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Abstract. Ocean data assimilation systems encompass a
wide range of scales that are difficult to control simultane-
ously using partial observation networks. All scales are not
observable by all observation systems, which is not easily
taken into account in current ocean operational systems. The
main reason for this difficulty is that the error covariance ma-
trices are usually assumed to be local (e.g. using a localisa-
tion algorithm in ensemble data assimilation systems), so that
the large-scale patterns are removed from the error statistics.

To better exploit the observational information available
for all scales in the assimilation systems of the Copernicus
Marine Environment Monitoring Service, we investigate a
new method to introduce scale separation in the assimilation
scheme.

The method is based on a spectral transformation of the
assimilation problem and consists in carrying out the analy-
sis with spectral localisation for the large scales and spatial
localisation for the residual scales. The target is to improve
the observational update of the large-scale components of the
signal by an explicit observational constraint applied directly
on the large scales and to restrict the use of spatial localisa-
tion to the small-scale components of the signal.

To evaluate our method, twin experiments are carried out
with synthetic altimetry observations (simulating the Jason
tracks), assimilated in a 1/4° model configuration of the
North Atlantic and the Nordic Seas.

Results show that the transformation to the spectral do-
main and the spectral localisation provides consistent ensem-
ble estimates of the state of the system (in the spectral do-
main or after backward transformation to the spatial domain).
Combined with spatial localisation for the residual scales, the

new scheme is able to provide a reliable ensemble update for
all scales, with improved accuracy for the large scale; and
the performance of the system can be checked explicitly and
separately for all scales in the assimilation system.

1 Introduction

Over the last decades, the spectral window of the oceanic
processes observed from space has steadily increased. At the
same time, model resolution has also improved to better un-
derstand and interpret the observed signals. This progress in
observations and models is a challenge for ensemble data as-
similation because the size of the ensemble is always very
small compared to the number of degrees of freedom to
be monitored. The model is usually too expensive to per-
form large-size ensemble simulations. This means that the
probability distribution of the possible states of ocean is de-
scribed by a small sample as compared to the dimension of
the subspace over which uncertainties develop. In particular,
the rank of the ensemble covariance matrix is much smaller
than the rank of the real error covariance matrix. A traditional
approximation to solve this problem is to localise this error
covariance matrix (Houtekamer and Mitchell, 1998; Hamill
et al., 2001; Testut et al., 2003; Brankart et al., 2011). The
analysis is then applied locally by only using observations
within a defined radius of influence which is bound to de-
crease with the broadening of the spectral window controlled
by the data assimilation. The control of large scales, namely
larger than this radius of influence, thus results from the com-
bination of a large number of local analyses.
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The large-scale structures, although they are well observed
(in the ocean by altimetry, ARGO floats, etc.), are therefore
only indirectly controlled by the algorithm. Observations si-
multaneously contain information about small-scale struc-
tures (especially at the observation point) and about larger-
scale structures, taking into account the full observational
network. Spatial localisation does not directly take advantage
of each scale contained in the observations system.

Because of the limited size of the ensemble, it is difficult to
explicitly control the full range of scales without separating
the spectral components of the signal. Separation of scales
during the analysis step of data assimilation algorithms al-
lows us to adjust localisation according to the considered
spectral band of the signal. This is helpful to directly control
the large scales which are frequently and precisely observed
(altimetry, ARGO floats, etc.). To separate scales in data as-
similation, two approaches have been previously studied: the
multiscale filter and the spectral transformation. The multi-
scale filter consists in separating the signal in two spectral
bands, delimited by a cutting scale, in order to achieve two
distinct ensemble analysis in the spatial domain (Zhou et al.,
2008; Zhang et al., 2009). In this scheme, applied to an en-
semble Kalman filter (EnKF), two distinct localisation win-
dows are used to exploit correlations over a longer distance
for the analysis of the large scales. A more approximate ver-
sion has also been proposed by simply combining the incre-
ments obtained for each of the two spectral bands (Miyoshi
and Kondo, 2013). A comparable approach was proposed for
3D-Var systems by Li et al. (2015). Alternatively, Buehner
(2012) proposed a spectral transformation approach within
an ensemble-variational (EnVar) system, which is a spatial
and a spectral localisation with a wavelet transform. This
method is more generic because scales are separated contin-
uously from the largest scales to the smallest scales. Local-
isation is used to neglect the correlations between the com-
ponents of the signal which are distant both in terms of spa-
tial location and in terms of scales. However, this method
would be expensive for large systems and could be diffi-
cult to insert in a global ocean assimilation system. More re-
cently, Buehner and Shlyaeva (2015) and Caron and Buehner
(2018) have developed a new formulation of this algorithm
for EnVar systems. It incorporates the multiscale filter idea
of decomposing the signal in several spectral bands and it
avoids the complete removal of the between-scale covari-
ances (Buehner and Charron, 2007). This formulation makes
use of an augmented spatial/spectral ensemble covariance
matrix, whereas the result of the analysis is still computed
in the spatial domain.

Following a similar idea of combining the multiscale fil-
ter and spectral transformation approaches, we propose in
the present paper to combine these two algorithms by ap-
plying a spectral analysis with spectral localisation (here-
inafter called spectral localisation) to the large-scale compo-
nents of the signal and a spatial analysis with spatial locali-
sation (hereinafter called spatial localisation) for the residual
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scales. By separating the components, we avoid using an aug-
mented covariance matrix, and we thus potentially neglect
useful statistical relationships. However, this makes the mul-
tiscale system less expensive and easier to implement in an
existing ensemble data assimilation system. It is indeed ex-
pected that the spectral transformation of the large scales is
cheap enough to be applied to a large-size global ocean sys-
tem, and that spectral localisation is more appropriate than
spatial localisation to capture the large-scale components of
the observed signal. On the other hand, for the small-scale
components, the spectral transformation becomes too expen-
sive, and the local correlation structure prevails. The target
is thus to improve the observational update of the large-scale
components of the signal by an explicit observational con-
straint applied directly on the large scales and to restrict the
use of spatial localisation to the residual-scale components
of the signal. These analyses should be done one after the
other to be included in an existing sequential algorithm as
operated, for instance, by Mercator Océan.

