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Abstract

We study the long-time behaviour of the growth-fragmentation equation, a nonlocal
linear evolution equation describing a wide range of phenomena in structured population
dynamics. We show the existence of a spectral gap under conditions that generalise
those in the literature by using a method based on Harris’s theorem, a result coming
from the study of equilibration of Markov processes. The difficulty posed by the non-
conservativeness of the equation is overcome by performing an h-transform, after solving
the dual Perron eigenvalue problem. The existence of the direct Perron eigenvector is
then a consequence of our methods, which prove exponential contraction of the evolution
equation. Moreover the rate of convergence is explicitly quantifiable in terms of the dual
eigenfunction and the coefficients of the equation.
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1 Introduction and main result

The growth-fragmentation equation is a linear, partial integro-differential equation which is
commonly used in structured population dynamics for modelling various phenomena including
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the time evolution of cell populations in biology such as in [1, 11, 12, 22, 35, 50, 57, 63, 65],
single species populations [66], or carbon content in a forest [23]; some aggregation and growth
phenomena in physics or biophysics as in [6, 28, 41, 43, 55, 56]; neuroscience in [25, 62] and
even TCP/IP communication protocols such as in [3, 10, 31]. The general form of the growth-
fragmentation equation is given by:

∂

∂t
n(t, x) +

∂

∂x
(g(x)n(t, x)) +B(x)n(t, x) =

∫ +∞

x
κ(y, x)n(t, y) dy, t, x > 0,

n(t, 0) = 0, t ≥ 0,

n(0, x) = n0(x), x > 0,

(1)

where n(t, x) represents the population density of individuals structured by a variable x > 0
at a time t ≥ 0. The structuring variable x could be age, size, length, weight, DNA content,
biochemical composition etc. depending on the modelling context. Here we refer to it as ‘size’
for simplicity. Equation (1) is coupled with an initial condition n0(x) at time t = 0 and a
Dirichlet boundary condition which models the fact that no individuals are newly created at
size 0. The function g is the growth rate and B is the total division/fragmentation rate of
individuals of size x ≥ 0. The fragmentation kernel κ(y, x) is the rate at which individuals
of size x are obtained as the result of a fragmentation event of an individual of size y. When
fixing x, κ(x, ·) is a nonnegative measure on (0, x]. The total fragmentation rate B is always
obtained as

B(x) =

∫ y

0

y

x
κ(x, y) dy, x > 0. (2)

Important particular cases are

κ(x, y) = B(x)
2

x
δ{y=x

2
},

which corresponds to the mitosis process, suitable for modelling of biological cells, where
individuals can only break into two equal fragments; and

κ(x, y) = B(x)
2

x
,

which is the case with uniform fragment distribution, where fragmentation gives fragments of
any size less than the original one with equal probability. This case is used for example in
modelling the dynamics of polymer chains, as in [41].

Two opposing dynamics, growth and fragmentation, are balanced through Equation (1).
The growth term tends to increase the average size of the population and the fragmentation
term increases the total number of individuals but breaks the population into smaller sizes. If
the growth rate g(x) vanishes, then only fragmentation takes place and the equation is known
as the pure fragmentation equation. Similarly when B and κ are both 0, Equation (1) is the
pure growth equation.

We are concerned here with the mathematical theory of this equation, and more precisely
with its long-time behaviour as t→ +∞. Under suitable conditions on the coefficients κ and
g, the typical behaviour is that the total population tends to grow exponentially at a rate
eλt, for some λ > 0, and the normalised population distribution tends to approach a universal
profile for large times, independently of the initial condition. This has been investigated in a
large amount of previous works, of which we give a short summary. The first mathematical
study of this type of equation was done in [35] for the mitosis case, in a work inspired by some
biophysical papers [11, 12, 66]. In [35], the authors considered the mitosis kernel with the size
variable in a bounded interval and proved exponential growth at a rate λ, and exponentially fast
approach to the universal profile. In [60], the authors considered the size variable in (0,+∞)
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and introduced the general relative entropy method for several linear PDEs including the
growth-fragmentation equation. They proved relaxation to equilibrium in Lp spaces without
an explicit rate. Following [64] and [54], providing an explicit rate of convergence to a universal
profile under reasonable assumptions became a topic of research for many other works. New
functional inequalities were proved in [26, 27] in order to obtain explicit rates of convergence,
see also [46]. Some authors used a semigroup approach [2, 5, 7, 15, 40, 47, 61] or a probabilistic
approach [10, 16, 17, 18, 19, 20, 21, 23, 29, 30, 31, 32], and some authors provided explicit
solutions as in [69]. In this paper we are able to give more general results regarding the speed
of convergence to equilibrium: we obtain constructive results which cover a wide range of
bounded and unbounded fragmentation rates, and which apply both in mitosis and uniform
fragmentation situations.

When the equal mitosis kernel is considered, there is a special case with a linear growth
rate where the solutions exhibit oscillatory behaviour in long time. This property was first
proved mathematically in [47] when the equation is posed in a compact set. Recently, this
result was extended to (0,+∞) by the general relative entropy argument in suitable weighted
L2 or measure spaces in [13, 45] and by means of Mellin transform in L1 space by [68].

An important tool when studying the asymptotic behaviour of (1) is the Perron eigen-
value problem: finding a positive eigenfunction for the operator which defines the equation,
associated to a simple, real eigenvalue which is also equal to the spectral radius; see [38, 59]
for general existence results. In [4], the authors gave some estimates on the principal eigen-
functions of the growth-fragmentation operator, giving their first order behaviour close to 0
and +∞. Then they proved a spectral gap result by means of entropy–entropy dissipation
inequalities, with tools similar to those of [26, 27]. They assumed that the growth and the
fragmentation coefficients behave asymptotically like power laws.

In this paper we use a probabilistic approach, namely Harris’s theorem, for showing the
spectral gap property. We give a novel approach based on estimating solutions to the PDE,
and obtain results which can be applied to general growth and fragmentation rates including
mitosis and uniform fragmentation cases. Detailed hypotheses and results are given later in
this introduction. The method is also completely constructive and gives explicit estimates.
However, in some cases these estimates depend on estimates on the first dual eigenfunction,
which may be not easy to obtain, but constitute a separate question. After stating our results
we also give a brief comparison to other spectral gap results in the literature.

Applications of this type of argument into biological and kinetic models which can be
described as Markov processes is becoming a subject of many works recently, and has been
extended to models which are not Markov processes but share similar properties. The prede-
cessor of Harris’s theorem, namely Doeblin’s argument is used in [44] for proving exponential
relaxation of solutions to the equilibrium for the conservative renewal equation. In [25] and
[39], the authors study population models which describe the dynamics of interacting neu-
rons, structured by elapsed-time in [25] or by voltage in [39], and existence of a spectral gap
property in the ‘no-connectivity’ setting is proved by Doeblin’s Theorem. Moreover, there
are some recent works for the extension of this method into the non-conservative setting. In
[8], the authors consider several types of linear PDEs including a growth-diffusion model with
time-space varying environment and some renewal equations with time-fluctuating (e.g. pe-
riodic) coefficients. They provide quantitative estimates in total variation distance for the
associated non-conservative and non-homogeneous semigroups by means of generalized Doe-
blin’s conditions. The full Harris’s theorem is used in [21, 23] for deriving exponential con-
vergence to the equilibrium in the conservative form of the growth-fragmentation equation.
In the present work, we are interested in the long time behaviour of the more challenging
non-conservative case, namely when no quantity is preserved along time. Our method is in
the spirit of [9], where a non-conservative version of Harris’s Theorem is proposed and applied
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to the growth-fragmentation equation with constant growth rate g and increasing total divi-
sion rate B, see also [33] for an application to a mutation-selection model which is similar to
growth-fragmentation. The difference here is that we first build a solution to the dual Perron
eigenproblem by using Krein-Rutman’s theorem and a maximum principle. Then we take
advantage of the dual eigenfunction to perform a so-called (Doob) h-transform [36], similarly
as in [7, 32], in order to apply Harris’s theorem. It allows us to consider very general growth
and fragmentation rates. The drawback is that the spectral gap is given explicitly in terms of
the dual eigenfunction, for which quantitative estimates are in general hard to obtain. How-
ever, for certain specific coefficients that are worth of interest, the dual eigenfunction is known
explicitly. It is the case of the so-called self-similar fragmentation equation, widely studied in
the literature, for which we provide new quantitative estimates on the spectral gap.

Let us now precise the functional analytic setting of our work and what we mean by
solutions to Equation (1). We are interested in measure solutions to this equation, which is
a relevant notion in population dynamics, see e.g. [24, 44]. We say that a family (n(t, ·))t≥0

of positive measures on (0,+∞) is a solution to Equation (1) if for all f ∈ C1
c ([0,+∞)) the

function t 7→ 〈n(t, ·), f〉 is continuously differentiable and for all t ≥ 0

d

dt
〈n(t, ·), f〉 = 〈n(t, ·),L∗[f ]〉, (3)

where
L∗[f ](x) := g(x)

∂

∂x
f(x) +

∫ x

0
κ(x, y)f(y) dy −B(x)f(x)

is the dual operator of the growth-fragmentation operator

L[n](x) := − ∂

∂x
(g(x)n(x))−B(x)n(x) +

∫ +∞

x
κ(y, x)n(y) dy,

which appears in Equation (1). We refer to [9, 45] for (the method of) proof that Equation (1)
is well-posed in the set of positive (or signed Radon) measures µ such that the weighted total
variation norm

‖µ‖V =

∫ +∞

0
V (x)|µ|(dx) (4)

is finite, when V (x) = xk + xK with k ≤ 0 and K > 1.

The Perron eigenvalue problem consists of finding suitable eigenelements (λ,N, φ) with
λ > 0 and N,φ : (0,+∞)→ [0,+∞), N,φ 6≡ 0, satisfying the following:

L[N ] = λN, (gN)(0) = 0, (5)

L∗[φ] = λφ. (6)

If such a triple exists then λ is actually the dominant eigenvalue of Equation (1), and the
solution is expected to converge to a universal profile whose shape is given by the eigenfunction
N(x). The convergence rate is given by the gap between the dominant eigenvalue λ > 0 and
the rest of the spectrum. If we scale the equation by defining m(t, x) := n(t, x)e−λt we obtain:

∂

∂t
m(t, x) +

∂

∂x
(g(x)m(t, x)) + (B(x) + λ)m(t, x) =

∫ +∞

x
κ(y, x)m(t, y) dy, t, x ≥ 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(7)
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We remark that N(x) is the stationary solution of Equation (7) and φ(x) provides a conser-
vation law for (7) since

d

dt

∫ +∞

0
φ(x)m(t, x) dx = 0.

