 + εk, such that
Br(ψk(M)) ∩ Ik is finite. By Fact 1.6, we may assume that each Tk is
complete. Notice that, since (ψk, Tk) is a rearrangement subordinated
to Ik, point (VI) implies Txy ∪ [x, y] ∪ Tyz is a subset of Tk for every k.
Thus, we may define an R-tree metric on T ′ =

⋃
k∈Z Tk as in Fact 1.7

and define ψ : T → T ′ by

ψ(p) =

{
ψk(p) if p ∈ Ak for some k ∈ Z
p otherwise

.

We claim that (ψ, T ′) is the desired rearrangement. Indeed, since every
ψk restricts to the identity outside of Ak, conditions (IV)-(VI) follow
from the corresponding conditions for the ψk. Notice also that

Br(ψ(M)) ∩ (x, y) =
∞⋃

k=−∞

Br(ψ(M)) ∩ Ik =
∞⋃

k=−∞

Br(ψk(M)) ∩ Ik

is a countable union of finite sets that has no accumulation points other
than (possibly) x and y.

To check condition (III), let p ∈ M ∩ Am and q ∈ M ∩ An where
m,n ∈ Z∪{−∞,∞}. If m = n then the inequalities follow from εn ≤ ε
and the properties of ψn (or from isometry, if n = ±∞). Otherwise
suppose m < n. Then we have

d(p, q) = d(p, zm) + d(zm, zn−1) + d(zn−1, q)

= d(p, y)− d(zm, y) + d(zm, zn−1) + d(x, q)− d(x, zn−1)

and similarly

d(ψ(p), ψ(q)) = d(ψ(p), y)− d(zm, y)

+ d(zm, zn−1) + d(x, ψ(q))− d(x, zn−1)

hence

d(ψ(p), ψ(q))− d(p, q) = d(ψm(p), y)− d(p, y) + d(ψn(q), x)− d(q, x).
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Since ψm and ψn are rearrangements and x, y ∈ M , this quantity is
between 0 and εmd(p, y) + εnd(q, x). Now notice that

εmd(p, y) ≤ ε
dm

dm + d(zm, y)
(d(p, zm) + d(zm, y)) ≤ εd(p, zm)

and similarly εnd(q, x) ≤ εd(q, zn−1), so we get

d(ψ(p), ψ(q)) ≤ d(p, q) + εd(p, zm) + εd(zn−1, q) ≤ (1 + ε)d(p, q)

as required.
For condition (I), suppose similarly that p ∈ Am and q ∈ An with

m < n are such that p 4 q. Then p 4 zm 4 zn−1 4 q and it follows

ψ(p) 4 ψ(zm) = zm 4 zn−1 = ψ(zn−1) 4 ψ(q)

where the first and last inequalities are implied by the properties of
ψm and ψn. The cases where p or q are in Z are handled similarly.
Finally, if p, q ∈M and ψ(p) 4 ψ(q), then either both are in the same
An, in which case p 4 q follows from order isomorphism of ψn, or
ψ(p) ∈ A−∞ so that p = ψ(p) and p 4 q follows easily. This proves
condition (II). �

Finally, we extend the construction to arbitrary points x, y of T :

Lemma 3.7. Let x ≺ y ∈ T , and ε > 0. Then there is a rearrangement
(ψ, T ′) of (M,T ) with constant 1 + ε, subordinated to [x, y], such that
the set

(Br(ψ(M)) \ ψ(M)) ∩ (x, y)

is countable and its accumulation points are contained in ψ(M)∪{x, y}.