The performance of this multiscale observational update
is then studied with an example application in the con-
text of Copernicus Marine Environment Monitoring Service
(CMEMS) systems. We performed a 70-member ensemble
simulation using the oceanic model NEMO (Nucleus for Eu-
ropean Modelling of the Ocean; Madec, 2008) version 3.6 at
1/4° with the CREG4 configuration (Dupont et al., 2015) as
part of the CMEMS project. This configuration of the North
Atlantic and Nordic Seas is currently used at Mercator Océan
for developing and testing the future assimilation system.
This configuration is thus appropriate to check that our new
algorithm can be integrated in the data assimilation system of
Mercator Océan (SAM?2) used for the CMEMS programme.

The objective of this paper is to describe the multiscale ob-
servational update algorithm that we have developed and to
evaluate its performance using the CREG4 ensemble system.
The paper is organised as follows. In Sect. 2, we present the
practical problem that we want to solve: we describe the prior
ensemble, the observation system and the difficulties asso-
ciated with the multiscale correlation structure. In Sect. 3,
we present the spectral transformation that is applied in this
study to better display the multiscale correlation structure. In
Sect. 4, we present the algorithm that we have developed to
make better use of the correlation structure for all scales. In
Sect. 5, we evaluate the resulting algorithm using the appli-
cation problem described in Sect. 2. This is done by study-
ing the reliability and resolution of the updated ensemble for
each wavelength of the control variables.

2 Application problem

The purpose of this section is to introduce the example ap-
plication that is used in this paper to study the performance
of the multiscale observational update. This example appli-
cation is chosen to serve the development of the CMEMS
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systems and to display the multivariate character of the as-
similation problem. The model configuration and the prior
ensemble simulation are described in Sect. 2.1; the assimi-
lation problem is described in Sect. 2.2; and the multiscale
character of the ensemble correlation structure is described
in Sect. 2.3.

2.1 Ensemble model simulation

Our example application is based on a 1/4° resolution model
of the North Atlantic and the Nordic Seas. We used the
oceanic model NEMO (Madec, 2008) version 3.6, with
the CREG4 configuration as part of the CMEMS project.
NEMO, used by a large community, is developed by Euro-
pean institutes and is used by the majority of the CMEMS
stakeholders. It is a primitive equation model which com-
putes the following prognostic variables: 3-D velocities, sea
surface height, salinity and temperature. ERA-Interim re-
analysis data, produced at ECMWF (Dee et al., 2011), are
used for the atmospheric forcing. CREG4 is a realistic con-
figuration for the North Atlantic and the Nordic Seas at the
1/4° horizontal resolution. This configuration is described in
the work of Dupont et al. (2015), except that we use a 1/4°
version instead of the nominal 1/12° resolution. It has been
developed by Environment Canada and coupled with Merca-
tor Océan’s SAM?2 data assimilation system. The aim was to
build a realistic description of the mean state and variabil-
ity in the North Atlantic and the Nordic Seas. The CREG4
configuration is currently used by Mercator Océan and its
resolution is sufficient to evaluate the multiscale assimilation
algorithm; therefore, we use it for our study.

Uncertainties in the model are explicitly simulated using
the standard NEMO stochastic parameterisation module de-
veloped by Brankart et al. (2015). The aim is to produce an
ensemble with a sufficient spread for all variables, especially
for the observed variables, all over the domain. This tech-
nique has been used to simulate six different kinds of un-
certainties in the model as described in Table 1. Concerning
the equation of state, we used the stochastic parameterisa-
tion proposed in Brankart (2013). The two standard devia-
tion values given in the table correspond to the standard de-
viation of the random walks in the horizontal and the ver-
tical directions. Uncertainties in air—sea fluxes are parame-
terised using a multiplicative noise (with gamma pdf to make
it positive) applied to the turbulent exchange coefficients
simulated by NEMO following the algorithm from Large
and Yeager (2009) extended to other parameters (and evalu-
ated by Mercator Océan). Ice uncertainties are parameterised
using stochastic processes representing uncertainties in ice
strength, ice albedo, ice/sea and ice/air drag coefficients.

With this stochastic modelling system, a 70-member
ensemble simulation, without assimilation, is performed
for the 8-month period between mid-January and mid-
September 2011. It will be used to perform the analyses in
the present paper. This ensemble simulation yields a proba-
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Figure 1. SSH (in metres). Ensemble mean (a) and standard de-
viation (b) of the prior ensemble (N =69 members). The true
anomaly (c) is defined as the difference between the true mem-
ber (computed as an additional independent member of the ensem-
ble) and the ensemble mean (a). Synthetic observations simulating
along-track Jason altimetry (d) correspond to the true member along
the track of the Jason altimeter plus a noise, following Eq. (1).

bility distribution for the evolution of the system, in particu-
lar the ensemble mean, hereafter (x¢), where (-) indicates an
ensemble mean over the members of the ensemble and the
background error covariance matrix of the prior ensemble,
P¢. Figure la and b show, respectively, the ensemble mean
({xr)) and the standard deviation of the prior ensemble. This
ensemble is appropriate to illustrate the multiscale analysis
in our study. Indeed, as will be shown later, the spread of
the ensemble spans a wide range of scales from basin scale
to mesoscale. Large scales as well as small structures are
well represented, which will allow us to evaluate our sepa-
ration scale algorithm. Nevertheless, the standard deviation
is too small in the regions of strong eddy activity such as
the Gulf Stream. This is mainly due to the model config-
uration (CREG4), which causes an excessive dissipation of
the turbulent kinetic energy. Moreover, the variability is too
large close to the East Siberian Sea. However, since we are
using twin experiments, the simulation does not need to be
perfectly realistic to evaluate our approach (providing that
the multiscale nature of the problem remains). These char-
acteristics are thus not likely to affect the evaluation of the
multiscale algorithm that is performed in this study.

