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Robot-Safe Impacts with Soft Contacts Based on Learned Deformations

Niels Dehio and Abderrahmane Kheddar

Abstract— Safely generating impacts with robots is challeng-
ing due to subsequent discontinuous velocity and high impact
forces. We aim at increasing the impact velocity – the robot’s
relative speed prior to contact – such that impact-tasks like
grabbing and boxing are made with the highest allowable
speed performance when needed. Previous works addressed this
problem for rigid bodies’ impacts. This letter proposes a control
paradigm for generating intentional impacts with deformable
contacts that incorporates hardware and task constraints. Based
on data-driven learning of the shock-absorbing soft dynamics
and a novel mapping of joint-space limits to contact-space, we
devise a constrained model-predictive control to maximize the
intentional impact within a feasible, robot-safe level. Our ap-
proach is assessed with real-robot experiments on the redundant
Panda manipulator, demonstrating high pre-impact velocities
(up to 0.9 m/s) of a rigid end-effector on soft objects and an
end-effector soft suction-pump on rigid or deformable objects.

I. INTRODUCTION

Our work’s long-term context is to enable efficient robotic
fast grabbing, tossing, and boxing objects in automated
industrial sorting chains. In such applications, robots shall
reach, pick and toss or place objects of different sizes,
shapes, and materials from one location to another as fast
as possible. The proposed frameworks in [1], [2] and many
other related works slow down drastically robot motion (up
to zero relative velocity) when establishing contact with the
environment. We instead aim to generate powerful impacts
intentionally and therefore we are interested in the maximum
allowed end-effector velocity that does not damage the robot.

There are roughly two categories of objects or environ-
ments to contact: rigid and soft. We have already addressed
the rigid case in [3], [4]; see also other works dealing
with rigid robotic impact in their references section. In
this paper, we focus on maximizing the impact velocity
considering deformable contacts. The softness will consume
large parts of the kinetic energy and allows higher pre-impact
velocities w.r.t rigid bodies. Our main contribution is a model
predictive control scheme that optimizes future deformations
to be initiated with the highest possible end-effector velocity
based on learned, constrained deformation dynamics. For
the first time, our formulation maps joint-space hardware
limits of a redundant kinematic chain onto the contact-space.
Including these inequality constraints into the deformation
dynamics, ensures safe operation over a sufficiently long
preview-horizon. Compared to related works, our approach’s
novelty is the explicit computation of the maximum robot-
safe impact velocity. It applies to three distinct scenarios:
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Fig. 1: Panda manipulators equipped with a rigid flat end-
effector (left) and with a pump plus flexible suction cup
(right). In the experiments, we identify the deformation
dynamics for the soft dice (left) and the sucker (right) in
order to initiate contacts with the maximum allowed impact.

1) rigid end-effector impacting a soft object,
2) end-effector equipped with soft material (e.g., suction

cup) impacting a rigid object, and a
3) combination of 1 and 2 (soft object and end-effector).
We assessed our approach in various real-robot experi-

ments with Panda manipulators, (c.f Fig 1 and shown in the
video https://youtu.be/juynq6x9JJ8), and indeed
observed high impact velocities without violating hardware
limits and remaining in the elastic deformation domain.

II. RELATED WORKS

Soft material undergoing contact forces implies local or
global shape changes (deformation) and deformation dynam-
ics [5]. Related works (i) propose deformation models and
(ii) devise control schemes relying on these models.

Deformation Models: Due to its importance, extensive
literature on contact dynamics is available to the community;
among them, [6] provides an excellent early overview and
[7] a recent survey. The finite element method (FEM) is
a widely known numerical method that simulates material
deformations by dividing a non-rigid body into many small
parts called finite elements assembled into a mesh. This
technique emerged in mechanical engineering and has been
adopted in the field of robotics, see e.g., [8], [9], [10].

In recent work, [11] proposed a method for soft contact
model identification. The approach in [12] combines estima-
tion and control of the material’s contact normal stiffness



in a single framework. While these works focus on contact
point forces and point deformations only, [13] models the
entire surface’s deformation probabilistically. However, this
model does not incorporate resulting contact forces.