Proof. Since M is closed, (x, y) \M is the disjoint union of at most
countably many open intervals Iok = (xk, yk), k ∈ N, where xk, yk ∈ M
and xk ≺ yk. For each k ∈ N, use Lemma 3.6 to obtain a rearrangement
(ψk, Tk) of (M,T ) subordinated to Ik = [xk, yk] and with constant 1+ε,
such that Br(ψk(M)) ∩ Iok is countable and discrete. As before, Tk can
be taken complete and Txy ∪ [x, y] ∪ Tyx ⊂ Tk for every k. Thus, we
may define an R-tree metric on T ′ =

⋃
k∈N Tk as in Fact 1.7 and define

ψ : T → T ′ by

ψ(p) =

{
ψk(p) if p ∈ Ak for some k ∈ N
p otherwise

where Ak is the connected component of T \ (M ∩ [x, y]) that contains
Iok . Then (ψ, T ′) is a rearrangement of (M,T ) subordinated to [x, y],
as can be proven mimicking the arguments in the proof of Lemma 3.6.
Moreover, given two points p, q ∈ M in different components of T \
(M ∩ [x, y]) there is always z ∈M ∩ (p, q) ∩ (ψ(p), ψ(q)), and one gets
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that ψ has constant 1 + ε by applying the corresponding inequalities
to d(ψ(p), z) and d(ψ(q), z). It is also clear that

(Br(ψ(M)) \ ψ(M)) ∩ (x, y) = Br(ψ(M)) ∩ ((x, y) \M)

=
⋃
k

Br(ψk(M)) ∩ Iok

is a countable set and that all of its accumulation points are contained
in ψ(M) ∪ {x, y}. �

3.2. Proof of Theorem 2.4. We are now ready to finish the promised
proof. For convenience, we restate the theorem here.

Theorem 2.4. Let M be a complete separable metric space that is a
subset of an R-tree. Then, for every ε > 0, M is (1 + ε)-Lipschitz
homeomorphic to a subset N of an R-tree such that λ(N) = λ(M) and

λ(Br(N) \N) = 0, where the closure is taken in conv(N).

Proof. Let T = conv(M) and choose an element 0 ∈M as its root. Let
(ξn)∞n=1 be a dense sequence in M , and let (xn)n be the subsequence
obtained by eliminating all elements ξn such that ξn 4 ξk for some
k < n. We may assume that (xn)n is an infinite sequence, otherwise

M is compact and λ(Br(M) \M) = 0 by the argument in [9, Lemma
7] so there is nothing to prove. Denote

Qn = conv {0, x1, . . . , xn} =
n⋃
k=1

[0, xk]

so that Qn ( Qn+1 for all n. Let

Q =
∞⋃
n=1

Qn = conv({0} ∪ {xn : n ∈ N})

and M ′ = M ∩Q. Notice that M ′ contains all of M except possibly for
some leaves of T that are accumulation points of M ′, hence Q ∪ (M \
M ′) = T and M ′ is dense in M . Notice also that Q = conv(M ′) and
so Br(Q) = Br(M ′) = Br(M) using Fact 1.3.

Choose a sequence (εn)∞n=1 of strictly positive numbers such that
∞∏
n=1

(1 + εn) ≤ 1 + ε.

Apply Lemma 3.7 to obtain a rearrangement (ψ1, T1) of (M,T ) with
constant 1 + ε1, subordinated to I1 = [0, x1], such that the set

B1 = (Br(ψ1(M)) \ ψ1(M)) ∩ Io1
is countable and each of its accumulation points is either 0, x1 or an
element of ψ1(M). Now define inductively for each n ∈ N

bn = max
1≤k≤n

(Ψn(xn+1) ∧Ψn(xk))
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where Ψn = ψn◦ . . .◦ψ1 (notice that all elements lie in [0,Ψn(xn+1)], so
it makes sense to take the maximum), and use Lemma 3.7 to construct
a rearrangement (ψn+1, Tn+1) of (Ψn(M), Tn) that has constant 1+εn+1,
is subordinated to the segment

In+1 = [bn,Ψn(xn+1)]

and such that the set

Bn+1 = (Br(Ψn+1(M)) \Ψn+1(M)) ∩ Ion+1

is countable and each of its accumulation points is either bn, Ψn(xn+1)
or an element of Ψn+1(M). Let us also follow the convention that
b0 = 0 and Ψ0 is the identity on T . Note that λ(Ψn(M)) = λ(M) for
all n ∈ N by Lemma 3.4 and induction.