Ocean Sci., 15, 443-457, 2019
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Table 1. Simulation of model uncertainties to perform the 70-member ensemble. It follows the working configuration used at Mercator Océan
to perform ensembles for research and development in the context of CMEMS systems.

Source of uncertainty ~ pdf Standard deviation  Corr. Laplacian

timescale filter
Equation of state normal  0.7/0.2 grid points ~ 8d 0
Air—sea fluxes gamma 40 % 8d 3
Ice strength gamma 40 % 8d 100
Ice albedo beta 5% 8d 100
Ice drag coefficients gamma 10% 8d 100

The standard deviation of the equation of state is defined according to longitude and latitude.

2.2 Definition of the twin experiments

The assimilation problem investigated in this study is based
on twin experiments with altimetry. In this kind of experi-
ment, the true state is known and synthetic observations are
built from this true state. It is generated by the same model
to which data assimilation is applied. This method has the
advantage that the effectiveness of the different algorithms
can be directly evaluated thanks to the known true state. One
member of the ensemble simulation is left apart to be used
as a reference (the simulated truth) from which the observa-
tions will be simulated: x .. The prior ensemble (indicated
thereafter by the subscript f as forecast during an assimilation
step) used in the experiments is thus a 69-member ensemble.

In this study, to illustrate the behaviour of the multiscale
algorithm, we will concentrate on studying the observational
update of the prior ensemble on 30 August 2011. Figure Ic
shows the true anomaly: X e — (x£). This true anomaly will
be used as a reference to evaluate the effectiveness of the
different localisation schemes and of the multiscale analysis.
Synthetic observations are simulated by adding a simulated
observational noise (e: a Gaussian noise with 5cm standard
deviation) to the true state (xyye) With the observation oper-
ator (H) along the track of the Jason altimeter:

yosztrue+€~ (D

In this experiment, a 10d observation window is chosen to
have the best coverage provided by Jason. Figure 1d shows
the resulting synthetic observation of the sea surface height
(SSH). The Jason altimeter does not provide any observa-
tion above 66° N latitude. In our example, there is thus no
available observation to correct, during the analysis step, the
large ensemble variance observed close to the East Siberian
Sea (Fig. 1b). This is something that the multiscale approach
will have to cope with.

The observational update of the prior ensemble will be per-
formed with a square root algorithm. The analysis scheme
used at Mercator Océan is derived from the singular evolutive
extended Kalman filter (SEEK) (Pham et al., 1998; Brasseur
and Verron, 2006), which is similar to that used in the ensem-
ble transform Kalman filter (ETKF) (Bishop et al., 2001). It

Ocean Sci., 15, 443-457, 2019

can be applied indifferently in the spatial domain as well as
in the spectral domain. In the assimilation system, the obser-
vational update is usually applied to all model variables. In
this paper, however, the effect of the multiscale approach will
mainly be evaluated by the update of SSH, which is the ob-
served variable, and by the update of temperature and salin-
ity to illustrate the application of the method to non-observed
variables. In the multiscale algorithm developed in this study,
nothing will be changed in the core of the square root algo-
rithm: the only novelty is that a spectral transformation is
applied before the observational update to allow spectral lo-
calisation rather than spatial localisation. A spatial localisa-
tion scheme has been already developed and evaluated (Tes-
tut et al., 2003; Brankart et al., 2011). For this study, it has
been adapted to be used in the spectral domain.

2.3 Ensemble correlation structure

The 69-member ensemble correlation structure (without the
true state, which has been left apart) is illustrated in Fig. 2a
and b. It has been computed according to two arbitrary ref-
erence points: one in the Gulf Stream and the other in the
north-east Atlantic Ocean off the coast of Portugal. Ensemble
correlation structure shows how the assimilation of an obser-
vation at this reference point will influence the other regions
during the analysis step. For N = 69 members, the correla-
tion coefficient is significant at 95 % if it is larger in absolute
value than 0.2367. In both examples, the most important and
significant values, i.e. where the observation will have an im-
pact, are mostly confined around the reference point. Some
significant correlations are observed further, but their values
are lower and not reliable enough to be used during an assim-
ilation step. The usual solution to avoid the spurious effect of
non-significant ensemble correlations is to perform a spatial
localisation during the analysis step. It consists in complet-
ing the correlation structure provided by the ensemble by the
assumption that only local correlations are significant and us-
able (Houtekamer and Mitchell, 1998; Hamill et al., 2001).
The long-range correlations are thus assumed to be zero to
perform the analysis step.

However, if we look at the same correlation structure (from
the same ensemble) for the large-scale component of the sig-

www.ocean-sci.net/15/443/2019/
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Figure 2. Two examples of ensemble correlation for the prior en-
semble (SSH), according to two different reference points indicated
by black crosses, computed for the full spectrum (a, b) and for the
large scales (c, d, [ € [0; [c], with /; = 34 following Eqs. 2 and 3,
which corresponds to a characteristic scale larger than L ~ 187 km).
Light grey colour corresponds to non-significant values of ensem-
ble correlations for an ensemble of N = 69 members (smaller in
absolute value than 0.2367 with significance threshold at 95 %).

nal (characteristic scale larger than L ~ 187km), as illus-
trated in Fig. 2c—d, we see that there are significant corre-
lations over a much larger range. Hence, significant informa-
tion of the large-scale signal is available even if the size of
the ensemble is small. But these are usually masked by the
presence of the small-scale signal. In the standard spatial lo-
calisation, these large-scale correlations structures are heav-
ily suppressed and thus a part of the large-scale information
is not used during the analysis step. The goal is now to find a
way to correctly exploit these correlations in the assimilation
scheme to better estimate the large-scale signal.

It seems difficult to explicitly control all scales of the sys-
tem without separating the different spectral components of
the signal. In this study, the main idea is to do a spectral trans-
formation of all variables of the system in order to do the
analysis in the spectral domain before going back in the spa-
tial domain to do the next steps of the assimilation scheme.