Since the existence and uniqueness of the eigenelements provide useful information about the
long time behaviour of the growth-fragmentation equation (1), it has been a popular topic of
research. We refer to [38] for a general recent result. From now on we consider Equation (7)
instead of Equation (1) since it is more convenient to study the long-time behaviour of the
former and we can easily recover the nature of the latter.

We now list all the assumptions we need throughout the paper.

As we will explain in Section 3, Harris’s method relies on a local Doeblin’s minorisation
condition. The computations for checking this condition strongly depend on the fragmentation
kernel. In [25] a global Doeblin condition is proved (for a similar equation) for kernels κ which
satisfy, for some ε, η, x∗ > 0, the condition that κ(x, y) ≥ ε for all x ∈ [0, η] and y ≥ x∗. Here
we rather consider kernels that are of self-similar form, which is commonly assumed in the
literature about spectral gaps for the growth-fragmentation equation [4, 9, 15, 27, 30, 61] and
includes the classical kernels appearing in applications (in particular equal or unequal mitosis
and uniform fragment distribution, see below).

Hypothesis 1.1. We assume that κ(x, y), the fragmentation kernel, is of the self-similar form
such that

κ(x, y) =
1

x
p
(y
x

)
B(x), for y > x > 0,

where p, the “fragment distribution”, is a nonnegative measure on (0, 1] such that zp(z) is a
probability measure; that is, ∫

(0,1]
zp(z) dz = 1.

Remark 1.1. It is useful to define pk, for k ∈ R, as the k-th moment of p:

pk :=

∫ 1

0
zkp(z) dz.

With this notation, Hypothesis 1.1 ensures that p1 = 1, so the relation (2) is guaranteed.

Our next hypothesis states that we consider only the two extreme cases of the fragment
distribution, namely the very singular equal mitosis case and the very smooth uniform fragment
distribution. One can find conditions for our methods to work in intermediate cases, but we
have preferred to give simple proofs that show both singular and smooth cases can be treated:

Hypothesis 1.2. We assume that the fragment distribution p is either the one corresponding
to the equal mitosis:

p( dz) = 2δ 1
2
( dz) (8)

or the uniform fragment distribution:

p( dz) = 2 dz. (9)

Remark 1.2. We restrict to these two particular fragmentation kernels because they naturally
appear in the modelling of natural phenomena. They are also good representatives of two
opposite mathematical situations: a very regular, strictly positive case and a singular case
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which is positive only at z = 1/2. However, the results which we prove to be valid for the
uniform kernel can be readily extended to self-similar kernels with p satisfying

p(z) ≥ c > 0 for all z in some interval (z1, z2) ⊆ (0, 1) (10)

and either

p0 < +∞ if
∫ 1

0

1

g(x)
dx < +∞,

or

∃k < 0 with pk < +∞ if
∫ 1

0

1

g(x)
dx = +∞.

In the particular case of the linear growth rate, g(x) = x, it is enough to assume that

∃k < 1 with pk < +∞.

Notice that under condition (10), similarly as for (8) and (9), the function k 7→ pk is strictly
decreasing on the interval where it takes finite values. (The only case in which pk is not strictly
decreasing is that of p(z) concentrated at z = 1, which actually means no fragmentation at all
is happening.)

In the case of constant growth rate, a more general condition than (10) is assumed in [9]
that covers the unequal mitosis kernels p( dz) = δα( dz) + δ1−α( dz) with 0 < α < 1. In our
proofs we can also consider this generalisation with straightforward modifications when the
growth rate g satisfies forthcoming Hypothesis 1.4.

Regarding non self-similar kernels, there are results of exponential convergence to the
stationary distribution in the literature, but only for bounded fragmentation rates; see [54, 62]
for PDE-based arguments and [17, 19, 30] for a probabilistic point of view. We also point out
that an optimal condition on the fragment distribution is given in [17] for a spectral gap to
exist (for bounded fragmentation rates).

Next we have a general assumption on the growth rate g and the total fragmentation
rate B:

Hypothesis 1.3. We assume that g : (0,+∞)→ (0,+∞) is a locally Lipschitz function such
that g(x) = O(x) as x → +∞ and g(x) = O(x−ξ) as x → 0 for some ξ ≥ 0. The total
fragmentation rate B : [0,+∞)→ [0,+∞) is a continuous function and the following holds∫ 1

0

B(x)

g(x)
dx < +∞, xB(x)

g(x)
−→
x→0

0,
xB(x)

g(x)
−→
x→+∞

+∞. (11)

This assumption is very mild, and is always present in the previous works to ensure the
existence of an equilibrium and a dual eigenfunction. If B behaves like a power of exponent b
and g behaves like a power of exponent a, conditions (11) are equivalent to the more familiar
b−a+1 > 0. The condition g = O(x) for large x ensures that the characteristics corresponding
to the growth part are defined for all times (i.e., clusters do not grow to infinite size in finite
time). A stronger assumption which is implicit in Hypothesis 1.3 is that B is bounded above
on intervals of the form [0, R] (since it is continuous there), so we do not allow fragmentation
rates B which blow up at 0. This is used in the proof of Lemma 5.1.

A consequence of Hypothesis 1.3, later we will need the following:

There exists tB > 0 such that B is bounded below by a positive quantity
on any interval of the form [tB, θ] with θ > tB.

(12)

One sees this from the last limit in (11), which implies that for large enough tB we have

B(x) ≥ g(x)

x
.
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This easily implies (12), since g(x)/x is continuous and strictly positive, so bounded below by
some positive quantity on any compact interval.

Our last assumption gives a stronger requirement on the growth rate g when the mitosis
kernel is considered. In this case, some additional requirement is necessary, since when the
linear growth rate with equal mitosis is considered, it is known that there is no spectral gap
[13, 45, 68]. We point out that the sharp assumption of “there exists a point x > 0 with
g(2x) 6= 2g(x)” is enough to show convergence to the profile N , without a rate and only in
particular cases, as proved in [65, Section 6.3.3]. Our assumption is stronger than this, but
also leads to a stronger result:

Hypothesis 1.4. When p is the equal mitosis kernel (8), we assume that the growth rate g
satisfies

ωg(x) < g(ωx) for all x > 0 and ω ∈ (0, 1),

H(z) :=

∫ z

0

1

g(x)
dx < +∞ for all z > 0,

and also H−1 (the inverse of H) does not grow too fast, in the sense that for all r > 0 we have

lim
z→+∞

H−1(z + r)

H−1(z)
= 1. (13)

If we consider just powers, examples of growth and fragmentation rates which satisfy all
of the above are

B(x) = xb, g(x) = xa

with:

• any b ≥ 0, −∞ < a ≤ 1 in the uniform fragment distribution case, excluding the case
(b, a) = (0, 1).

• any b ≥ 0, −∞ < a < 1 in the mitosis case.

Under Hypothesis 1.1, the rescaled growth-fragmentation equation (7) takes the form:

∂

∂t
m(t, x) +

∂

∂x
(g(x)m(t, x)) + c(x)m(t, x) = A(t, x), t, x ≥ 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(14)

where
c(x) := B(x) + λ

and

A(t, x) :=

∫ +∞

x

B(y)

y
p

(
x

y

)
m(t, y) dy.

According to Hypothesis 1.2, we only allow p(z) = 2 or p(z) = 2δ 1
2
(z).

Our main result is given by the following theorem:
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Theorem 1.3. Assume that Hypotheses 1.1, 1.2, 1.3, and 1.4 are satisifed. Then there exists
a solution (λ,N, φ) to the Perron eigenvalue problem (5)-(6) with the normalization

∫
N =∫

φN = 1, λ > 0, and there exist C, ρ > 0 such that the solution n = n(t, x) ≡ nt(x) to
Equation (1) with initial data given by a nonnegative finite measure n0 with ‖n0‖V < +∞
satisfies ∥∥∥∥e−λtnt − (∫ φn0

)
N

∥∥∥∥
V

≤ Ce−ρt
∥∥∥∥n0 −

(∫
φn0

)
N

∥∥∥∥
V

for all t ≥ 0, (15)

where the weight V of the total variation norm ‖ · ‖V defined in (4) is given by

V (x) = 1 + xK , 1 + ξ < K if
∫ 1

0

1

g(x)
dx < +∞,

V (x) = xk + xK , −1 < k < 0, 1 + ξ < K if
∫ 1

0

1

g(x)
dx = +∞.

In the specific case of g(x) = x, the weight V (x) can be taken to be

V (x) = xk + xK , −1 < k < 1 < K.

It is worth noticing that we obtain a spectral gap in spaces with essentially optimal weights.
Indeed it was proved in [14] that there is no spectral gap in weighted L1 space with the dual
eigenfunction φ when B is bounded (see the estimates in Theorem 2.1 below).

To the best of our knowledge, even the existence of the Perron eigenelements in such
generality is new (allowing a total fragmentation rate with any growth at infinity, and with
no required connectivity condition on its support), and hence so is the existence of a spectral
gap. However, since our approach for the existence of the principal eigenfunction N is a
byproduct of the contraction result provided by Harris’s theorem, this precludes the case of
self-similar fragmentation with equal mitosis and growth rate g(x) = x, for which convergence
to a universal profile does not hold, as we already mentioned. In that case the existence of a
Perron eigenfunction has to be tackled with other spectral methods, as in [38, 51, 53, 59].

Note also that our result is valid for the measure solutions of Equation (1), thus improving
the result in [34] where the general relative entropy method is extended to measure solu-
tions, providing convergence to Malthusian behaviour but without a rate and under restrictive
assumptions on the coefficients.