We now claim the following:

Claim 1. If m > n then ψm restricts to the identity on
⋃n
k=1[0,Ψn(xk)].

Proof of Claim 1. By induction, it is enough to show that ψn+1 restricts
to the identity on [0,Ψn(xn)]. Let U be the component of Tn \ Ion+1

that contains 0; since ψn+1 is subordinated to In+1, it will suffice to
check that [0,Ψn(xn)] ⊂ U , i.e. that Ψn(xn) ∈ U . To see this, notice
that bn ∈ U as bn 4 Ψn(xn+1), and moreover Ψn(xn+1) ∧ Ψn(xn) 4 bn
by definition, therefore [bn,Ψn(xn)] ⊂ U . �

For every p ∈ Q, define Ψ(p) = Ψn(p) where n ∈ N is such that
p ∈ Qn. Claim 1 ensures that this definition is independent of the
choice of n. Let us observe that

Ψ(xn) = Ψn(xn) = Ψn−1(xn)

for any n ∈ N. Indeed, the first equality follows from xn ∈ Qn, and
the second one from the fact that ψn is subordinated to a segment
containing Ψn−1(xn). Note also that all the Ψ(xn) are different, since
the restriction of each Ψn to M is injective.

Let T ′ be the completion of
⋃∞
n=1 Tn, which is an R-tree by Fact 1.6.

It is easy to see that (Ψ, T ′) is a rearrangement of (M ′, Q) with constant
1 + ε. Indeed, let p, q ∈ Q, then we may find n ∈ N such that p, q ∈
Qn and therefore Ψ(p) = Ψn(p) and Ψ(q) = Ψn(q). Since every Ψn

preserves the order and is an order isomorphism when restricted to M ,
the same is true for Ψ. And if p, q ∈M ′, then we have

d(p, q) ≤ d(Ψn(p),Ψn(q)) ≤ d(p, q) ·
n∏
k=1

(1 + εk) ≤ (1 + ε)d(p, q)

for every n ∈ N. Now extend Ψ|M ′ continuously to a mapping ψ : M →
T ′, and define Ψ(p) = ψ(p) for p ∈M \M ′, then it is clear that (Ψ, T ′)
is a rearrangement of (M,T ) with constant 1 + ε.

Let N = Ψ(M) = Ψ(M ′). Then N is (1+ε)-Lipschitz homeomorphic
to M and Lemma 3.2 implies that λ(N) ≥ λ(M). To prove the reverse
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inequality, let δ > 0 and Jk, k = 1, . . . , n be disjoint segments in T ′

such that

λ(N) <
n∑
k=1

λ(N ∩ Jk) + δ.

As in the proof of Lemma 3.2, we may assume that Jk = [Ψ(pk),Ψ(qk)]
for pk, qk ∈ M and pk 4 qk. In fact, we may assume that pk, qk ∈ M ′

since M \M ′ consists of leaves of T . Therefore there is n0 ∈ N such that
pk, qk ∈ Qn0 for all k = 1, . . . , n. This implies that N ∩ Jk ⊂ Ψn0(M):
indeed, if a ∈ N ∩ Jk then a = ψ(z) for some z ∈ M and (II) implies
that z ∈ [pk, qk] ⊂ Qn0 . Hence

n∑
k=1

λ(N ∩ Jk) ≤
n∑
k=1

λ(Ψn0(M) ∩ Jk) ≤ λ(Ψn0(M)) = λ(M)

so λ(N) < λ(M) + δ. Since δ was arbitrary, λ(N) ≤ λ(M) follows.
To complete the proof of the theorem, it only remains to be shown

that λ(Br(N)\N) = 0. In order to do that, let us denote B =
⋃∞
n=1Bn.

We will prove the following statements:

Claim 2. If m > n then Iom ∩ [0,Ψ(xn)] = ∅.

Claim 3. Br(Ψ(M ′)) ∩ [0,Ψ(xn)] ⊂ Ψ(M ′) ∪B1 ∪ . . . ∪Bn.

Claim 4. (B \N) ∩Ψ(Q) is a countable set.