3 Spectral transformation

The purpose of this section is to describe the linear trans-
formation that will be applied on the state vectors and on
the observation vectors to separate scales. The forward and
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backward transformations of the model data are described in
Sect. 3.1 and 3.2, respectively; the transformation of obser-
vations and observation errors is described in Sect. 3.3; and
the effect on the ensemble correlation structure is studied in
Sect. 3.4.

3.1 Forward transformation: projection on the
spherical harmonics

The forward transformation step involves transforming each
input parameter used for the analysis into the spectral do-
main, namely each member of the prior ensemble, but
also observations and observational errors. A full two-
dimensional signal in spherical coordinates, f (6, ¢), can be
projected on spherical harmonics Yy, (8, ¢) by the following
spectral transformation (ST):

ST fim =/f(9, ®) Yim (0, ¢)dS2, (@)
Q

where [ and m are the degree and order of each spherical har-
monics, with / € N and |[m| <. In principle, the integral in
Eq. (2) extends over the whole sphere 2. However, in the
assimilation system, all fields f (6, ¢) that need to be trans-
formed are anomalies with respect to the ensemble mean. In
practice, it is thus possible to extend f (0, ¢) with zeroes
outside the available domain (f (6, ¢) = 0 on continents and
outside the model domain) in order to compute the integral
over the whole sphere. For a multivariate three-dimensional
variable, this transformation can be applied to each vertical
level of each model variable.

This spectral transformation provides a new point of view
on the ensemble because it separates scales. Each degree
[ of the spherical harmonic indeed corresponds to a wave-
length of a spherical harmonic A = @, with R, the Earth’s
radius, and thus to a characteristic scale L = % This re-
versible spectral transformation preserves the information for
each degree . The coefficients fj,, of the spherical harmon-
ics decomposition can be computed for each degree / up to a
selected degree | = Inax. This transformed field contains the
same information, until /h,x, as shown in the spatial domain
in Fig. 1. The coefficients fj, of each member of the prior
ensemble have been computed for the SSH until the degree
Imax = 60, which corresponds to a wavelength A ~ 667 km
and a characteristic length L ~ 106 km. Figure 3a shows the
standard deviation of this prior ensemble in the spectral do-
main. Figure 3b shows the result of the spectral transforma-
tion applied to the true SSH anomaly, i.e. the coefficients
fim of the true SSH anomaly. Similar patterns have been ob-
served by Wunsch and Stammer (1995) from early altimetric
observations. Most of the variability is concentrated at large
scales (small /). The variance becomes weak for meridional
structures, i.e. for | m |— .

Ocean Sci., 15, 443-457, 2019
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Figure 3. Standard deviation (a) of the prior ensemble and true
anomaly (b) in the spectral domain (SSH), according to the degrees
[ € [0, 60] in the abscissa and m in the ordinate; see Eq. (2), which
corresponds to a characteristic scale larger than L &~ 106 km.

3.2 Backward transformation: scale separation

From the spectrum fj;,, the field flf::i" (6, ¢) can be recon-
structed using the inverse transformation:

lmax

i
@) =D D Ym0 ¢). ()

min

ST,
I=lypin m=—1

This inversion can be constrained to specific scales by choos-

ing the values of /iy and /nax. The full field can be recon-

structed since f (6, ¢) = f5° (6, ¢). This is how the method

separates scales.

Any spectral band can thus be extracted by choosing the
range [Imin; Imax] appropriately. Figure 4 shows the result of
the extraction of the large scales applied to each member
of the ensemble and to the true anomaly to keep only the
large scales. In this case, /pin = 0 and Iiax = 34, which cor-
responds to a wavelength A ~ 1177km and a characteristic
scale L ~ 187km. Small-scale structures have been properly
removed and only large-scale structures remain visible on the
figure.

The use of spherical harmonics is not the most natural way
to separate scales for fields that do not extend over the whole
sphere. In principle, it would, for instance, be better to use
the eigenfunctions of the Laplacian operator defined for the
model domain. They would account for the land barriers and
would display a better relation to the system dynamics. How-
ever, they would also be much more expensive to compute
than the spherical harmonics and would need to be stored
and then loaded each time they are needed to separate scales.
This is why we preferred using spherical harmonics in this
study: they make the method numerically efficient and they
are sufficient to obtain a relevant spectral decomposition of
the input signal.

Ocean Sci., 15, 443-457, 2019
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Figure 4. Ensemble mean (a), standard deviation (b) of the prior
ensemble and true anomaly (c) for the SSH (in metres), after extrac-
tion of the large scales (I € [0; Ic], with [ = 34, which corresponds
to a characteristic scale larger than L =~ 187km; see Eq. 3).

3.3 Transformation of the observations

In theory, transformation of observations is not needed to
separate scales in the assimilation system. It should be suffi-
cient to introduce the scale separation operator in the obser-
vation operator of the existing algorithm. However, for prac-
tical reasons, the algorithm that we are proposing requires a
preprocessing of the observations to separate scales. This is
done to keep the algorithm easy to implement in an exist-
ing system: nothing new needs to be implemented except the
scale separation operator and to keep the resulting algorithm
efficient enough to be applicable to a large-size assimilation
system.

In this section, we show how this transformation of ob-
servations can be performed by regression of the observa-
tions on the spherical harmonics (see Sect. 3.3.1) and how
the statistics of the observational errors can be transformed
accordingly (see Sect. 3.3.2).

3.3.1 Regression of observations

For all observations that are not available on a regular grid
(for which Eq. 2 could directly be applied), the spectral trans-
formation can be performed by linear regression of the inno-
vation vector (anomaly of the observations with respect to
the ensemble mean) on the spherical harmonics.