Regarding the assumptions on the coefficients, the only existing spectral gap results that
consider general growth rates are the ones in [4] and [15]. In theses papers, the fragmentation
rate is assumed to behave like a power law, which we relax here by only requiring Hypothesis 1.3
on B. The other results in the literature focus on constant or linear growth rates and, except
in [9], they also consider division rates that grow like power laws.

Finally, when explicit estimates are available for φ, our method allows us to derive quan-
titative estimates on the spectral gap. It is the case for instance when g(x) = x since then
φ(x) = x. An important particular case is to consider additionally that B(x) = xb for some
b > 0. This corresponds to the so-called self-similar fragmentation equation, which appears as
a rescaling of the pure fragmentation equation, see e.g. [37, 42]. To illustrate the quantification
of the spectral gap, we prove that for the homogeneous fragmentation kernel and the choice
V (x) = 1 + x2, the inequality (15) holds true for

ρ =

− log
(

1− α

2(1 + 2α)

)
2 log 2

(16)
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where

α = 2 log 2Rb+3e−2(4R)b/b with R = 80
(15

2

) 1
b
+ b

2
.

This seems to simplify the computable bound in [61, Proposition 6.7]. It can also be compared
to [46] where the spectral gap in L2(x dx) is proved to be at least 1

2 , but only for b ≥ 2.
Similarly as in [61], our method also allows for deriving explicit estimates for more general
fragmentation kernels since it does not change the function φ.

Historically, the first explicit spectral gap was obtained for constant growth and division
rates and the equal mitosis kernel in [64], and then in [10, 31]. The conditions were relaxed [54]
and in particular general fragmentation kernels were considered. Our method also allows to get
explicit spectral gap in the case of constant growth rates, when the division rate is affine and the
fragmentation kernel is self-similar. Indeed if g(x) = 1 and B(x) = ax+b, then we easily check
that φ(x) = αx+1 with α = (p0−1)b

2

[√
1 + 4a

(p0−1)b2
−1
]
, where we recall that p0 is the mass of

the self-similar kernel p, and the Perron eigenvalue is given by λ = (p0−1)b
2

[√
1 + 4a

(p0−1)b2
+ 1
]
.

It is a particular case of the one treated in [9] where B is only assumed to be non-increasing,
but it extends the historical case of constant division rate.

This paper is organized as follows: We devote Section 2 to showing existence of the dual
eigenfuction and some bounds on it. In Section 3, we recall some introductory concepts from
the theory of Markov processes and state Harris’s Theorem 3.3 based on the previous literature.
Eventually for the proof of Theorem 1.3 which is given by applying Harris’s theorem, we need
to have Hypotheses 3.2 and 3.3 satisfied for Equation (14). In Sections 4 and 5, we prove that
Hypotheses 3.2 and 3.3 are verified for Equation (14), respectively. Finally in Section 6 we
give the proof of Theorem 1.3 and the computations leading to (16).

2 Existence of the dual eigenfunction

In this section, we prove the following theorem which implies existence and boundedness of
the dual Perron eigenfunction φ, a solution to the dual eigenproblem (6):

Theorem 2.1 (Existence and bounds on the eigenfunction φ). We assume that Hypotheses
1.1 and 1.3 hold true and assume also that p0 < +∞. Then there exist a continuous function
φ which is a solution to Equation (6) and C > 0 such that for any k > 1;

0 < φ(x) ≤ C(1 + xk) for all x > 0.

Additionally we have φ(0) > 0 when
∫ 1

0
1
g < +∞ and φ(0) = 0 when

∫ 1
0

1
g = +∞.

Notice that our only assumption on p is that p0 < +∞ (see Remark 1.2). We prove this
theorem at the end of the section.

Following the idea introduced in [64] and also used in [4, 38], we begin with defining a
truncated version of the dual Perron eigenproblem (6) in an interval [0, R] for some R > 0:

−g(x)
∂

∂x
φR(x) + (B(x) + λR)φR(x) =

B(x)

x

∫ R

0
p
(y
x

)
φR(y) dy,

φR(x) > 0 for x ∈ (0, R), φR(R) = 0.

(17)

Now we give some lemmas which will be used in the proof of Theorem 2.1. The existence of
a solution to Equation (17) is a consequence of the Krein-Rutman theorem (see the appendices
in [38] and [4]). Moreover in [4], the authors proved that there exists R0 > 0 large enough
such that for all R > R0 we have λR > 0. We thus have the following result:
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Lemma 2.2. For any R > 0, the truncated dual Perron eigenproblem (17) admits a solution
(λR, φR) with φR a Lipschitz function. Moreover there exists R0 > 0 such that λR > 0 for all
R > R0.

Before proving uniform estimates on (λR, φR), we first recall a maximum principle. We
begin by defining an operator L∗R, acting on once-differentiable functions ϕ ∈ C1([0, R]):

L∗Rϕ(x) := −g(x)ϕ′(x) + (λR +B(x))ϕ(x)− B(x)

x

∫ x

0
p
(y
x

)
ϕ(y) dy.

We have the following maximum principle, see [38, Appendix C] or [4, Section 3.2]:

Lemma 2.3. Suppose that ϕ(x) ≥ 0 for x ∈ [0, A] for some A ∈ (0, R) with ϕ(R) ≥ 0 and
L∗Rϕ(x) > 0 on [A,R]. Then ϕ(x) ≥ 0 on [0, R].

This maximum principle allows us to get a uniform upper bound on φR, for a suitable
normalization.

Lemma 2.4. Consider that Hypotheses 1.1 and 1.3 are satisfied, and that p0 < +∞. For any
k > 1, there exists A > 0 such that if φR is normalized such that

sup
x∈[0,A]

φR(x) = 1, (18)

then for all R > max{A,R0} and for all x ∈ (0, R] we have

0 < φR(x) ≤ 1 + xk.

Additionally, φR(0) > 0 when
∫ 1

0
1
g < +∞ and φR(0) = 0 when

∫ 1
0

1
g = +∞.

Proof. For the bound from above we want to use the maximum principle in Lemma 2.3.
Therefore we want to prove that L∗Rϕ(x) > 0 for x ∈ (A,R) with A ∈ (0, R) as in Lemma 2.3.
We take ϕ(x) = 1 + xk for some k > 1. Then for R ≥ R0 we have

L∗Rϕ(x) = λR(1 + xk)− kg(x)xk−1 +B(x)

(
(1 + xk)− 1

x

∫ x

0
(1 + yk)p

(y
x

)
dy

)
= λR(1 + xk)− kg(x)xk−1 +B(x)(1 + xk − p0 − xkpk)

> xk−1
(
−kg(x)−B(x)x1−k + (1− pk)B(x)x

)
:= %(x)

since p0 = 2 and 0 < pk < 1 = p1 for k > 1. Moreover assuming (11) gives that behaviour of %
will be dominated by the positive term (1− pk)B(x)xk > 0. Therefore, we can find A(k) > 0
such that for all A(k) < x < R, we have L∗Rϕ(x) > 0. We fix such a A > 0 and normalize φR
by (18). Then by the maximum principle in Lemma 2.3 we obtain that φR(x) ≤ 1 + xk. The
positivity or nullity of φR(0) is a direct consequence of [4, Theorem 1.10].

Lemma 2.5. Under Hypotheses 1.1 and 1.3 with p0 < +∞, there exists a constant C > 0
such that λR ≤ C for all R > R0.

Proof. Since φR is continuous and by (18), there exists xR ∈ [0, A] such that φR(xR) = 1.
Notice that necessarily xR > 0 when

∫ 1
0

1
g = +∞, since φR(0) = 0 is the case. Moreover, the

equation L∗RφR = 0 ensures that for all x > 0 we have(
φR(x) exp

(
−
∫ x

xR

λR +B(s)

g(s)
ds

))′
= − B(x)

xg(x)
exp

(
−
∫ x

xR

λR +B(s)

g(s)
ds

)∫ x

0
p
(y
x

)
φR(y) dy.

10



By integrating this from xR to x ≥ xR;

φR(x) exp

(
−
∫ x

xR

λR +B(s)

g(s)
ds

)
− 1

= −
∫ x

xR

B(y)

yg(y)
exp

(
−
∫ y

xR

λR +B(s)

g(s)
ds

)∫ y

0
p

(
z

y

)
φR(z) dz dy.

By using the upper bound on φR we obtain, for R > R0,

φR(x) exp

(
−
∫ x

xR

λR +B(s)

g(s)
ds

)
≥ 1−

∫ x

xR

B(y)

yg(y)
exp

(
−
∫ y

xR

λR +B(s)

g(s)
ds

)∫ y

0
p

(
z

y

)
(1 + zk) dz dy

≥ 1−
∫ x

xR

B(y)

g(y)
exp

(
−
∫ y

xR

λR +B(s)

g(s)
ds

)(
p0 + pky

k
)

dy.

Since φR(R) = 0 we deduce that for all R > R0,∫ R

xR

B(y)

g(y)
exp

(
−
∫ y

xR

λR +B(s)

g(s)
ds

)(
p0 + pky

k
)

dy ≥ 1, (19)

and this enforces λR to be bounded from above. Indeed, otherwise, there would exist a sequence
(Rn)n≥0 and x∞ ∈ [0, A] such that

Rn → +∞, λRn → +∞, xRn → x∞.

But in that case, since

1[xRn ,Rn](y)
B(y)

g(y)
exp

(
−
∫ y

xRn

λRn +B(s)

g(s)
ds

)(
p0 + pky

k
)

≤ B(y)

g(y)
exp

(
−
∫ y

A

B(s)

g(s)
ds

)(
p0 + pky

k
)

and the latter function is integrable on [0,+∞) (carry out an integration by parts and use (11)),
the dominated convergence theorem ensures that∫ Rn

xRn

B(y)

g(y)
exp

(
−
∫ y

xRn

λRn +B(s)

g(s)
ds

)(
p0 + pky

k
)

dy → 0,

which contradicts (19).

Lemma 2.6. Under Hypotheses 1.1 and 1.3 with p0 < +∞, |φ′R(x)| is uniformly bounded on
compact intervals for all R > R0.