Using these claims, we finish our proof as follows. Since any el-
ement of Br(Ψ(M ′)) necessarily belongs to some [0,Ψ(xn)], Claim 3
implies that Br(Ψ(M ′)) ⊂ Ψ(M ′) ∪ B. By Fact 1.3 we have Br(N) =

Br(Ψ(M ′)), and so we get Br(N) ⊂ N ∪ B. Thus, it is enough to
show that B \ N is a negligible subset of T ′. Claim 4 shows that the
intersection of B \ N with any segment of the form [0, x], x ∈ Ψ(M ′)
is negligible, hence also for x ∈ N . It follows that λ(B \ N) = 0 and
this completes the proof of the theorem. �

Proof of Claim 2. Suppose p ∈ Iom is such that p 4 Ψ(xn). Since p ≺
Ψ(xm) we get p 4 Ψ(xm) ∧Ψ(xn) 4 bm−1, but this contradicts bm−1 ≺
p. �

Proof of Claim 3. Suppose p ∈ Br(Ψ(M ′)) \ Ψ(M ′) is such that p 4
Ψ(xn). Then p = Ψ(xn)∧Ψ(q) for some q ∈M ′. Since q ∈ Q, we have
p = Ψ(xn) ∧Ψ(xm) for some m ∈ N such that q 4 xm. Now let i, j be
chosen to minimize the value of i among all representations of p of the
form p = Ψ(xi) ∧ Ψ(xj) where i < j. We will show that p ∈ Bi. This
will prove the claim, as obviously i ≤ n.

First, let us see that p ∈ Ioi . Indeed, this is obvious for i = 1, and
for i > 1 the contrary would imply that

p 4 bi−1 = Ψ(xi) ∧Ψ(xk) 4 Ψ(xk)
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for some k < i, and so

p = Ψ(xi) ∧Ψ(xj) = bi−1 ∧Ψ(xj) = Ψ(xk) ∧Ψ(xj)

contradicting the minimality of i.
Now notice that p ∈ Br(Ψj(M)). By Claim 1, the map φ = ψj ◦

ψj−1 ◦ . . .◦ψi+1 restricts to the identity on [0,Ψ(xi)] and thus φ(p) = p.
Since φ preserves the order, and moreover p /∈ Iok for i < k ≤ j by
Claim 2, we have p = Ψi(xj) ∧ Ψi(xi) ∈ Br(Ψi(M)). But p ∈ Ioi so we
have either p ∈ Bi or p ∈ Ψi(M), and the latter is excluded because it
implies p ∈ Ψ(M ′). This finishes the proof. �

Proof of Claim 4. Let k ∈ N and q ∈ B ∩ [0,Ψ(xk)]. Then there is a
sequence (qn)∞n=1 inB that converges to q, therefore qn∧Ψ(xk) converges
to q∧Ψ(xk) = q. At least one of the following three options must hold:

• q = Ψ(xk) ∈ Ψ(M ′) ∩ [0,Ψ(xk)].
• We may choose a subsequence (qni

) of (qn) such that qni
∈

[0,Ψ(xk)] for all i. Then we have q ∈ (B1 ∪ . . . ∪Bk) ∩ [0,Ψ(xk)]
by Claim 3.
• We may choose a subsequence (qni

) of (qn) such that qni
/∈

[0,Ψ(xk)] and qni
∧Ψ(xk) 6= Ψ(xk) for all i. Then qni

∧Ψ(xk) ∈
Br(Ψ(Q)) and thus

q ∈ Br(Ψ(Q)) ∩ [0,Ψ(xk)] ⊂ Br(Ψ(M ′)) ∩ [0,Ψ(xk)]

where we use Fact 1.4.