The approach is to look for the spectral amplitudes fj,, so
that the corresponding field f (6, ¢) (up to degree /. fol-

www.ocean-sci.net/15/443/2019/
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lowing Eq. (3) with [y, = 0) minimises the following dis-
tance to observations f:

LS|

IO = Z N2
=1 (o)

where p is the size of the observation vector (including bogus
observations); fk” is the observation at coordinates (0, ¢x);
of is typically the observation error standard deviation (in-
cluding the representativity error corresponding to the signal
above degree Inax) at coordinates (6x, ¢x). If the observation
system is insufficient to control all spectral components with
sufficient accuracy, the final penalty function J can include a
regularisation term J? as J = J°+aJ?, where the parameter
a can be tuned (between O and 1) to modify the importance
of J? with respect to J°. The regularisation term J? is the
following norm of the spectral amplitudes f;,, of Eq. (2):

[ @ ¢0)— £2] )

lmax l 2
fim
Jim ®)

1=0 m=— Olm

Jb =

where oy, is typically the standard deviation of the signal
along each spherical harmonics.

In practice, several additional modifications may need to
be introduced in the algorithm and have been implemented
for our study. (i) For a non-global model domain (such as
CREG4), it may be better to reduce the basis of the spheri-
cal harmonics (for each degree /) to the subspace that is ef-
fectively spanned by the prior ensemble. (ii) For numerical
efficiency reasons, it can be useful to perform the regression
locally (over a local range of degree /) and then iterate until
convergence. (iii) In the case of large regions without obser-
vations (such as the Nordic Seas for spatial altimetry), it can
be useful to add zero bogus observations to avoid triggering
a spurious signal where no observation is available. For in-
stance, in our study, we added observations in the northern
region of the domain, where no Jason observations are avail-
able.

3.3.2 Observational error

The observational error results from both the initial Gaus-
sian error with a standard deviation of 5cm introduced on
the true member to create the observation and also the par-
tial observation coverage and hence the algorithm used to
do the regression. In theory, this error can be quantified. We
suppose that the observational error is decorrelated at large
scales. Indeed, the large-scale correlations of this observa-
tional error are small compared to the observed large-scale
structures. This assumption will be verified in Sect. 5.2 by
the consistency of the rank histograms. As part of our twin
experiment, we propose the following procedure.

This error has been quantified following these steps. In
this twin experiment, the true state is known. The chosen
true member, from which the observation has been created,
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initially belongs to an ensemble of N + 1 =70 members.
Then, in the same ways described above, N+1 true members,
xi. Withi € [1; N + 1] can be used to generate observations
y% ! It is then possible to evaluate the standard deviation of
the observational error in the spectral domain by transform-
ing (i) the innovation vector and (ii) the misfit with respect to
the true state and by computing the rms difference between
these two transformed vectors. More explicitly, this is done
by computing the rms between STiegr [ y” ' — Hxr)], where
the operator STieg provides the spectrum resulting from the
regression of innovations y* ' —H(xy), and ST [x,. — (x)],
where the operator ST provides the spectrum of the corre-
sponding true anomalies x{me — {xg), following Eq. (2).

This method is directly applicable to twin experiments and
can be transposed to a real system by simulating observa-
tional error and looking at how it is transformed in the spec-
tral domain. In a realistic case, the above method can directly
be transposed by simulating observational error in model re-
sults and by transforming the difference between the per-
turbed and unperturbed data. The standard deviation of the
result is then an estimate of the observation error standard
deviation along each spherical harmonics.

3.4 Transformed correlation structure

We need to study the main dependencies and correlations be-
tween the different spectral components of the ocean fields
in order to determine whether and how the scale separa-
tion could be used in the data assimilation scheme. Figure 5
shows two examples of ensemble correlation maps between
spectral amplitudes. It is comparable to Fig. 2 but in the spec-
tral domain (amplitudes f,, of Eq. 2). Ensemble correlation
structure is computed according to reference points in the
spectral domain and indicated by crosses in Fig. 5. It shows
how the assimilation of the signal of an observation at these
reference points will impact the other scales during the spec-
tral analysis step. Similarly to Fig. 2, the significant and max-
imum area is confined near the reference points. Most corre-
lations between very different scales are weak and might thus
be neglected by data assimilation. This is the basic property
allowing to introduce scale separation in the data assimila-
tion scheme with a reasonable cost. However, it is true that
there are also significant correlations for remote scales, and
that neglecting these correlations corresponds to losing po-
tentially useful information. This is however similar to what
happens with spatial localisation: in Fig. 2, there also exists
significant correlations far from the reference location. The
question is then which correlations is it better to neglect to
preserve the meaningful structures contained in the ensem-
ble. This is the question that we will try to elucidate with our
example application.

To exploit this property of weak correlations between very
different scales, a spectral analysis thus also requires to be lo-
calised, at least for the large scales in our study. The method
of spectral localisation is the same as that usually used in the
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Figure 5. Two examples of ensemble correlation for the prior en-
semble (SSH) in the spectral domain, according to the degrees
[ € [0, 60] in the abscissa and m in the ordinate; see Eq. (2). The
two different reference points are indicated by black crosses. Light
grey colour corresponds to non-significant values of ensemble cor-
relations for an ensemble of N = 69 members (smaller in absolute
value than 0.2367 with significance threshold at 95 %).

spatial domain. For the same reasons, each localisation win-
dow will contain a number of degrees of freedom sufficiently
low to be controlled with an ensemble of moderate size.

4 Combining spatial and spectral localisation

The objective of this section is to introduce and demon-
strate the multiscale observational update algorithm, com-
bining spectral localisation for the large scales and spatial
localisation for the small scales. In Sect. 4.1, we show how
spectral localisation can be obtained using the spectral trans-
formation presented in Sect. 3 and how it can be combined
with spatial localisation to build up the multiscale observa-
tional update algorithm. In Sect. 4.2, we compare the spatial
and spectral localisation schemes and demonstrate the im-
provement brought by spectral localisation in the control of
the large scales. In Sect. 4.3, we use this comparison to de-
termine the critical scale, /., above which spatial localisation
starts performing better than spectral localisation. This criti-
cal scale is the key parameter that specifies how spatial and
spectral localisation are combined in the multiscale observa-
tional update algorithm.