Proof. By the equation L∗RφR(x) = 0 and bounds on φR(x) and λR we obtain

|φ′R(x)| = λRφR(x)

g(x)
+
B(x)

g(x)

∣∣∣∣φR(x)− 1

x

∫ x

0
p
(y
x

)
φR(y) dy

∣∣∣∣
≤ λR
g(x)

(1 + xk) +
B(x)

g(x)

∣∣∣∣1 + xk − 1

x
(1 + xk)

∫ x

0
p
(y
x

)
dy

∣∣∣∣
≤ λR
g(x)

(1 + xk) +
B(x)

g(x)

∣∣∣∣1 + xk − 1

x
(1 + xk)xp0

∣∣∣∣
≤ λR
g(x)

(1 + xk) +
B(x)

g(x)
|1− p0|,

which gives a bound on φ′R(x) for all R > R0, taking into account that λR is uniformly bounded
for all R > R0 thanks to Lemma 2.5.
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Proof of Theorem 2.1. Lemmas 2.2, 2.4, 2.5 and 2.6 give the proof. Since there exists a solution
to the truncated dual Perron eigenproblem (17) for any R > 0 by Lemma 2.2, it only remains
to prove that the terms are bounded in order to pass to the limit as R→ +∞. We provide the
bounds on φR, λR and φ′R by Lemmas 2.4, 2.5, 2.6 respectively. These bounds ensure that we
can extract a subsequence of (λR) which converges to λ > 0 and a subsequence of (φR) which
converges locally uniformly to a limit φ which satisfies 0 < φ(x) ≤ 1 +xk. Clearly (λ, φ) is the
solution to the dual Perron eigenproblem (6), and φ 6≡ 0 since supx∈[0,A] φ(x) = 1. Similarly,
the proof of the positivity or nullity of φ(0) is a direct consequence of [4, Theorem 1.10].

3 Harris’s Theorem

In this section, we state Harris’s theorem based on [48] and [49]. The original idea comes
from the study of discrete-time Markov processes and dates back to Doeblin and [52] where
conditions of existence and uniqueness of having an equilibrium (or an invariant measure)
for a Markov process are investigated. It is a probabilistic method which relies on both a
minorisation property and a drift condition (also called Foster-Lyapunov condition), which we
describe below.

We use Harris’s theorem applied to continuous-time Markov processes in order to show
that solutions to rescaled growth-fragmentation equation (14), under suitable assumptions,
converge towards a universal profile at an exponential rate.

We assume that Ω is a Polish space and (Ω,Σ) is a measurable space together with its
Borel σ-algebra Σ, so that Ω endowed with any probability measure is a Lebesgue space.
Moreover we denote the space of finite measures on Ω byM(Ω) and the space of probability
measures on Ω by P(Ω).

A discrete-time Markov process x is defined through a transition probability function. A
linear, measurable function S : Ω× Σ 7→ P(Ω) is a transition probability function if S(x, ·) is
a probability measure for every x and x 7→ S(·, A) is a measurable function for every A ∈ Σ.
By using the transition probability function we can define the associated Markov operator S
acting on the space of signed measures on Ω and its adjoint S∗ acting on the space of bounded
measurable functions ϕ : Ω 7→ [0,+∞) in the following way:

(Sµ)(A) =

∫
Ω
S(x,A)µ( dx), (S∗ϕ)(x) =

∫
Ω
ϕ(y)S(x, dy).

On the other hand, a continuous-time Markov process is no longer described by a single
transition function, but by a family of transition probability functions St defined for each time
t > 0, with the property that the associated operators St satisfy

• the semigroup property: Ss+t = SsSt,

• and S0 is the identity, or equivalently, S0(x, ·) = δx for all x ∈ Ω.

We notice that St is linear, mass preserving and positivity preserving. An invariant measure of
a continuous-time Markov process (St)t≥0 is a probability measure µ on Ω such that Stµ = µ
for every t ≥ 0, and it is the main concept we need to investigate when studying the asymptotic
behaviour of a Markov process.

Let us state Doeblin’s and Harris’s theorems along with some hypotheses. We always
assume (St)t≥0 is a continuous-time Markov semigroup. For their proofs we refer to [58] or
[48, 49].

Hypothesis 3.1 (Doeblin’s condition). There exists a time t0 > 0, a probability distribution
ν and a constant α ∈ (0, 1) such that for any initial condition x0 in the domain we have:

St0δx0 ≥ αν.
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Using this we prove the following theorem:

Theorem 3.1 (Doeblin’s Theorem). If we have a Markov semigroup (St)t≥0 satisfying Doe-
blin’s condition (Hypothesis 3.1) then for any two finite measures µ1 and µ2 and any integer
n ≥ 0 we have that ∥∥Snt0(µ1 − µ2)

∥∥
TV
≤ (1− α)n ‖µ1 − µ2‖TV .

As a consequence, the semigroup has a unique invariant probability measure µ∗, and for all
probability measures µ:

‖St(µ− µ∗)‖TV ≤ Ce
−ρt ‖µ− µ∗‖TV , t ≥ 0,

where
C :=

1

1− α
> 0, ρ :=

− log(1− α)

t0
> 0.

Harris’s theorem is an extension of Doeblin’s theorem to situations in which one cannot
prove a uniform minorisation condition as in Hypothesis 3.1. This is often the case when the
state space is unbounded. Instead, we use Doeblin’s condition only in a given region, and then
show that the stochastic process will return to that region often enough. This is established
by finding a so-called Lyapunov, or Foster-Lyapunov function. Both conditions then imply the
existence of a spectral gap in a weighted total variation norm. Precisely, we need the following
two hypotheses to be satisfied:

Hypothesis 3.2 (Foster-Lyapunov condition). There exist γ ∈ (0, 1), K ≥ 0, some time
t0 > 0 and a measurable function V : [0,+∞) 7→ [1,+∞) such that

(S∗t0V )(x) ≤ γV (x) +K, (20)

for all x.

Remark 3.2. When our continuous continuous-time Markov process is obtained by solving a
particular PDE we often denote

(Stm0)(x) ≡ m(t, x),

where m is the solution to the PDE with initial condition m0. Then the previous condition is
equivalent to ∫

Ω
m(t0, x)V (x) dx ≤ γ

∫
Ω
m0(x)V (x) dx+K,

to be satisfied for all m0 ∈ P(Ω). One can verify this by proving the inequality

d

dt

∫
Ω
m(t, x)V (x) dx ≤ −λ

∫ +∞

0
m(t, x)V (x) dx+D

for some positive constants D and λ, which then implies (20) with γ = e−λt0 and K = D/λ.

The next hypothesis is a minorisation condition like Hypothesis 3.1, but only on a suffi-
ciently large region:

Hypothesis 3.3 (Small set condition). There exist a probability measure ν, a constant α ∈
(0, 1) and some time t0 > 0 such that

St0δx0 ≥ αν,

for all x0 ∈ C, where
C = {x : V (x) ≤ R}

for some R > 2K/(1− γ) where K, γ are as in Hypothesis 3.2.
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Finally we state Harris’s theorem under these hypotheses:

Theorem 3.3 (Harris’s Theorem). If we have a Markov semigroup (St)t≥0 satisfying Hypothe-
ses 3.2 and 3.3 then there exist β > 0 and ᾱ ∈ (0, 1) such that

‖St0µ1 − St0µ2‖V,β ≤ ᾱ ‖µ1 − µ2‖V,β .

for all nonnegative measure
∫
µ1 =

∫
µ2, where the norm ‖ · ‖V,β is defined by

‖µ1 − µ2‖V,β :=

∫
(1 + βV (x))|µ1 − µ2| dx.

Moreover, the semigroup has a unique invariant probability measure µ∗ and there exist C > 0
and ρ > 0 (depending only on t0, α, γ,K,R and β) such that

‖St(µ− µ∗)‖V,β ≤ Ce
−ρt ‖µ− µ∗‖V,β for all t ≥ 0.

Explicitly if we set γ0 ∈ [γ + 2K/R, 1) for any α0 ∈ (0, α) we can chose β = α0/K and
ᾱ = max {1− α+ α0, (2 +Rβγ0)/(2 +Rβ)}. Then we have C = 1/ᾱ and ρ = −(log ᾱ)/t0.

Proofs of Theorems 3.1 and 3.3 can be found for example in [48, 49, 58, 67].

4 Foster-Lyapunov condition

In this section we prove that Hypothesis 3.2 is verified for the semigroup generated by rescaled
growth-fragmentation equation (14), when we consider the evolution of f(t, x) := φ(x)m(t, x).
We divide the proof of Hypothesis 3.2 into three cases which require slightly different calcula-
tions.

4.1 Linear growth rate

First we treat the linear growth case g(x) = x with a constant fragmentation kernel. (As
remarked before, we do not consider the mitosis kernel when g(x) = x since there is no spectral
gap in that case). In this case the Perron eigenvalue and the corresponding dual eigenfunction
are known (λ = 1 and φ(x) = x), and the rescaled growth-fragmentation equation is given by

∂

∂t
m(t, x) +

∂

∂x
(xm(t, x)) = 2

∫ +∞

x

B(y)

y
m(t, y) dy − (B(x) + 1)m(t, x), (21)

coupled with the usual initial and boundary conditions.

Lemma 4.1. We consider Equation (21) under Hypotheses 1.1, 1.3 with a growth rate g(x) = x
and the constant fragment distribution p(z) = 2 for z ∈ (0, 1]. Then the following holds true for
any K > 1 > k > −1, for some C1, C̄ > 0, and any nonnegative measure solution m = m(t, x):∫ +∞

0
V (x)f(t, x) dx ≤ e−C1t

∫ +∞

0
V (x)f0(x) dx+ C̄

∫ +∞

0
f0(x) dx (22)

for all t ≥ 0, where f(t, x) := xm(t, x), f0(x) = xm0(x), ‖f0‖V < +∞ and V (x) = xk−1 +
xK−1.
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Proof. Let ϕ : R → [0, 1] be a non-increasing C1 function such that ϕ(x) = 1 for x ≤ 0 and
ϕ(x) = 0 for x ≥ 1. For ` > 0 we define ϕ`(x) = ϕ(x− `). Starting from (3) we have

d

dt

∫ +∞

0

(
xk + xK

)
ϕ`(x)m(t, x) dx

=

∫ +∞

0

((
kxk−1 +KxK−1

)
ϕ`(x) +

(
xk + xK

)
ϕ′`(x)

)
xm(t, x) dx

+ 2

∫ +∞

0

B(x)

x
m(t, x)

∫ x

0

(
yk + yK

)
ϕ`(y) dy dx

−
∫ +∞

0

(
1 +B(x)

)(
xk + xK

)
ϕ`(x)m(t, x) dx.