Using Claim 3, we get that

B ∩ [0,Ψ(xk)] ⊂ N ∪
k⋃

n=1

Bn ∩ [0,Ψ(xk)].

which covers all three cases. By construction, Bn is the union of a
countable set and a subset of Ψn(M). Hence (B \ N) ∩ [0,Ψ(xk)] is
countable. The claim now follows since

(B \N) ∩Ψ(Q) ⊂
∞⋃
k=1

(
(B \N) ∩ [0,Ψ(xk)]

)
by Fact 1.4. �

4. The proper case and extremal structure

Now we turn to the study of the linear structure of F(M) when M
is a proper subset of an R-tree with length measure 0. To this aim,
we need to introduce the space of little Lipschitz functions. In the
literature, there are conflicting definitions of the little Lipschitz spaces.
Here we choose to follow the book by Weaver (see Chapter 4 in [25])
and then we will comment on the links there are with other definitions.

Definition 4.1. Let (M,d) be a pointed metric space and let f ∈
Lip0(M). We will say that f is
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• locally flat if for every p ∈ M and every ε > 0, there exists
δ > 0 such that

x, y ∈ B(p, r) =⇒ |f(x)− f(y)| ≤ εd(x, y).

In other words, limr→0

∥∥f |B(p,r)

∥∥
L

= 0 for every p ∈M .
• uniformly locally flat if for every ε > 0, there exists δ > 0 such

that

d(x, y) ≤ δ =⇒ |f(x)− f(y)| ≤ εd(x, y).

• flat at infinity if for every ε > 0 there exists a compact set
K ⊂M such that

x, y 6∈ K =⇒ |f(x)− f(y)| ≤ εd(x, y).

Note that if M is proper, then we may replace the compact set K
in the last statement by a ball B(0, r) of some radius r > 0. More
precisely, for a proper metric space M , f ∈ Lip0(M) is flat at infinity
if limr→∞

∥∥f |M\B(0,r)

∥∥
L

= 0. We now introduce the so called space of
little Lipschitz functions.

Definition 4.2. Let lip0(M) be the subspace of all functions in Lip0(M)
that are uniformly locally flat and flat at infinity.

It follows from [25, Lemma 4.16] that if f is flat at infinity then it
is uniformly locally flat if and only if it is locally flat. Note that every
f ∈ Lip0(M) is flat at infinity when M is compact, hence lip0(M)
consists of the locally flat elements of Lip0(M) in that case, which
is consistent with the notation used elsewhere. In other references
e.g. [7, 11, 24], the space lip0(M) is denoted S0(M) (while lip0(M)
encompasses just those elements of Lip0(M) that are uniformly locally
flat). In fact, the definition that these authors give for S0(M) slightly
differs from ours in full generality, but it coincides whenever M is
proper (see [25, Lemma 4.18]).

In [7, Theorem 3.8], Dalet proves that lip0(M) is an isometric predual
of F(M) whenever M is proper and ultrametric, i.e. it satisfies the
strong triangle inequality

d(x, z) ≤ max {d(x, y), d(y, z)}
for every x, y, z ∈ M . It is immediate that every ultrametric space M
satisfies the four point condition (1) and that every metric segment in
M is trivial, i.e. only contains the endpoints, so M is a subset of an
R-tree such that λ(M) = 0. The following theorem can therefore be
regarded as a generalization of Dalet’s result.

Theorem 4.3. Let M be an infinite proper metric space that is a subset
of an R-tree. Then the following are equivalent:

(i) λ(M) = 0,
(ii) F(M) is isomorphic to `1,
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(iii) F(M) is a dual space,
(iv) F(M) = lip0(M)∗,

and if they hold, then lip0(M) is isomorphic to c0. If M is compact,
then the following condition is also equivalent:

(v) F(M) is isometric to a subspace of `1.

Under the same assumptions, it is clear that conditions (i)–(iv) are
also equivalent to any of the following ones:

(vi) F(M) has the Schur property,
(vii) F(M) has the Radon-Nikodým property,

(viii) F(M) does not contain L1.

The equivalence of (i), (vi), (vii) and (viii) stays true even if we remove
the assumption of properness, see Corollary 2.5. When M is finite all
of the above properties are trivially satisfied, replacing c0 and `1 by
their finite-dimensional counterparts.