Control Schemes: The control of contact transitions with
soft material was studied extensively over the last decades,
mainly to avoid bouncing, e.g., [14] for soft and rigid
contacts. The approaches in [15] and [16] rely on a mass-
spring interaction model and derive a continuous control law
to stabilize the transition between non-contact and contact
phase, without requiring force measurements. The analysis
and experiments are, however, limited to a planar 2 DOF
robot. More recently, the approaches described in [17], [18]
and [19] propose parameter optimization for the more com-
plex mass-spring-damper interaction model (Kelvin-Voigt
model [20]). Non-linear tangential forces arising from soft
interaction have been controlled with a simple toy robot in
simulation [21]. Approaches with floating-base legged robots
typically try to impose robust control that compensates for
non-modeled soft contact properties, for example, with a
quadruped in [22] and with a humanoid in [23], [24]. As
an alternative to robust control schemes, [25] proposed an
impact-aware planning method.

To the authors’ knowledge, related works on impact or
task-space model-predictive control did not consider the
robot’s structural hardware limits defined in joint-space,
which implicitly represent bounds in the contact-space. A
first step in this direction has been proposed in [26] for a
reduced model, and later in [27], [28] for a non-redundant
three degrees of freedom robot leg without considering im-
pacts. Yet, none of these related works is explicitly aware of
(or tries to optimize) the maximum possible impact velocity.

Our novel approach overcomes these two shortcomings:
First, we map hardware limits onto the contact-space for
redundant robots. Second, we maximize the pre-impact end-
effector velocity subject to constrained deformation dynam-
ics considering a reasonable long preview horizon for pre-
dicting accurate behaviors. Exploiting the shock-absorbing
soft material, our contribution enables us to generate maxi-
mum but robot-safe impacts intentionally.

III. DYNAMIC MODEL

Let the manipulator dynamics in joint-space governed by
τ +JT f = Mq̈+h, and limited by

¯
q ≤ q ≤ q̄, ˙

¯
q ≤ q̇ ≤ ˙̄q,

¨
¯
q ≤ q̈ ≤ ¨̄q,

¯
τ ≤ τ ≤ τ̄ , 0 ≤ f ≤ ∞, where M denotes the

joint space inertia, q̈ are the joint accelerations, h comprises
gravity and Coriolis forces, J constitutes the end-effector
Jacobian which we assume to be full-rank in this letter, and
f is an unilateral contact force at the end-effector. Symbols ?̄,

¯
? denote upper and lower limits of a quantity ?, respectively.
The structural hardware limits must be fulfilled to generate
a feasible and robot-safe motion.

When gathered, the previous equations form a convex,
high-dimensional polytope that represents the set of feasible

solutions in terms of
[
q̇T , q̈T , fT

]T
. It is given by1

˙
¯
q
¨
¯
q

¯
τ − h

0

≤


I, 0, 0
0, I, 0
0, M, −JT

0, 0, I


q̇

q̈
f

≤


˙̄q
¨̄q

τ̄ − h
∞

 (1)

A. Deformation Dynamics

Soft material deforms under externally applied forces
(stress). As a consequence, contact forces are functions of
surface deformations [5]. In the following, we limit our
analysis to soft materials and associated models with non-
varying contact dynamics over time, i.e., obeying Hook’s law
of deformation. Furthermore, we assume that contact friction
constraints are always satisfied during the penetration phase;
i.e., there is no slipping (as this is what should be planned
for the operations we target). We deal with one-dimensional
deformation in the contact normal direction because the
planed impacts are also along the contact normal.

Consider a reference position x of a robotic end-effector.
With respect to this reference, relative positions and veloci-
ties are denoted as z, ż, respectively. This notation is advan-
tageous when considering deformations caused by the robot
and choosing as reference x the end-effector position that
coincides with the soft material’s initial contact position. In
that case, z describes the deformation and ż the deformation
rate of change. No deformation corresponds to z = 0.