Since ϕ` is non-increasing we get

d

dt

∫ +∞

0

(
xk + xK

)
ϕ`(x)m(t, x) dx

≤
∫ +∞

0

(
kxk−1 +KxK−1

)
ϕ`(x)xm(t, x) dx

+ 2

∫ +∞

0
B(x)

(
xk−1

k + 1
+
xK−1

K + 1

)
ϕ`(x)xm(t, x) dx

−
∫ +∞

0

(
1 +B(x)

)(
xk−1 + xK−1

)
ϕ`(x)xm(t, x) dx

≤ −1

2
(1− k)

∫ +∞

0
(xk−1 + xK−1)ϕ`(x)xm(t, x) dx

+

∫ +∞

0

(
c1B(x)xK−1 + c2x

K−1 + c3B(x)xk−1 + c4x
k−1
)
ϕ`(x)xm(t, x) dx

where

−1 < c1 :=
1−K
1 +K

< 0, c2 := K − k + 1

2
> 0, c3 :=

1− k
1 + k

> 0, c4 :=
k − 1

2
< 0.

We define
Φ(x) := c1B(x)xK−1 + c2x

K−1 + c3B(x)xk−1 + c4x
k−1. (23)

Due to Hypothesis 1.3, the total fragmentation rate B : [0,+∞)→ [0,+∞) satisfies B(x)→ 0
as x → 0 and B(x) → +∞ as x → +∞. Hence in the latter expression the behaviour
as x → +∞ is dominated by the first term; thus Φ(x) will approach −∞. Similarly when
x → 0, the last term will dominate the behaviour of Φ, which is negative as well. Since B
is continuous we can always bound supx≥0 Φ(x) ≤ C2 with some positive quantity C2 > 0.
Therefore by denoting f(t, x) = xm(t, x) and f0(x) = xm0(x) we obtain, since ϕ` ≤ 1 and∫
f(t, x) dx =

∫
f0(x) dx,

d

dt

∫ +∞

0
(xk−1 + xK−1)ϕ`(x)f(t, x) dx

≤ −C1

∫ +∞

0
(xk−1 + xK−1)ϕ`(x)f(t, x) dx+ C2

∫ +∞

0
f0(x) dx,

where C1 = (1− k)/2 > 0. Then Grönwall’s lemma implies∫ +∞

0
V (x)ϕ`(x)f(t, x) dx ≤ e−C1t

∫ +∞

0
V (x)ϕ`(x)f0(x) dx+ C̄

∫ +∞

0
f0(x) dx

with C̄ = C2/C1. Due to the monotone convergence theorem we deduce (22) by letting ` go
to +∞.
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4.2 Sublinear growth rate close to 0

In this section we assume that
∫ 1

0
1
g < +∞, which we sometimes refer to as the case of sublinear

growth rate at x = 0.

Lemma 4.2. We consider Equation (14) under Hypotheses 1.1, 1.3, and
∫ 1

0
1
g < +∞. We

take K > 1 + ξ. Then the following holds true for C1 = λ (the first eigenvalue), some C2 > 0,
and any nonnegative measure solution m = m(t, x):

d

dt

∫ +∞

0
xKm(t, x) dx ≤ −C1

∫ +∞

0
xKm(t, x) dx+ C2

∫ +∞

0
φ(x)m(t, x) dx, (24)

for all t ≥ 0.

Proof. For the sake of conciseness and clarity, we skip the truncation procedure here. But the
same method as for Lemma 4.1 can be used to make the calculations rigorous by using the
truncation function ϕ`. We have

d

dt

∫ +∞

0
xKm(t, x) dx

= −
∫ +∞

0
xK

∂

∂x
(g(x)m(t, x)) dx−

∫ +∞

0
xK(B(x) + λ)m(t, x) dx

+

∫ +∞

0
xK
∫ +∞

x

B(y)

y
p

(
x

y

)
m(t, y) dy dx

= −λ
∫ +∞

0
xKm(t, x) dx+

∫ +∞

0

(
(pK − 1)xKB(x) +KxK−1g(x)

)
m(t, x) dx.

We define
Φ(x) := (pK − 1)xKB(x) +KxK−1g(x)

and notice that supx≥0 Φ(x) ≤ C2φ(x) for some C2 > 0 due to Hypothesis 1.3 concerning the
behaviour of xB(x)/g(x) as x→ +∞ and x→ 0, and the fact that φ(0) > 0 since

∫ 1
0

1
g < +∞

which is a result of Theorem 2.1.

We now give a translation of this lemma in terms of f = φm, since this is needed in order
to apply Harris’s theorem to the evolution of f :

Corollary 4.3. We consider Equation (14) under Hypotheses 1.1, 1.3, and
∫ 1

0
1
g < +∞. For

V (x) = 1 + xK

φ(x) where K > 1 + ξ and f(t, x) := φ(x)m(t, x) with f0(x) = φ(x)m0(x), ‖f0‖V <

+∞, there exist C1, C̃ > 0 such that for all t ≥ 0∫ +∞

0
V (x)f(t, x) dx ≤ e−C1t

∫ +∞

0
V (x)f0(x) dx+ C̃

∫ +∞

0
f0(x) dx. (25)

Proof. By adding φ(x) of both sides of (24) we obtain

d

dt

∫ +∞

0
xKm(t, x) dx =

d

dt

∫ +∞

0
(xK + φ(x))m(t, x) dx

≤ −C1

∫ +∞

0
(xK + φ(x))m(t, x) dx+ (C1 + C2)

∫ +∞

0
φ(x)m(t, x) dx.

Therefore, we have for f(t, x) = φ(x)m(t, x);

d

dt

∫ +∞

0

(
1 +

xK

φ(x)

)
f(t, x) dx

≤ −C1

∫ +∞

0

(
1 +

xK

φ(x)

)
f(t, x) dx+ (C1 + C2)

∫ +∞

0
f0(x) dx,

since
∫
f(t, x)dx =

∫
f0(x)dx. Grönwall’s lemma then implies (25) with C̃ = 1 + C2/C1.
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4.3 Superlinear growth rate close to 0

Now we assume that
∫ 1

0
1
g = +∞, which implies linear or superlinear behaviour for the growth

rate x close 0. This, of course, includes the case g(x) = x from Section 4.1, but the general
result we obtain now is slightly more restrictive. In the case of exact linear growth, Lemma
4.1 is slightly more precise.

Lemma 4.4. We consider Equation (14) under Hypotheses 1.1, 1.3, and
∫ 1

0
1
g = +∞. We

take k < 0 and K > 1+ξ. Then the following holds true for any nonnegative measure solution
m = m(t, x):

d

dt

∫ +∞

0
(xk + xK)m(t, x) dx ≤ −C1

∫ +∞

0
(xk + xK)m(t, x) dx+C2

∫ +∞

0
φ(x)m(t, x) dx,

for all t ≥ 0, where C1 = λ > 0 and C2 > 0 is some constant independent of the solution m.

Proof. Here again we skip the truncation procedure and refer to the proof of Lemma 4.1 for
the method which allows making the calculations rigorous. We have

d

dt

∫ +∞

0
(xk + xK)m(t, x) dx

= −
∫ +∞

0
(xk + xK)

∂

∂x
(g(x)m(t, x)) dx−

∫ +∞

0
(xk + xK)(B(x) + λ)m(t, x) dx

+

∫ +∞

0

B(y)

y
m(t, y)

∫ 1

0
(ykzk + yKzK)p (z) y dz dy

= −λ
∫ +∞

0
(xk + xK)m(t, x) dx

+

∫ +∞

0

(
(pk − 1)xkB(x) + (pK − 1)xKB(x) + kxk−1g(x) +KxK−1g(x)

)
m(t, x) dx

Similarly to previous proofs, we define

Φ(x) := (pk − 1)xkB(x) + (pK − 1)xKB(x) + kxk−1g(x) +KxK−1g(x)

and notice that supx>0 Φ(x) ≤ C2φ(x) for some C2 > 0 due to Hypothesis 1.3 concerning the
behaviour of xB(x)/g(x) as x→ +∞ and x→ 0, and the fact that pK − 1 < 0 and k < 0.

Corollary 4.5. We consider Equation (14) under Hypotheses 1.1, 1.3 and
∫ 1

0
1
g = +∞. For

V (x) = xk+xK

φ(x) with k < 0, K > 1 + ξ, and f(t, x) := φ(x)m(t, x) with f0(x) = φ(x)m0(x),
‖f0‖V < +∞, there exist C1, C̃ > 0 such that for all t ≥ 0:∫ +∞

0
V (x)f(t, x) dx ≤ e−C1t

∫ +∞

0
V (x)f0(x) dx+ C̃

∫ +∞

0
f0(x) dx. (26)

Proof. The inequality in Lemma 4.4 yields, for f(t, x) := φ(x)m(t, x),

d

dt

∫ +∞

0

xk + xK

φ(x)
f(t, x) dx ≤ −C1

∫ +∞

0

xk + xK

φ(x)
f(t, x) dx + (C1 + C2)

∫ +∞

0
f0(x) dx,

since
∫
f(t, x)dx =

∫
f0(x)dx.

Then Grönwall’s lemma implies (26) with C̃ = 1 + C2/C1.
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5 Minorisation condition

In this section, we show that Hypothesis 3.3 is verified for the semigroup generated by rescaled
growth-fragmentation equation (14). We give the proof in two parts where the uniform frag-
ment distribution and the equal mitosis are considered separately.

We start by recalling some known results on the solution of the transport part of Equation
(14). Consider the equation

∂

∂t
m(t, x) +

∂

∂x
(g(x)m(t, x)) = −c(x)m(t, x), t, x > 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0,

(27)

which is the same as Equation (14) without the positive part of the fragmentation operator.
We remark that Hypothesis 1.3 ensures that the characteristic ordinary differential equation

d

dt
Xt(x0) = g(Xt(x0)),

X0(x0) = x0,
(28)

has a unique solution, defined for t ∈ [0,+∞), for any initial condition x0 > 0. In fact, it
is defined in some interval (t∗(x0),+∞), for some t∗(x0) < 0. The solution can be explicitly
given in terms of H−1, where

H(x) :=

∫ x

1

1

g(y)
dy, x ≥ 0.