Proof of Theorem 4.3. Let T be a separable R-tree containing M .
(i)⇒(iv): According to arguments in [7] or [25, Theorem 4.38], we

only need to show that lip0(M) separates points of M 1-uniformly, that
is, given x 6= y ∈ M and ε > 0, we will find f ∈ lip0(M) such that
‖f‖L ≤ 1 and f(y)− f(x) ≥ d(x, y)− ε.

Let I be the segment [x, y] ∈ T . It is clear that φxy(I\M) is the union
of a (possibly finite) sequence of disjoint open subintervals (In)∞n=1 of
[0, d(x, y)], and we have

∑∞
n=1 λ(In) = d(x, y). Let N be such that∑∞

n=N+1 λ(In) ≤ ε. We can now assume that In = (an, bn) for n ≤ N
and that a1 < b1 ≤ a2 < . . . < bN . Define g : R→ R by

g =
N∑
n=1

(
n∑
k=1

d(ak, bk)

)
1[bn,an+1]

with the convention aN+1 = d(x, y). It is easy to see that the restriction
of g to φxy(I ∩ M) is 1-Lipschitz and locally constant. Extend this
restriction to h : [0, d(x, y)]→ R with ‖h‖L = 1.

Now let f be the restriction of h ◦ φxy ◦ π to M , where π : T → I is
the metric projection onto I (see Fact 1.5). Then ‖f‖L = 1 and

f(y)− f(x) =
N∑
k=1

d(ak, bk) =
∞∑
n=1

λ(In)−
∞∑

n=N+1

λ(In)

≥ d(x, y)− ε.

Moreover, it is clear that f is locally constant at every p ∈ M , so it
is locally flat. Finally we check that f is flat at infinity. Let r > 0
and K = {p ∈M : d(p, I) ≤ r}, and suppose that p, q ∈ M \ K. If
p, q lie on the same connected component of T \ I, then f(p) = f(q).
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Otherwise, d(p, q) ≥ 2r and so

|f(p)− f(q)|
d(p, q)

≤ d(x, y)

2r
.

So, subtracting a constant if necessary, we get f ∈ lip0(M) and this
ends the proof.

(iv)⇒(iii): This is trivial.
(iii)⇒(ii): We use a variation of the argument in [7]. By a re-

sult in [22], vector-valued Lipschitz mappings on M may be extended
to T while increasing their Lipschitz constant by a universal factor.
Use this to extend the isometric embedding δM : M → F(M) to a
Lipschitz mapping f : T → F(M), then apply the universal prop-
erty of Lipschitz-free spaces [25, Theorem 3.6] to obtain an operator
F : F(T )→ F(M) such that F ◦δT = f . Then F (δM(x)) = F (δT (x)) =
f(x) = δM(x) for all x ∈ M , so F is a projection onto F(M). This
shows that F(M) is complemented in F(T ), which is isometric to L1(T )
by [13, Corollary 3.3]. We finish by applying [20, Theorem 2], which
states that if a complemented subspace of an L1 space is a separable
dual then it must be isomorphic to `1.

(ii)⇒(i) and (v)⇒(i): Suppose that λ(M) > 0. Then F(M) is iso-
morphic to L1 by [13, Corollary 3.4], so it cannot be isomorphic to a
subspace of `1.

If M is compact then the implication (i)⇒(v) is contained in [9,
Proposition 8].

Finally, notice that, since M is proper, lip0(M) is isomorphic to a
subspace of c0 by [7, Lemma 3.9] (we remark that a correct proof of this
lemma appears in [8]). If conditions (ii) and (iv) hold then lip0(M)∗

is isomorphic to `1, so lip0(M) is a L∞ space and the results in [16]
imply that it is actually isomorphic to c0. �

We conclude this section by characterizing the extreme points of the
ball of F(M) when M is a subset of an R-tree. In [17, Theorem 2],
Kadets and Fonf proved that if a Banach space X is isometric to a
subspace of `1 then every extreme point of BX is strongly extreme (or
MLUR, using their notation) and hence preserved [14]. Here we adapt
this theorem to subspaces of L1(µ). We will use the following fact [14,
Proposition 9.1]: x is a preserved extreme point of BX if and only if
given two sequences (yn)∞n=1 and (zn)∞n=1 in BX such that 1

2
(yn+zn)→ x

one must have yn
w→ x.