4.1 Multiscale observational update algorithm

We propose an algorithm for the multiscale analysis based
on a combination of a spectral analysis with spectral locali-
sation for the large scales (described by Eq. 7) and a spatial
analysis with spatial localisation for the residual scales (de-
scribed by Eq. 6). The large scales are defined by the crit-
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ical scale /.. The full algorithm is explained by Egs. (8) to
(12). For this new method, we need to combine an algorithm
to perform the observational update (OU) of the ensemble
with the forward (ST) and backward (ST_l) spectral trans-
formations previously defined by Egs. (2) and (3). Any ob-
servational update algorithm can be chosen provided that it
allows localisation, for instance, the SEEK observational up-
date (Brasseur and Verron, 2006) or the ETKF observational
update (Bishop et al., 2001). This localisation will be applied
in our case in the spectral domain (OUjgpeciral) or in the spatial
domain (OUjpatia) depending on the context.

4.1.1 Spatial and spectral localisation

The analysis step is usually done in the spatial domain with
a spatial localisation (observational update OUgpagial) using
spatial innovation. This step is applied to the prior ensem-
ble anomaly, (Sxé, with respect to prior ensemble mean (for
member i =1, ..., m) to obtain the updated ensemble Sx/,.
It corresponds to the correction applied to the prior ensemble
during the assimilation step.

8xk — OUspatial — 8%, (6)

Another approach is to apply the observational update in
the spectral domain With spectral localisation (OUspectral) to
the prior ensemble (8x}) after transformation into the spectral
domain (ST). The spectral innovation is computed following
Sect. 3.3.1. The resulting spectral analysis (8x’, with super-
script LS for large scales) is only available up to the scale [,
for which the spectral transformation has been done.

8xf — ST — OUgpectrat = ST, — 8x; ™ (7

4.1.2 Multiscale analysis: description of the algorithm

Multiscale analysis combines a spectral localisation for the
large scales and spatial localisation for the residual scales.

— First step: spectral localisation for the large scales.
This is an observational update with spectral localisa-
tion for the large-scale part of the ensemble anomalies,
as already described in the previous section; see Eq. (7).

8xf — ST — OUgpectrat — ST, — 8x; ™ (®)

— Second step. spatial localisation for the residual part.
Extract Sx;’ ReS. the residual part of each anomaly of the

prior ensemble:
8xp— ST— ST, !, — sxp'® o

i,Res __ i i, LS
dxy =dx; —dx;
Then, compute 8 yR°: the residual part of the innova-

tion, using the current best estimate of the large-scale
field at the observation points:

1 &
syRe :5)’_H(ﬁ 2.0%; LS) (10)
i=1
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Compute 8x'; R: the residual part of the ensemble anal-
ysis increment, using the residual spatial innovation
(8 yR®) during the observational update in the spatial
domain with spatial localisation (OUjspatial). Spatial ob-
servational error has to be estimated and can be smaller
than those chosen for the spatial localisation only (see
Eq. 6) to get better results at each scale. Indeed, a part
of the error has already been taken into account during
the spectral localisation for the large scales.

8xp % — OUgpagial — x5 RS (11)

— Third step: full spectrum. Compute SxZ: the final value
of the ensemble analysis for the member i as the sum of
Egs. (8) and (11):

Sxi = 8xhtS 4 sxlRes, (12)

This analysis increment is directly comparable to the
analysis increment obtained with the spatial localisation
applied to the full field; see Eq. (6).

4.2 Comparison of localisation schemes

The relevance of implementing a multiscale analysis rather
than the usual spatial localisation is only validated if spec-
tral localisation better retrieves large-scale patterns of the
signal than spatial localisation. To verify the validity of this
assumption, we perform two different analyses in the con-
text of the twin experiments described in Sect. 2.2. The first
analysis is carried out with a spatial localisation only follow-
ing Eq. (6), hereinafter called spatial localisation, whereas
the second analysis uses a spectral localisation only follow-
ing Eq. (7), hereinafter called spectral localisation. Spatial
and spectral localisation radius have been optimised to obtain
the best results in both experiments. The spatial localisation
radius corresponds to a wavelength of spherical harmonic
about 139km at the Equator, while that of spectral localisa-
tion is a rectangle of 3 in ordinate / number and 1 in m num-
ber. They have been deduced from the correlation ensem-
ble (see, for instance, Fig. 2a and b for spatial localisation,
and Fig. 5a and b for spectral localisation). The localisation
radius is chosen small enough to avoid non-significant cor-
relations. In order to evaluate these localisation algorithms,
they are compared for the large scales. As justified later in
Sect. 4.3, we choose to define large scales as the range of
scales [ € [0; 34].

Each scale of spatial and spectral analysis increments has
to be as close as possible to the corresponding scale of the
true anomaly. The large-scale part of this spatial analysis in-
crement ((Sx; of Eq. 6) can be directly compared to the spec-
tral analysis increment obtained from the large scale of the
prior ensemble ((Sxf; LS of Eq. 7). It can be extracted, follow-
ing Egs. (2) and (3), to obtain the corresponding large scales
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Figure 6. Ensemble mean of large-scale part of the analysis incre-
ments (SSH in metres), with [ € [0, I.], [c = 34: (a) obtained af-
ter spatial localisation only and then filtered; see Eqs. (6) and (3);
(b) obtained after spectral localisation following Eq. (7); (c) ob-
tained after multiscale analysis (spectral 4 spatial localisation; see
Sect. 4.1.2) (to be compared to the large-scale true anomaly,
Fig. 4c¢).

of the spatial analysis increment:

8x! — ST — ST,

ob = 8xk LS, (13)
Simultaneously, the obtained spectral analysis increment
(Eq. 7) is back into the spatial domain (applying ST™!, fol-
lowing Eq. 3) to be directly comparable to the large scales
of the spatial analysis increment (Eq. 13). Figure 6a and b
show, respectively, the large scale of the mean ensemble of
analysis increments obtained, respectively, with spatial local-
isation or spectral localisation (see Sect. 4.1.1). Hence, they
have to be as similar as possible to the large-scale part of the
true anomaly shown in Fig. 4c.