We notice that H is strictly increasing with H0 := H(0) = lim
x→0

H(x) < 0 and lim
x→+∞

H(x) =

+∞ (since g grows sublinearly as x → +∞), so that it is invertible as a map from (0,+∞)
to (H0,+∞). (We allow H0 = −∞ if 1/g is not integrable close to x = 0.) It can easily be
checked that

Xt(x0) = H−1(t+H(x0)) for x0 > 0 and t > H0 −H(x0),

so that that the maximal time interval where the solution of (28) is defined is precisely as
(H0 −H(x0),+∞). Since it will be convenient later, we define

Xt(0) := lim
x0→0

Xt(x0) =

{
0 if H0 = −∞,
H−1(t+H0) if H0 ∈ (−∞, 0).

This reflects the fact that the characteristics take a very long time to escape from 0 when 1/g
is not integrable close to 0; while they escape in finite time if 1/g is integrable close to 0. For
each t ≥ 0, we have thus defined the flow map Xt : (0,+∞)→ (Xt(0),+∞), which is strictly
increasing. For negative times, we may consider X−t : (Xt(0),+∞)→ (0,+∞) (where t > 0).
Of course, X−t = (Xt)

−1.
If n0 is a nonnegative measure, it is well known that the unique measure solution to

Equation (27) is given by

m(t, x) = Xt#n0(x) exp

(
−
∫ t

0
c(X−τ (x)) dτ

)
, t ≥ 0, x > Xt(0),

m(t, x) = 0, t ≥ 0, x ≤ Xt(0),

(29)
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where we abuse notation by evaluating the measures m(t, ·) and Xt#n0 at a point x > 0. For
a Borel measurable map X : (0,+∞)→ (0,+∞), the expression X#n0 denotes the transport,
or push forward, of the measure n0 by the map X, defined by duality through∫ ∞

0
ϕ(x)X#n0(x) dx :=

∫ ∞
0

ϕ(X(y))n0(y) dy

for all continuous, compactly supported ϕ : (0,+∞)→ R. We use the notation Tt for this flow
map:

Ttn0(x) := Xt#n0(x), for all t ≥ 0, (30)

so Tt is the semigroup associated to transport equation (27).
If additionally n0 is a function and X has a left inverse X−1 : (a, b)→ (0,+∞), one has

X#n0(x) =

{
n0(X−1(x))

∣∣∣ d
dx(X−1)(x))

∣∣∣ if x ∈ (a, b),

0 otherwise.

Using this for the solution to (27), if n0 is a function we may write m in the equivalent form

m(t, x) = n0(X−t(x))
d

dx
X−t(x) exp

(
−
∫ t

0
c(X−τ (x)) dτ

)
(31)

when t ≥ 0 and x > Xt(0), and m(t, x) = 0 otherwise. Using that Yt(x) := d
dxXt(x) satisfies

d
dtYt(x) = g′(Xt(x))Yt(x), we note for later that

d

dx
X−t(x) = exp

(
−
∫ t

0
g′(X−τ (x)) dτ

)
, t ≥ 0, x > Xt(0). (32)

5.1 Uniform fragment distribution

Let us consider the case of uniform fragment distribution p(z) = 2, corresponding to the frag-
mentation kernel of the form κ(x, y) = 2

xB(x)1{0≤x≤y}. The growth-fragmentation equation
in this case is widely studied and depending on some assumptions made on growth and total
division rates, existence (in some cases exact values) of eigenelements are known. The rescaled
growth-fragmentation equation in this case becomes

∂

∂t
m+

∂

∂x
(g(x)m) = 2

∫ +∞

x

B(y)

y
m(t, y) dy − (B(x) + λ)m, t, x ≥ 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0,

(33)

wherem = m(t, x) whenever variables are not explicitly written. If we consider a linear growth
g(x) = g0x and a power like total division B(x) = b0x

γ with γ > 0, and g0, b0 > 0, the Perron
eigenvalue and the corresponding dual eigenfunction are given by

λ = g0 and φ(x) =
x∫

yN(y)
.

In this case, eigenelements can be computed explicitly (see for example [38]):

λ = g0, N(x) =

(
b0
γg0

)1/γ γ

Γ
(

1
γ

) exp

(
−1

γ

b0
g0
xγ
)
, φ(x) =

(
b0
γg0

)1/γ Γ
(

1
γ

)
Γ
(

2
γ

)x.
Moreover, in [4], the authors give the asymptotics of the profile N and accurate bounds on
the dual eigenfunction φ in a more general form of the growth-fragmentation equation where
growth and total division rates behave like a power law for large and small x.
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Lemma 5.1 (Lower bound for the uniform fragment distribution). Assume Hypotheses 1.1
and 1.3 hold true with a constant distribution of fragments p(z) = 2 for z ∈ (0, 1]. Let (St)t≥0

be the linear semigroup associated to Equation (33). For all 0 < η < θ given, there exists
t0 > 0 such that for all t > t0 and x0 ∈ (η, θ] it holds that

Stδx0(x) ≥ C(η, θ, t) for all x ∈ It,

where It is an open interval which depends on η, the time t, and for some quantity C =
C(η, θ, t) depending only on η, θ and t. If in addition we assume that∫ 1

0

1

g(x)
dx < +∞,

then the above result also holds when taking η = 0.

Proof. Recall that (Tt)t≥0 the semigroup associated to the transport equation

∂

∂t
m(t, x) +

∂

∂x
(g(x)m(t, x)) + c(x)m(t, x) = 0,

where c(x) = B(x) + λ. By Duhamel’s formula we have

Stn0(x) = m(t, x) = Ttn0(x) +

∫ t

0
Tt−τ (A(τ, .))(x) dτ,

where A(t, x) := 2
∫ +∞
x

B(y)
y m(t, y) dy. Fix 0 ≤ η < θ, and take any x0 ∈ (η, θ].

If n0 = δx0 , a simple bound gives

Stδx0 ≥ Ttδx0 = Xt#δx0 exp

(
−
∫ t

0
c(Xt−τ (x0)) dτ

)
,

where we have used the expression of Tt given in (29) and the fact that the support ofXt#δx0 is
the single point {Xt(x0)}. By Hypothesis 1.3 (in particular since B is continuous on [0, Xt(θ)]),
for some C1 = C1(θ, t) which is increasing in t, we have

c(x) = B(x) + λ ≤ C1 for all x ∈ (0, Xt(θ)].

We deduce that
Stδx0 ≥ Xt#δx0e

−C1t = δXt(x0)e
−C1t. (34)

Using this we obtain

A(t, x) ≥ 2e−C1tB(Xt(x0))

Xt(x0)
for all t > 0 and x < Xt(x0).

We use that there is some xB > 0 for which B is bounded below by a positive quantity on any
interval of the form [xB, R]. There is some tB > 0 such that for t > tB we have Xt(x0) > xB
for all x0 > η (for this to hold, notice we may take η = 0 in the case that

∫ 1
0 1/g < +∞, but

we need η > 0 otherwise). Hence, for some C2 = C2(η, θ, t) which is decreasing in t, we obtain

A(t, x) ≥ C2e
−C1t for all t > tB and x < Xt(x0).

Take now t > tB, which will stay fixed until the end of the proof. The previous bound shows
that

A(τ, x) ≥ C2(η, θ, τ)e−C1(θ,τ)τ ≥ C2(η, θ, t)e−C1(θ,t)τ =: C̃2e
−C̃1τ
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for all t > tB, tB < τ < t and all x < Xτ (x0). As a consequence, using (31) and (32),

Tt−τA(τ, x) ≥ C̃2e
−C̃1τ exp

(
−
∫ t−τ

0
c(X−s(x)) ds

)
exp

(
−
∫ t−τ

0
g′(X−s(x)) ds

)
for all tB < τ < t and Xt−τ (0) < x < Xt(x0). Since X−s(x) ≤ Xt(x0) in this range, we can
bound this by

Tt−τA(τ, x) ≥ C̃2e
−2C̃1t exp

(
−
∫ t−τ

0
g′(X−s(x)) ds

)
,

again for all tB < τ < t and Xt−τ (0) < x < Xt(x0). In order to find a lower bound for the
last exponential we restrict to a smaller x interval. Since the bound holds for all x with

Xt−τ (0) < x < Xt(x0),

it holds in particular for all x with

Xt−tB (η) < x < Xt(η). (35)

Again this is a point where we need to take η > 0 in the case
∫ 1

0 1/g = +∞, since otherwise
this gives an empty range of x. In the case

∫ 1
0 1/g < +∞, η = 0 is allowed. In this range, the

quantity X−s(x) inside the exponential satisfies

Xτ−tB (η) ≤ X−s(x) ≤ Xt(η)

Choose δ > 0 such that tB + δ < t. Then for all x satisfying (35) and all τ ∈ (tB + δ, t) we
have

Xδ(η) ≤ X−s(x) ≤ Xt(η).

Using that g′(X) ≤ C3 for all X ∈ [Xδ(η), Xt(η)] we have

Tt−τA(τ, x) ≥ C̃2e
−C̃1τe−C3(t−τ) ≥ C̃2e

−C4t

for all x satisfying (35) and all τ ∈ (tB + δ, t). A final integration gives, for x in the same
interval, ∫ t

0
Tt−τ (A(τ, ·))(x) dτ ≥ C̃2e

−C4t

∫ t

tB+δ
dτ = C̃2e

−C4t(t− tB − δ).

Taking t0 := tB gives the result.