The material’s constant, finite stiffness and damping are
given by parameters α,β, which will be identified with the
approach described in Sec. V. We employ the well-known
Kelvin-Voigt model [20] (a linear mass-spring-damper sys-
tem) defining the resulting force f = mz̈ as a linear
combination of contact deformation z, and it’s derivative ż

f = αz + βż , or equiuvalently formulated as f = Es (2)

with the deformation-dependent state s = [zT , żT ]T and
a constant matrix E = [α,β] representing the material’s
stiffness and damping properties. When applying the control
input u = JM−1(τ − h) as a function of joint torques τ ,
the second-order differential equation writes

z̈ = m−1αz + m−1βż + u (3)

In this paper, m = (JM−1JT )−1 is the effective mass asso-
ciated with the penetrating end-effector [29]. The continuous-
time state-space representation becomes ṡ = Acs+Bcu with

Ac =

[
0 I

m−1α m−1β

]
and Bc =

[
0
I

]
(4)

Considering a negligible change in the operational apparent
mass (see later its variation curve in Fig. 4), we assume
constant mass m for small changes in the robot configuration
due to relatively small indentations, and hence, constant Ac.

Through discretization, we obtain the discrete-time state-
space representation

si+1 = Adsi + Bdui (5)

1In this paper we ignore
¯
q ≤ q ≤ q̄ without loss of generality.



where subscript i denotes steps at time t = i∆t with sample
time ∆t. Note that the resulting discretized acceleration z̈i
is linear in terms of state si and control input ui. Refer to
the appendix for the derivation of matrices C and D

z̈i = Csi + Dui (6)

This deformation dynamics model described so far is well-
known. In the next subsection, we propose a novel extension
by deriving bounds on the system behavior, related to the
particular penetrating manipulator.

B. Constrained Deformation Dynamics

The above deformation dynamics are constrained when
considering a penetration by the robot’s end-effector, whose
motion is limited by the hardware features. Task-space (or
contact-space) bounds are typically configuration-dependent
and result from mapping hardware limits, which are provided
in joint-space.

In the following, motion objectives to be controlled in the
end-effector’s nullspace are incorporated via joint velocity
and acceleration references q̇0, q̈0. Such selfmotion is en-
forced by applying the nullspace projector N associated with
the one-dimensional contact-space Jacobian J

Nq̇ = q̇0 and Nq̈ + Ṅq̇ = q̈0 (7)

Let us assume Ṅq̇ ' 0 for simplicity. Reformulating (7)
subject to the decision variables in (1) yields[

N, 0, 0
0, N, 0

]q̇
q̈
f

 =

[
q̇0

q̈0

]
(8)

We are interested in the configuration-dependent task-
space bounds with respect to end-effector (= deformation)-
velocity, acceleration, and force in contact normal direction:
• The lower bound on the task-space velocity ˙

¯
z becomes

˙
¯
z = min

q̇,q̈,f
Jq̇ (9)

s. t. (1) and (8)

which can be simplified because the joint velocities are
decoupled from both joint accelerations and force (refer to
the block-diagonal matrices in (1) and (8))

˙
¯
z = min

q̇
Jq̇ (10)

s. t. Nq̇ = q̇0

˙
¯
q ≤ q̇ ≤ ˙̄q

The upper velocity bound ˙̄z is obtained by replacing the min
with max operator. The final deformation velocity constraint
yields

˙
¯
z ≤ ż ≤ ˙̄z (11)

• The contact-space acceleration and force bounds are
coupled and cannot be treated separately. Also note that
the set given by (1) and (8) does not contain z̈ explicitly.
Accordingly, we add the contact-space acceleration as a
decision variable and introduce the relationship z̈ = Jq̈+J̇q̇.
By choosing a vector ω (treated as a ray that points in

a certain direction), we obtain a feasible tuple (or vertex)
consisting of an extreme z̈ and f through the linear program

arg min
q̈,f ,z̈

[f , z̈]ω (12)

s. t.
[
N, 0, 0
J, 0, −I

]q̈
f
z̈

 =

[
q̈0

−J̇q̇cur

]
 ¨

¯
q

¯
τ − h

0

≤
 I, 0, 0

M, −JT , 0
0, I, 0

q̈
f
z̈

≤
 ¨̄q
τ̄ − h
∞


where q̇cur are the current joint velocities. Solving (12) mul-
tiple times for different rays ω, we collect a list of extreme
vertices and halfplanes, representing a convex polytope.
Refer to [30] for an efficient algorithm to select useful search
directions (rays). The resulting halfspace representation is
given by matrix P (halfplanes) and vector p (offset)

P

[
z̈
f

]
≤ p (13)

• The contact deformation z satisfies scalar lower and
upper bounds which do not relate to robot’s hardware limits

¯
z ≤ z ≤ z̄ (14)

In order not to break the contact and not to damage the
material, these bounds are specified by 0, and the maximum
allowed penetration depending on the material properties.