Spectral localisation recovers large scales much better than
spatial localisation; see Fig. 6 vs. Fig. 4c. In all cases, the
analysis increment is significant only where Jason data are
available (see Fig. 1d). The analysis and the type of localisa-
tion thus have no significant impact on the north of the model
domain. This result reinforces the idea of a multiscale anal-
ysis with spectral localisation for the large scale. It is now
necessary to determine the critical scale, /., from which the
spatial localisation will be preferred.
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Figure 7. Reduction of spatial RMSE for each degree for the SSH,
computed using Eq. (14). The blue curve (spatial) refers to the spa-
tially updated ensemble, the green curve (spectral) to the spectrally
updated ensemble and the black curve (spectral + spatial) to the
multiscale updated ensemble.

4.3 Determining the critical scale

On average, spectral localisation only gives better results
than spatial localisation for the large scales, but we need to
check that this affirmation remains valid at each scale or that
there exists a critical scale, [, from which this tendency is no
longer true. To determine [, a classic score is computed for
the spatial localisation and the spectral localisation. It shows
the improvement of the RMSE after/before the analysis by
averaging sums over the whole model domain:

e
_ RMSEposterior _ \/(< Xq > —Xiue)

RMSE pior \/(< x> —xtrue)2

where - is the mean over the domain. Each member of this
equation is then computed for all specific degree /, following
Egs. (2) and (3) with liyin = Imax = [. During an analysis step,
the RMSE of the observed variable will be reduced. The ratio
thus allows to evaluate the accuracy of the analysis for each
scale. Figure 7 shows this score for each degree / until 100 for
the spatial analysis only and until 60 for the spectral analysis
only.

This gives a new point of view to evaluate the results of an
analysis, giving the efficiency of the spatial or spectral anal-
ysis at each scale and no longer only for the full field. Spatial
localisation deals with all scales at the same time. The score
is almost the same at each scale: around 0.8. In contrast, this
score of the spectral localisation is very sensitive to the scale.
It is almost up to 2 times smaller than the one of the spatial
localisation for the large scales. It increases with the degree
until it becomes similar and exceeds the spatial localisation
score. The spectral observational error used for the spectral
localisation has not been computed exactly from / =~ 50. This
led to important values close to I = 60, which impact the
score shown in Fig. 7. However, if observational error has
been computed exactly until larger degrees, the trend would
follow a similar pattern.

; (14)
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Until around ! ~ 34, spectral localisation further reduces
the spatial RMSE more than spatial localisation, which is
consistent with the study of analysis increments in Fig. 6,
while, for larger degrees [, this trend tends to reverse. The
critical value, I, does not need to be very precise for the
multiscale analysis. Indeed, the scores of spatial and spec-
tral localisations are close on a range of degrees (here around
30 and 50, for instance). A variation of a few degrees on /.
will not have any major impact on the final results of the
multiscale analysis. In this twin experiment and for all these
reasons, the critical scale /. is now fixed to /. = 34.

5 Evaluation of the multiscale observational update

The aim of this section is to evaluate the multiscale analysis
and to compare it with spatial analysis, for the full spectrum
but also at each scale. For that purpose, we did a multiscale
analysis following the algorithm presented in the previous
Sect. 4.1.2, with the critical scale [, = 34. This experiment is
hereinafter called spectral + spatial localisation in figures.

In Sect. 5.1, we demonstrate that multiscale analysis keeps
the advantages of spectral and spatial localisations at each
wavelength. This is done by studying the error of spatial
RMSE for each scale and comparing the analysis increment
for the multiscale analysis and the spatial localisation. In
Sect. 5.2, we check the reliability of these updated ensem-
bles by computing rank histograms in the spatial and also
spectral domains. In Sect. 5.3, we show that the spread of
the updated ensembles obtained with the multiscale analysis
decreases much more than those of the spatial localisation at
large scales, as well as for all scales. In Sect. 5.4, we evalu-
ate the impact of the multiscale analysis on the non-observed
variables (temperature and salinity) with a multivariate anal-
ysis. We show that on average multiscale analysis reduces
their spatial RMSE much more than the spatial localisation
for large scales and similar errors at smaller scales.

5.1 Error reduction at each wavelength

On average, the updated ensemble produced with the multi-
scale analysis should better approach the true state than those
obtained with the spatial localisation only. To evaluate the
efficiency of the multiscale analysis, the error has been com-
puted in two ways: at each scale in the spectral domain, fol-
lowing Eq. (14), and in the spatial domain for the full spec-
trum, with a comparison of the analysis increments and the
true state.
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Figure 8. Same as Fig. 6a and ¢ but keeping the full spectrum (no
extraction of the large scales): (a) obtained after spatial localisa-
tion only, following Eq. (6); (b) obtained after multiscale analysis
(spectral + spatial localisation) following Sect. 4.1.2 (to be com-
pared with Fig. 1c).

5.1.1 Spectral point of view: reduction of spatial
RMSE for each scale

The previous score showing the evolution of the RMSE af-
ter/before the analysis on average on the model domain, fol-
lowing Eq. (14), is now computed for the multiscale analysis.
Figure 7 (black curve) shows this score computed for each
scale until / = 100.

Multiscale analysis keeps the advantages of both localisa-
tions (spectral localisation in green and spatial localisation
in blue). As expected, for the large scales [ € [0; [.], with
. = 34, the multiscale analysis is much better than spatial
localisation and has the same order of magnitude as the spec-
tral localisation. Indeed, the same spectral localisation with
the same configuration has been done for the multiscale anal-
ysis. For the residual scales, multiscale analysis allows to re-
cover, as expected, similar results to the spatial localisation,
especially for the smaller scales. Differences occur especially
close to /. and result from the contribution of the spatial lo-
calisation to treat the residual scales. To explain why small
difference exists between the black and the green curves be-
fore the critical scale, we have to note that the analysis in-
crement obtained with the spatial localisation can include a
large-scale component, which can directly impact the large
scale of the total analysis increment.