5.2 Equal mitosis

We now consider the fragment distribution p(z) = 2δ 1
2
(z) which describes the process of equal

mitosis, in which cells of size x split into two equal daughter cells of size x/2. In Equation
(14), we have then A(t, x) := 4B(2x)m(t, 2x) and the rescaled growth-fragmentation equation
takes the form

∂

∂t
m(t, x) +

∂

∂x
(g(x)m(t, x)) = 4B(2x)m(t, 2x)− (B(x) + λ)m(t, x), t, x ≥ 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(36)

The case where g and B are constant was the subject of numerous works in the past, most
notably [10, 31, 50, 61, 64, 68]. For g(x) = 1 and B(x) = 1, eigenelements are given by

λ = 1, N(x) =

+∞∑
n=0

(−1)nαne
−2n+1x, φ(x) ≡ 1.
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with αn = 2
2n−1αn−1 and α0 > 0 a suitable normalization constant, and the solution m(t, x)

converges exponentially fast to the universal profile N(x), which vanishes as x → 0 and
x → +∞. However, when a linear growth rate g(x) = x is considered Equation (36) exhibits
oscillatory behaviour in the long time. This is because instead of a dominant real eigenvalue,
there are nonzero imaginary eigenvalues, so that there exists a set of dominant eigenvalues.
This type of periodic long time behaviour was first observed in [35] and then it was proved
in [47] by using the theory of positive semigroups combined with spectral analysis to obtain
the convergence to a semigroup of rotations. Since the method relies on some compactness
arguments, the authors considered the equation in a compact subset of (0,+∞). Recently
in [45], the authors proved the oscillatory behaviour in the framework of measure solutions
for general division rates on (0,+∞). The proof relies on a general relative entropy argument
combined with the use of Harris’s theorem on discrete sub-problems. It provides an explicit
rate of convergence in weighted total variation norm. Here we consider a sublinear growth
rate and a more general division rate than those so far considered in the literature. We
exclude of course the case g(x) = x, for which we know the lower bound (and the exponential
convergence) does not hold.

We first need a technical lemma which gives an expression for the time integration of a
measure moving in time:

Lemma 5.2. Let t > 0 and F : [0, t]→ R an injective, differentiable function. Then∫ t

0
δF (τ)(x) dτ =

(
F−1

)′
(x)1{F (0)≤x≤F (t)}.

Proof. Integrating against a smooth test function ϕ(x) we obtain∫ +∞

0
ϕ(x)

∫ t

0
δF (τ)(x) dτ dx =

∫ t

0

∫ +∞

0
ϕ(x)δF (τ)(x) dx dτ

=

∫ t

0
ϕ(F (τ)) dτ =

∫ F (t)

F (0)
ϕ(y)

(
F−1

)′
(y) dy.

by using the change of variable y = F (τ).

The following result will ensure a certain sublinearity of the characteristic flow Xt which
we will need later:

Lemma 5.3. Assume that the growth rate g : (0,+∞) → (0,+∞) is locally Lipschitz and
satisfies

ωg(x) < g(ωx) for all x > 0 and ω ∈ (0, 1).

Then for any t > 0 the characteristic flow Xt satisfies

ωXt(x) < Xt(ωx), for all x > 0 and ω ∈ (0, 1).

Proof. Call h1(t) := ωXt(x) and h2(t) := Xt(ωx). The second one satisfies the ODE

h′2(t) = g(h2(t)),

while the first one satisfies

h′1(t) = ωg(Xt(x)) < g(ωXt(x)) = g(h1(t)).

Since they have the same initial condition, this differential inequality implies h1(t) < h2(t) for
all t > 0.
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Our main lower bound for the mitosis case is the following:

Lemma 5.4 (Lower bound for equal mitosis). Assume Hypotheses 1.1, 1.3, 1.4 hold true with
the mitosis kernel p(z) = 2δ 1

2
(z). Let (St)t≥0 be the semigroup associated to Equation (36).

For any θ > 0 there exists t0 = t0(θ) > 0 such that for all t > t0 and x0 ∈ (0, θ] it holds that

Stδx0(x) ≥ C(t0, θ) for all x ∈ It,

where It is an open interval which depends on time t, and for some quantity C = C(t, θ)
depending only on t and θ.

Proof. Fix θ > 0 and take any x0 ∈ (0, θ]. We follow the same strategy as in the proof
of Lemma 5.1. Here the only different part is A(t, x). We consider the semigroup (Tt)t≥0

defined as in (30) and (St)t≥0 defined as the semigroup associated to (36) with A(t, x) =
4B(2x)m(t, 2x). Using (34) we have

Ttδx0(2x) ≥ Xt#δx0(2x)e−C1t =
1

2
δ 1

2
Xt(x0)(x)e−C1t,

for C1 = C1(θ, t), increasing in t. we obtain

A(t, x) ≥ 2e−C1tB (Xt (x0)) δ 1
2
Xt(x0)(x) for all t > 0.

We know that there exists some xB > 0 for which B is bounded below by a positive quantity
in each interval of the form [xB, R]. Take tB > 0 such that for t > tB we have Xt (x0) > xB
for all x0 > 0. Hence, for some C2 = C2(θ, t) > 0, decreasing in t,

A(t, x) ≥ C2e
−C1tδ 1

2
Xt(x0)(x) for all t > tB.

Fix now any t > tB. For tB < τ < t we have

A(τ, x) ≥ C2(θ, τ)e−C1(θ,τ)τδ 1
2
Xτ (x0)(x) ≥ C2(θ, t)e−C1(θ,t)tδ 1

2
Xτ (x0)(x) =: C̃2e

−C̃1tδ 1
2
Xτ (x0)(x).

Hence using (29) we have

Tt−τA(τ, x) ≥ C̃2e
−C̃1tδXt−τ( 1

2
Xτ (x0))(x) exp

(
−
∫ t−τ

0
c(X−s(x)) ds

)
≥ C̃2e

−2C̃1tδXt−τ( 1
2
Xτ (x0))(x),

for all τ ∈ (tB, t). Define F (τ) := Xt−τ
(

1
2Xτ (x0)

)
, and notice that it is a strictly decreasing

function, since Lemma 5.3 ensures that for τ1 < τ2

F (τ2) = Xt−τ2

(
1

2
Xτ2(x0)

)
< Xt−τ2Xτ2−τ1

(
1

2
Xτ1(x0)

)
= F (τ1).

By Lemma 5.2 we obtain∫ t

0
Tt−τA(τ, x) dτ ≥

∫ t

tB

Tt−τA(τ, x) dτ ≥ C̃2e
−2C̃1t

∫ t

tB

δXt−τ( 1
2
Xτ (x0))(x) dτ

≥ C̃2e
−2C̃1t (F (τ))′ (x)1Ix0

where we define
Ix0 :=

[
1

2
Xt (x0) , Xt−tB

(
1

2
XtB (x0)

)]
.
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Again by Lemma 5.3 we see that this interval is nonempty. Since we need a bound which is
independent of x0, we consider the intersection of all these intervals as x0 moves in the interval
(0, θ). That intersection is

It :=

[
1

2
Xt (θ) , Xt−tB

(
1

2
XtB (0)

)]
.

Condition (13) shows that this interval is nonempty for t large enough, since

Xt (θ)

Xt−tB
(

1
2XtB (0)

) =
H−1(t+ θ)

H−1
(
t− tB + 1

2XtB (0)
) → 1 as t→ +∞.

This gives the result.

6 Proof of the main result

We conclude by giving the proof of Theorem 1.3. It is a direct application of Harris’s Theorem
3.3. Hypotheses 3.2 and 3.3 need to be verified. We already verified Hypothesis 3.2 (Lyapunov
condition) in Section 4 (see the corollary given in each case); in fact, we have proved that
given any t0 > 0 we can satisfy Hypothesis 3.2 for any t ≥ t0, with constants γ, K which are
independent of t (since we can always take γ := e−C1t0 , K := C̃).

Regarding Hypothesis 3.3, the lower bounds we obtained in Section 5 are for m(t, x) which
is a solution to Equation (14). However we need to satisfy the minorisation condition for
f(t, x) = φ(x)m(t, x) since the equation on f conserves mass; thus the associated semigroup
is Markovian, and we may apply Harris’s theorem to it. The equation satisfied by f is

∂

∂t
f(t, x) + φ(x)

∂

∂x

(
g(x)

φ(x)
f(t, x)

)
+ (B(x) + λ)f(t, x)

= φ(x)

∫ +∞

x

B(y)

y
p

(
x

y

)
f(t, y) dy, t, x ≥ 0,

m(t, 0) = 0, t > 0,

m(0, x) = n0(x), x > 0.

(37)

We define (Ft)t≥0 as the semigroup associated to Equation (37), or alternatively by the rela-
tionship

Ft(φn0) := φStn0,

for any nonnegative measure n0 such that φn0 is a finite measure on (0,+∞).

Lemma 6.1 (Minorisation condition for f(t, x)). We assume Hypotheses 1.1, 1.2, 1.3 and 1.4
hold true. Let (Ft)t≥0 be the semigroup associated to Equation (37). For any 0 > η > θ there
exists t0 = t0(η, θ) > 0 such that for all t > t0 and x0 ∈ [η, θ] it holds that

Ftδx0(x) ≥ C̆(η, θ, t) for all x ∈ It,

where It is an open interval which depends on time t, and for some quantity C̆ = C̆(η, θ, t)
depending only on η, θ and t. If in addition we assume that∫ 1

0

1

g(x)
dx < +∞,

then the above result also holds when taking η = 0.
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Proof. Let (St)t≥0 and (Ft)t≥0 be the semigroups associated to Equations (14) and (37) re-
spectively. Under the conditions of Lemma 5.1 we have a lower bound for Stδx0(x) ≥ C(η, θ, t).
It immediately translates to a lower bound on Ft in all cases:

1. If
∫ 1

0
1

g(x) dx = +∞, we know from [4] that φ(x) is bounded in each interval of the form
(0, θ] (since it is continuous and tends to a positive constant at x = 0).

2. If
∫ 1

0
1

g(x) dx = +∞, then since φ(x) is continuous there exist constants Ĉ1(η, θ), Ĉ2(η, θ) >

0 such that Ĉ1 ≤ φ(y) ≤ Ĉ2 for all y ∈ [η, θ].

On the other hand, under the conditions of Lemma 5.4 we know again that φ(x) is bounded
above and below by positive constants in each interval of the form (0, θ].

Therefore we obtain for x0 ∈ [η, θ]:

Ftδx0(x) =
φ(x)

φ(x0)
Stδx0(x) ≥ Ĉ1(η, θ)

Ĉ2(η, θ)
C(η, θ, t) := C̆(η, θ, t),

allowing η = 0 if
∫ 1

0 1/g < +∞.