Theorem 4.4. Let (Ω,Σ, µ) be a measure space and X be a subspace
of L1(µ). Then every extreme point of BX is preserved.

Notice that the theorem can be applied directly to C(K)∗ where K
is a compact Hausdorff space, since this is also an L1-space as is well
known (see [1]).
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Proof. Suppose f is an extreme point of BX but it is not preserved.
Then there exist sequences (gn)∞n=1, (hn)∞n=1 in X such that ‖gn‖1 → 1
and ‖hn‖1 → 1, 1

2
(gn + hn) = f for all n ∈ N, and (gn)∞n=1 does not

converge weakly to f . Assume that {gn : n ∈ N} is relatively weakly
compact. Then by the Eberlein-Šmulian theorem every subsequence
of (gn)∞n=1 admits a further subsequence, say (gnk

), which weakly con-
verges to some g ∈ BX . It follows that hnk

= 2f − gnk
also weakly

converges to 2f − g ∈ BX . Since f is extreme we get that g = f . This
implies that (gn)∞n=1 converges weakly to f which is a contradiction.
Thus {gn : n ∈ N} is not relatively weakly compact.

First, let us finish the proof for µ being a probability measure. We
may apply the Dunford-Pettis theorem to conclude that {gn : n ∈ N}
is not equi-integrable. Hence, there exists ε > 0 such that for ev-
ery n there are An ⊂ Ω and kn > kn−1 such that µ(An) ≤ 1

n
and∫

An
|gkn| dµ ≥ ε. When n is large enough that ‖gkn‖1 and ‖hkn‖1 are

smaller than 1 + ε
4
, it follows that

∫
Ω\An

|gkn| dµ ≤ 1− 3ε
4

and

1− ε

4
≥
∫

Ω\An

∣∣∣∣gkn + hkn
2

∣∣∣∣ dµ =

∫
Ω\An

|f | dµ→ 1.

This contradiction finishes the proof.
Now assume that (Ω,Σ, µ) is a general measure space. It follows

from the Bohnenblust-Kakutani-Nakano theorem (see [23, 4.8.3.3] or
[19, p. 136]) that there exist finite measures (µi)i∈I such that

L1(µ) =

(∑
i∈I

L1(µi)

)
1

.

Thus every element f ∈ L1(µ) can be considered as a (possibly trans-
finite) countably supported sequence of functions which are integrable
with respect to different measures µi. We will refer to its support in
this sense.

Let I0 be the union of the supports of all involved functions: f , fn,
gn, hn. Thus they all belong to

(∑
i∈I0 L1(µi)

)
1

and it is clear that this

space is isometric to L1(ν) for some σ-finite measure ν. It is standard
(see [1, Section 5.1]) that this implies that it is also isometric to L1(κ)
for some probability measure κ. Therefore, since f is extreme in BL1(ν),
the proof of the probability measure case implies that it is preserved
extreme. This contradiction finishes the proof. �

If we consider in particular X = F(M) when M is a subset of an
R-tree then we get the following consequence:

Corollary 4.5. Let M be a complete subset of an R-tree. Then γ ∈
F(M) is an extreme point of BF(M) if and only if

(3) γ =
δ(x)− δ(y)

d(x, y)
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for some x 6= y ∈ M such that [x, y] ∩ M = {x, y}. Moreover, all
extreme points of BF(M) are preserved and exposed.

Proof. The implication “⇐” and the fact that any extreme point of the
form (3) is exposed have been proved in [3, Theorem 3.2]. The impli-
cation “⇒” follows from Theorem 4.4, the fact that F(M) ⊆ L1(µ) for
some measure µ [13] and the fact that, in Lipschitz-free spaces, pre-
served extreme points of the unit ball have the form (3) [25, Corollary
3.44]. �

Note that, although all extreme points of BF(M) are preserved and
exposed, not all of them are necessarily strongly exposed even if M is
compact, as showcased e.g. by [12, Example 6.4].
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