Due to these contact-space constraints, not all possible
deformation trajectories (i.e., acceleration profiles) are phys-
ically achievable with particular robot hardware, which is an
often-ignored fact. However, knowledge of the constrained
deformation dynamics is of utmost importance for the model-
preview proposed in the next section.

IV. SOFT IMPACT-AWARE PREVIEW CONTROL

In this section, we formulate a problem for planning an
optimized penetration-trajectory assuming the contact event
will happen in the next iteration. In order to maximize
the pre-impact end-effector velocity, we consider the initial
velocity state as part of the optimization variables. Tracking
this velocity upper bound with a velocity controller enables
us to intentionally generate feasible and safe impacts with
maximum pre-impact velocity.

A. Penetration-Trajectory Planning

Let us formulate an optimization problem that plans
a feasible and safe penetration-trajectory over a preview
horizon of h steps, starting from the exact moment of the
contact transition z1 = 0 with the pre-impact velocity ż1,
which is to be maximized. The optimization variables consist
of the initial velocity state ż1 and the subsequent con-
trol inputs u1, . . . ,uh, concatenated into a vector U =
[ż1,u1, . . . ,uh]

T . Based on these decision variables, the
following constrained problem solver outputs also – indi-
rectly through feedforward simulation – the evolution of
deformation states s1, . . . , sh via (5), as well as predicted



accelerations z̈1, . . . , z̈h via (6), and contact forces f1, . . . , fh
via (2).

arg min
U

c(U) (15)

subject to s1 =

[
0
ż1

]
, si =

[
zi
żi

]
si+1 = Adsi + Bdui

¯
z ≤ zi = [I, 0] si ≤ z̄

˙
¯
z ≤ żi = [0, I] si ≤ ˙̄z

P

[
z̈i
fi

]
= P

[
Csi + Dui

Esi

]
≤ p

żh = 0

The optimization problem consists of multiple constraints:
• The state is composed of contact deformation and its

rate of change: si = [zTi , ż
T
i ]T .

• Deformation dynamics are satisfied: si+1=Adsi+Bdui.
• Predicted positions zi, velocities żi, accelerations z̈i,

and forces fi are restricted to a feasible region, defined
by the task-space bounds derived in the previous sec-
tion. There is no need to constrain the control inputs ui.

• The trajectory terminates safely by enforcing a zero
velocity in the terminal state żh = 0.

In order to maximize the pre-impact velocity ż1, one
may treat (15) as a linear program with the cost c1(U) =
[−1, 01, . . . , 0h] U, which is fast to compute. However, it
is important to note: given the maximum feasible pre-
impact velocity, there may exist infinite solutions in terms
of subsequent control inputs u1, . . . ,uh that all result in a
feasible, safe penetration behavior. Imposing the linear cost
c1(U) does not yield a unique solution. This is not prob-
lematic as long as we are only interested in the optimal pre-
impact velocity. In other respects, this kind of redundancy
is resolved by imposing a secondary objective c2(U) in the
nullspace of the primary objective c1(U). For example, a
reasonable secondary objective is to minimize the overall
control effort via the quadratic cost c2(U) =

∑h
i=1 ‖ui‖2.

In the experiments later-on, the planned trajectory targets to
reach a desired contact force fdes by minimizing the force
error in every iteration c2(U) =

∑h
i=1 ‖fdes −Esi‖2.

The COPRA library2 allows us to formulate linear MPC
problems conveniently. However, so far it restricts the user to
optimization of control inputs u1, . . . ,uh only. We extended
the COPRA library to include also the optimization of the
initial system state, i.e. the initial ż1. More technical details
are provided via the website.