Proof of Theorem 1.3. As remarked above, the semigroup (Ft)t≥0 satisfies the Lyapunov con-
dition in Hypothesis 3.2 in all cases, for t ≥ 1, with a weight V and constants γ, K which are
independent of t. In order to satisfy Hypothesis 3.3 it is enough then to find any time t ≥ 1
for which we have a uniform lower bound whenever the initial condition is a delta function
supported on a region of the form

C := {x > 0 | V (x) ≤ R}

for some R > 2K/(1− γ). Lemma 6.1 gives this in all cases. Notice that in the cases in which
the lower bound is only available for x0 ∈ [η, θ] with η > 0, the function V we give in Section
4 is unbounded at x = 0, and thus the region C is contained in an interval of that form.

Explicit calculations for the self-similar fragmentation case. We recall that the so-
called self-similar fragmentation equation corresponds to a linear growth rate g(x) = x, a
monomial total fragmentation rate B(x) = xb, b > 0, and a self-similar kernel (here we take
the homogeneous self-similar kernel p(z) ≡ 2). In that case, all the constants appearing in
Harris’s theorem can be quantified. This is due to the explicit expression φ(x) = x of the dual
eigenfunction when g(x) = x. For the computations we choose for instance the parameters k =
0 and K = 2, which correspond to the Lyapunov function V (x) = (xk + xK)/φ(x) = 1/x+ x.
We start with Hypothesis 3.2. Using that B(x) = xb we can make the proof of Lemma 4.1
more quantitative. Indeed the function Φ defined in (23) reads in the present case

Φ(x) = −1

3
xb+1 +

3

2
x+ xb−1 − 1

2
x−1.

Treating separately the cases x ≤ 1, x ≥ 1, and b ≤ 2, b ≥ 2, we can check that

Φ(x) ≤ −1

3
xb+1 +

3

2
x+ xb−1 ≤ 5

(15

2

) 1
b
+ b

2

for all x > 0. So Hypothesis 3.2 is verified for any t0 > 0 with the constants

γ = e−
t0
2 and K = 10

(15

2

) 1
b
+ b

2
.
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We now turn to Hypothesis 3.3. We choose

R =
4K

1− γ

and we notice that since V (x) = 1/x+ x

C = {x : V (x) ≤ R} ⊂ [1/R,R].

For φ(x) = x and p(z) ≡ 2, Equation (37) reads

∂

∂t
f(t, x) +

∂

∂x
(xf(t, x)) +B(x)f(t, x) = 2

∫ +∞

x
B(y)f(t, y)

x

y
dy

and we can prove directly on this equation, proceeding similarly as in Lemma 5.1, that for any
t0 > 0 and all x0 ∈ [1/R,R]

Ft0δx0 ≥ αν

with

ν( dy) =
2e−2t0

R
1[0,Ret0 ](y)y dy and α = Rb+3t0 exp

(
− 2Rγ

ebt0

b

)
.

We are now in position to apply Harris’s theorem. Choosing in Theorem 3.3

α0 =
α

2
and γ0 = γ +

2K

R

we obtain

ᾱ = max

{
1− α

2
,
1− γ + 1+γ

2 α

1− γ + α

}
.

Choosing t0 = 2 log 2 we get

γ =
1

2
, R = 80

(15

2

) 1
b
+ b

2
, α = 2 log 2Rb+3e−2(4R)b/b

and
ᾱ = max

{
1− α

2
, 1− α

2(1 + 2α)

}
= 1− α

2(1 + 2α)
.

This proves that we can choose ρ as in (16).
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[34] T. Dȩbiec, M. Doumic, P. Gwiazda, and E. Wiedemann. Relative entropy method for mea-
sure solutions of the growth-fragmentation equation. SIAM J. Math. Anal., 50(6):5811–
5824, 2018.

[35] O. Diekmann, H. J. A. M. Heijmans, and H. R. Thieme. On the stability of the cell size
distribution. J. Math. Biol., 19:227–248, 1984.

28



[36] J. L. Doob. Conditional Brownian motion and the boundary limits of harmonic functions.
Bull. Soc. Math. Fr., 85:431–458, 1957.

[37] M. Doumic and M. Escobedo. Time asymptotics for a critical case in fragmentation and
growth-fragmentation equations. Kinet. Relat. Models, 9(2):251–297, 2016.

[38] M. Doumic Jauffret and P. Gabriel. Eigenelements of a general aggregation-fragmentation
model. Math. Models Methods Appl. Sci., 20(05):757–783, 2010.

[39] G. Dumont and P. Gabriel. The mean-field equation of a leaky integrate-and-fire neural
network: measure solutions and steady states. Nonlinearity, 33(12):6381–6420, 2020.

[40] K.-J. Engel and R. Nagel. One-Parameter Semigroups for Linear Evolution Equations,
volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.

[41] H. Engler, J. Prüss, and G. F. Webb. Analysis of a model for the dynamics of prions. II.
J. Math. Anal. Appl., 324(1):98–117, 2006.

[42] M. Escobedo, S. Mischler, and M. Rodriguez Ricard. On self-similarity and stationary
problem for fragmentation and coagulation models. Ann. Inst. H. Poincaré Anal. Non
Linéaire, 22(1):99–125, 2005.

[43] P. Gabriel. Global stability for the prion equation with general incidence. Math. Biosci.
Eng., 12(4):789–801, 2015.

[44] P. Gabriel. Measure solutions to the conservative renewal equation. ESAIM, Proc. Surv.,
62:68–78, 2018.

[45] P. Gabriel and H. Martin. Periodic asymptotic dynamics of the measure solutions to an
equal mitosis equation. Ann. H. Lebesgue, accepted, 2021.

[46] P. Gabriel and F. Salvarani. Exponential relaxation to self-similarity for the su-
perquadratic fragmentation equation. Appl. Math. Lett., 27:74–78, 2014.

[47] G. Greiner and R. Nagel. Growth of cell populations via one-parameter semigroups of
positive operators. In Mathematics Applied to Science, pages 79–105. Elsevier, 1988.

[48] M. Hairer. Convergence of Markov processes. Lecture notes, 2016.

[49] M. Hairer and J. C. Mattingly. Yet another look at Harris’ ergodic theorem for Markov
chains. In Seminar on stochastic analysis, random fields and applications VI. Centro Ste-
fano Franscini, Ascona (Ticino), Switzerland, May 19–23, 2008., pages 109–117. Basel:
Birkhäuser, 2011.

[50] A. J. Hall and G. C. Wake. A functional-differential equation arising in modelling of cell
growth. J. Austral. Math. Soc. Ser. B, 30(4):424–435, 1989.

[51] A. J. Hall and G. C. Wake. Functional differential equations determining steady size
distributions for populations of cells growing exponentially. J. Aust. Math. Soc., Ser. B,
31(4):434–453, 1990.

[52] T. E. Harris. The existence of stationary measures for certain Markov processes. In
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probabil-
ity, 1954–1955, vol. II, pages 113–124. University of California Press, Berkeley and Los
Angeles, 1956.

29



[53] H. J. A. M. Heijmans. An eigenvalue problem related to cell growth. J. Math. Anal.
Appl., 111:253–280, 1985.

[54] P. Laurençot and B. Perthame. Exponential decay for the growth-fragmentation/cell-
division equations. Commun. Math. Sci., 7(2):503–510, 2009.

[55] E. Leis and C. Walker. Existence of global classical and weak solutions to a prion equation
with polymer joining. J. Evol. Equ., 17(4):1227–1258, 2017.

[56] E. D. McGrady and R. M. Ziff. “Shattering” transition in fragmentation. Phys. Rev.
Lett., 58(9):892–895, 1987.

[57] J. A. Metz and O. Diekmann. The Dynamics of Physiologically Structured Populations,
volume 68. Springer, 2014.

[58] S. P. Meyn and R. L. Tweedie. Markov Chains and Stochastic Stability. Communications
and Control Engineering Series. Springer-Verlag London, Ltd., London, 1993.

[59] P. Michel. Existence of a solution to the cell division eigenproblem. Math. Models Methods
Appl. Sci., 16(supp01):1125–1153, 2006.

[60] P. Michel, S. Mischler, and B. Perthame. General relative entropy inequality: an illustra-
tion on growth models. J. Math. Pures Appl. (9), 84(9):1235–1260, 2005.

[61] S. Mischler and J. Scher. Spectral analysis of semigroups and growth-fragmentation
equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 33(3):849–898, 2016.

[62] K. Pakdaman, B. Perthame, and D. Salort. Adaptation and fatigue model for neuron
networks and large time asymptotics in a nonlinear fragmentation equation. J. Math.
Neurosci., 4:Art. 14, 26, 2014.

[63] B. Perthame. Transport Equations in Biology. Frontiers in Mathematics. Springer Science
& Business Media, 1 edition, 2006.

[64] B. Perthame and L. Ryzhik. Exponential decay for the fragmentation or cell-division
equation. J. Differ. Equ., 210(1):155–177, 2005.

[65] R. Rudnicki and M. Tyran-Kamińska. Piecewise Deterministic Processes in Biological
Models. Cham: Springer, 2017.

[66] J. W. Sinko and W. Streifer. A model for populations reproducing by fission. Ecology,
52(2):330–335, 1971.

[67] D. W. Stroock. An Introduction to Markov Processes, volume 230. Springer Science &
Business Media, 2013.

[68] B. van Brunt, A. Almalki, T. Lynch, and A. A. Zaidi. On a cell division equation with a
linear growth rate. ANZIAM J., 59(3):293–312, 2018.

[69] A. A. Zaidi, B. van Brunt, and G. C. Wake. Solutions to an advanced functional par-
tial differential equation of the pantograph type. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 471(2179):20140947, 2015.

30


	Introduction and main result
	Existence of the dual eigenfunction
	Harris's Theorem
	Foster-Lyapunov condition
	Linear growth rate
	Sublinear growth rate close to 0
	Superlinear growth rate close to 0

	Minorisation condition
	Uniform fragment distribution
	Equal mitosis

	Proof of the main result