B. Final Control Scheme

Without knowledge of contact location or contact time,
our approach is to expect the impact event to happen in the
next time step, in the direction of end-effector motion. Con-
sequently, we solve (15) in each control cycle to obtain the
maximum safe pre-impact velocity. The robot hardware and
the task achievement are secured as long as the end-effector

2https://github.com/jrl-umi3218/copra
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Fig. 2: Illustration of the proposed control scheme (before
making contact) for intentional impact maximization.

motion respects this pre-impact velocity bound. Accordingly,
we generate the maximum safe intentional impact by tracking
the optimized ż1 with the end-effector.

Note that the mapping between task-space and joint space
is assumed locally constant during the preview. This implies
that the Jacobian, joint-space inertia, gravity compensation
term, and Coriolis forces are assumed with small variation
during the penetration process, which is a feasible assump-
tion for small deformations and a short horizon.

The final control scheme (c.f Fig 2 and Alg 1) requires the
material’s stiffness and damping to be known. The next sec-
tion explains how to identify these parameters autonomously.
Incremental learning allows us to update the material model
during the penetration phase online.

V. LEARNING MATERIAL DEFORMATION PROPERTIES

The soft material properties need to be learned (and
updated) in a data-driven way unless precise knowledge is
apriori available [11]. In order to collect the required data, the
robot has to penetrate the deformable contact surfaces. Such
exploratory motion can be generated without knowledge of
the actual deformation model by tracking a pre-planned
deformation trajectory that excites the soft contact properties.

A. Offline-Learning

Given the robot’s joint configuration, in each i-th control
cycle, the contact state si is recorded via forward kinematics,
and the contact force fi is obtained through a wrist-mounted

Algorithm 1 pseudo code of proposed control scheme
1: procedure CONTROLLER
2: update model (22)
3: discretize deformation dynamics (5)
4: obtain task-space bounds (11) via (10), (13) via (12), (14)
5: plan penetration-trajectory (15)
6: solve multi-task QP-controller
7: return control command



force-torque sensor or via external joint torque measurements
fi =

(
JT
i

)†
τ i, with the Moore-Penrose pseudoinverse ()†.

All K recorded data points are concatenated into matrix form

S =
[
s1, s2, . . . , sK

]
and F =

[
f1, f2, . . . , fK

]
(16)

In view of (2), employing linear least-square regression
with scalar model error

e =
1

K

∥∥∥FT − ST [α,β]
T
∥∥∥2

(17)

allows us to estimate the material’s stiffness and damping Ê

Ê =
[
α̂, β̂

]
= FS† = FST

(
SST

)−1
(18)

where ()† minimizes the Euclidean norm (the model error e).
Adding a regularization term ensures numerical stability.

For new states S, the corresponding contact forces F̂ are
predicted through simple multiplication with the learned Ê

F̂ =
[̂
f1, f̂2, . . . , f̂K

]
= ÊS (19)

We can expect f = f̂ , and hence F = F̂, when assuming
zero sensor noise and the correct choice of Ê (and, of course,
assuming that the linear model represents the reality).

B. Online-Learning via Recursive Formulation

Given a large amount of training data, (18) can only be
applied for off-line learning because of the time-consuming
matrix inversion. We here extend [11] by employing the
recursive least-squares algorithm [31, page 196] that is
suitable for model updates in real-time. Given a new data
point consisting of si and fi, we update in each control cycle
i > 0 the intermediate terms (denoted in subscripts)(

SST
)
i

=
(
SST

)
i−1

+ sis
T
i (20)(

FST
)
i

=
(
FST

)
i−1

+ fis
T
i (21)

with initialization
(
SST

)
0

= 0 and
(
FST

)
0

= 0. Note that
the dimensionality of these intermediate terms is low and
stays constant. The material model is improved within the
real-time control loop by(

Ê
)
i

=
(
FST

)
i

(
SST

)−1

i
(22)

The incremental update is computationally not demanding
and its result is identical with (18).

VI. REAL-ROBOT EXPERIMENTS

Setup: The experimental platform is a 7 degrees-of-
freedom Panda manipulator from FrankaEmika, controlled
at 1 ms update rate based on our existing QP-control frame-
work [32]. We attached a 3D-printed end-effector with a
flat circular contact surface (diameter 0.13 m). The robot’s
hardware limits are specified on the manufacturer’s website3.
For reproducibility, we ordered a similar dice as chosen
by [11] and also selected the vertical axis as the direction
of motion, typical for bin-picking scenarios. The soft dice

3https://frankaemika.github.io/docs/control_
parameters.html#constants
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weights 0.1 kg and has 0.16 m edge length. In additional
experiments, we attached to the end-effector a Schmalz pump
with two different flexible suction cups (length 0.03 m and
0.05 m) and use various other rigid and soft objects, c.f Fig 1.
Therefore, our new interface implementation operates Panda
and pump simultaneously at different control frequencies4.

Learning Procedure: Material properties are learned by
tracking a predefined (sinusoidal) penetration-trajectory us-
ing position-control and high gains followed-up by five pre-
defined impacts with varying pre-impact velocities (ranging
from 0.15 m/s to 0.35 m/s). The final database for the dice
contains more than ten seconds of penetration data. Fig 3
plots the deformation states zi, żi observed through forward
kinematics and associated contact forces fi obtained via
Panda’s built-in force sensor signal. Control cycles without
contact are excluded from the dataset. We also identify the
soft material parameters for two different flexible suction
cups attached to the pump and the soft objects (please refer
also to the video https://youtu.be/juynq6x9JJ8).

Generating Impact: We compute six vertices/halfplanes
for (13) in each iteration employing the algorithm described
in [30], which is sufficient to obtain an accurate estimate of
the force-acceleration dependency. The optimization prob-
lem (15) is parameterized with h = 20 steps and the
discretization sample time ∆t = 25 ms, resulting in the
preview horizon T = 0.5 s and 204 inequality constraints.
These parameters were selected based on preliminary ex-
periments and constitute a trade-off between short time-
steps (required for precise / accurate trajectory planning),
a long preview horizon (required for robot safety), and fast
computation (required for real-time application). We solve it
in every control cycle at 1 kHz. These different frequencies
are legitimate, as the optimization result constitutes an upper
bound on the pre-impact velocity and should be as up-
to-date as possible. A primary end-effector velocity task
tracks the maximum possible pre-impact velocity. Besides,
a secondary task enforces q̇0 = q̈0 = 0 to account for
the redundancy, thereby avoiding elbow self-motion, which
could affect the end-effector’s effective mass (Fig 2). We
select 2 N as a threshold for contact detection. Afterward,
we switch to an admittance controller [32] that tracks the
reference force 60 N. We decided not to track the planned
trajectory, as the admittance controller also incorporates the
force sensor signal and thereby accounts for material model
inaccuracies. More research is needed to incorporate the
force measurements into the state space representation (5).

We conduct multiple maximum impact-experiments with
various soft objects, starting in different configurations, with
varying desired final contact forces. We here discuss only
one experiment with the soft dice due to space limitations –
please refer to the video for the other experiments. The robot
end-effector starts approximately 0.46 m above the contact.
Analyzing the logged data, hardware limits are satisfied in
all trials. After 0.75 s, we detect the contact with a pre-
impact end-effector velocity of 0.898 m/s. Steady-state is

4https://github.com/jrl-umi3218/mc_franka

reached after approximately 0.8 s of deformation, thereby
confirming the chosen preview duration. The final estimated
force is close to the desired force. Fig 4 also shows the
planned trajectories at a few exemplary iterations (every 0.3 s
and at the contact event). As discussed above, these are
not necessarily unique: the admittance controller realizes a
(slightly) different motion that takes longer to converge.

VII. CONCLUSION AND FUTURE WORK

In order to speed up industrial automation processes that
require contact such as grabbing, contact transitions should
be accelerated, and hence, contact formations shall be made
with impact under robot and task integrity. When evaluating
the effect of the pre-impact end-effector velocity for soft
contacts, constrained deformation dynamics must be con-
sidered, describing the system behavior after making high-
velocity contact. This is a significant difference compared
to impacts with a rigid material, where we have shown
in our previous work that, although conservative, a single-
step ahead prediction is sufficient for safe impact-aware
control [4].

In this paper, we learn a contact force model for de-
formable contacts based on exploratory penetration data with
impacts that is recursively updated during penetration phases.
Next, we propose to map the robot’s hardware limits onto the
contact-space to obtain constrained deformation dynamics.
This allows us to plan constrained task-space trajectories
for powerful intentional impacts: In the experiments, we
track the maximum allowed pre-impact end-effector velocity
without compromising the robot’s limitations during the
deformation phase. Our novel control scheme is independent
of whether the soft material is attached to the end-effector
(e.g., a deformable suction cup) or part of the environment
(e.g., a deformable sponge) and operates at a 1 kHz update
rate on the redundant Panda manipulator.

We are currently extending our multi-arm object manipula-
tion approach [33] to cope with multiple soft impacts. Future
work will also tackle the planning of pre-impact nullspace
postures, influencing the end-effector’s effective mass [29].

APPENDIX
A. Task-space acceleration z̈i depends linearly on si and ui

Let us denote the matrix elements of matrices Ad,Bd as

Ad =

[
a1,1 a1,2

a2,1 a2,2

]
and Bd =

[
b1

b2

]
Hence, żi+1 = a2,1zi+a2,2żi+b2ui. The acceleration z̈i is
linear in terms of deformation state si and control input ui

z̈i =
1

∆t
(żi+1 − żi) =

1

∆t

[
a2,1zi + (a2,2 − 1) żi + b2ui

]
=
[

a2,1

∆t ,
a2,2−1

∆t

] [zi
żi

]
+
[

b2

∆t

]
ui = Csi + Dui
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[17] R. Zotovic Stanisic and Á. Valera Fernández, “Adjusting the param-
eters of the mechanical impedance for velocity, impact and force
control,” Robotica, vol. 30, no. 4, pp. 583–597, 2012.

[18] D. Heck, A. Saccon, N. van de Wouw, and H. Nijmeijer, “Guaran-
teeing stable tracking of hybrid positionforce trajectories for a robot
manipulator interacting with a stiff environment,” Automatica, vol. 63,
pp. 235 – 247, 2016.

[19] V. Samy, K. Bouyarmane, and A. Kheddar, “Analysis of a simple
model for post-impact dynamics active compliance in humanoids
falls with nonlinear optimization,” in IEEE Int. Conf. on Simulation,
Modeling, and Programming for Autonomous Robots, 2018, pp. 62–
67.
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Schäffer, “Dynamic walking on compliant and uneven terrain using
dcm and passivity-based whole-body control,” in IEEE/RAS Int. Conf.
on Humanoid Robots, 2019.

[25] T. Stouraitis, L. Yan, J. Moura, M. Gienger, and S. Vijayakumar,
“Multi-modal trajectory optimization for impact-aware manipulation,”
arxiv, 2020. [Online]. Available: https://arxiv.org/abs/2006.13374

[26] V. Samy, S. Caron, K. Bouyarmane, and A. Kheddar, “Post-impact
adaptive compliance for humanoid falls using predictive control of a
reduced model,” in IEEE-RAS International Conference on Humanoid
Robotics, 2017, pp. 655–660.

[27] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and
C. Semini, “Application of wrench-based feasibility analysis to the
online trajectory optimization of legged robots,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3363–3370, 2018.

[28] R. Orsolino, M. Focchi, S. Caron, G. Raiola, V. Barasuol, D. G. Cald-
well, and C. Semini, “Feasible region: An actuation-aware extension
of the support region,” IEEE Transactions on Robotics, vol. 36, no. 4,
pp. 1239–1255, 2020.

[29] N. Mansfeld, B. Djellab, J. R. Veuthey, F. Beck, C. Ott, and S. Had-
dadin, “Improving the performance of biomechanically safe velocity
control for redundant robots through reflected mass minimization,” in
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 5390–5397.

[30] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,”
IEEE Transactions on Robotics, vol. 24, no. 4, pp. 794–807, 2008.

[31] E. K. P. Chong and S. H. Zak, An introduction to optimization, 2nd
Edition. John Wiley & Sons, 2001.

[32] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic
programming for multirobot and task-space force control,” IEEE
Transactions on Robotics, vol. 35, no. 1, pp. 64–77, 2019.

[33] N. Dehio, J. Smith, D. L. Wigand, G. Xin, H.-C. Lin, J. J. Steil,
and M. Mistry, “Modeling and Control of Multi-Arm and Multi-
Leg Robots: Compensating for Object Dynamics during Grasping,”
in IEEE Int. Conf. on Robotics and Automation, 2018, pp. 294–301.