5.1.2 Spatial global point of view: analysis increment

The analysis increments obtained with spatial localisation
(Fig. 8a) or with multiscale analysis (spectral + spatial local-
isation; Fig. 8b) can be directly compared to the full spectrum
of the true anomaly shown in Fig. 1c. The multiscale analysis
allows to recover a part of the large-scale pattern unlike the
spatial localisation. It keeps advantages of the spatial locali-
sation for the residual scales.
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These analysis increments can be evaluated at each scale.
Figures 6a and c show the large scales (I € [0; 34]) of these
analysis increments, respectively, for spatial localisation or
multiscale analysis. They have been obtained from their re-
spective full fields (Fig. 8a and b) following Egs. (2) and (3).
Small structures have been well removed from the full spec-
trum. They have to be as close as possible to the large scales
of the true anomaly shown Fig. 4c, which have been extracted
from its full field shown in Fig. 1c. Multiscale analysis and
spectral localisation give similar results for the large scales
and are better than the spatial localisation. This is consistent
with observed reduction of spatial RMSE at each large scale,
shown in Fig. 7.

5.2 Reliability of the updated ensemble

The updated ensemble should be reliable in the spatial do-
main but also in the spectral domain. This involves checking
the coherence between the assumed probabilities and the ob-
served statistics when the ensemble is compared to the veri-
fication data (the true state in our twin experiment, or obser-
vation in a real system). To check ensemble reliability, ranks
are traditionally computed in the spatial domain and sum-
marised in a rank histogram. They show the distribution of
observations with respect to the ensemble (Anderson, 1996;
Talagrand et al., 1997). In our context of twin experiments,
the prior ensemble is reliable by construction. Indeed, the
true state originates from the same ensemble simulation as
the other members. The reliability of the updated ensemble
will be evaluated by comparing the rank histogram of the
updated ensemble with the rank histogram of the prior en-
semble. Hence, a flat rank histogram indicates a reliable en-
semble, whereas a U-shaped rank histogram indicates a lack
of spread in the ensemble: the uncertainty is underestimated
(Anderson, 1996; Hamill, 2001). Alternatively, we propose
a new point of view of these ranks, computing them in the
spectral domain. The interpretation of these new ranks has to
corroborate the conclusions obtained in the spatial domain.

5.2.1 Spatial rank histograms

Rank histograms have been computed, with respect to the
true state, from spatial maps limited to the Jason domain for
the prior ensemble, the spatially updated ensemble and the
multiscale updated ensemble. Figure 9b shows the rank his-
tograms for the large scales (I € [0; [.]) for the same ensem-
bles but also for the spectrally updated ensemble presented
in the previous section.

Rank histograms show that all these updated ensembles
can be considered as reliable as the prior ensemble, both for
the full spectrum and for the large scales. Indeed, the prior
ensemble looks somewhat underdispersed but can be consid-
ered reliable because the true member originates from the en-
semble itself. The rank histograms of the updated ensembles
are of the same order of magnitude as that of the prior ensem-
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Figure 9. Spatial rank histogram on the Jason domain for the SSH.
“Prior” (in red), “spat” (in blue), “spct” (in green) and “spct + spat”
(in black) correspond, respectively, to the prior ensemble, spatially
updated ensemble, spectrally updated ensemble and the multiscale
updated ensemble. (a) Full spectrum; (b) after extraction of the
large scales: [ € [0; [¢], with [c = 34.

ble. Thus, the small underdispersion of the prior ensemble
(which can only result from the limited size of the sample)
has not increased during the analysis step. These consistent
rank histograms confirm that the observational error has been
properly evaluated.

5.2.2 A new point of view: ranks map in the spectral
domain

Reliability of all updated ensemble (spatial localisation only
and multiscale analysis) is now tested for degrees [ € [0; 60]
by calculating ranks in the spectral domain with respect to
the true state. Ranks are computed following the same pro-
cedure as in the spatial domain but the members and the true
state are previously transformed into the spectral domain fol-
lowing Eq. (2). Figure 10 shows the maps of ranks in the
spectral domain for the prior ensemble, the spatially updated
ensemble and the multiscale updated ensemble. The maps of
ranks for the spectrally updated ensemble are not shown due
to similar results to the multiscale updated ensemble. This
new point of view allows to diagnose the behaviour of the
system for each scale.

Ranks maps in the spectral domain provide additional in-
dication that all algorithms provide reliable updated ensem-
bles. Observational error has been consistently evaluated.
The ranks are computed for each spectral coordinate (/, m)
and have been normalised by the total number of data points
to have numbers between 0 and 1. For a perfectly reliable en-
semble, ranks would be evenly and randomly distributed over
the entire spectral domain. For our study, when degrees tend
toward / = m, which corresponds to meridional signal, ranks
are not all represented even for the prior ensemble. However,
these spectral regions correspond to extremely weak stan-
dard deviation of the ensemble in the spectral domain (see
Fig. 3a): there is no meridional signal in the prior ensemble.
They do not have an important impact on the spatial field. For
the other degrees, ranks show that the prior ensemble is reli-
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Figure 10. Maps of ranks in the spectral domain for the SSH,
according to the degrees / € [0, 60] in the abscissa and m in the
ordinate; see Eq. (2). (a) Prior ensemble; (b, ¢) updated ensem-
bles, respectively, obtained after spatial localisation only (see Eq. 6)
or after the multiscale analysis (spectral + spatial localisation; see
Sect. 4.1.2).

able. The spatially updated ensemble and the multiscale up-
dated ensemble also remain reliable even if the latter seems
to be somewhat less dispersed.

5.3 Resolution of the updated ensemble

The spread, or variance, of the prior and the updated en-
semble (with N = 69 members) has been computed to check
the resolution of the updated ensemble. For instance, for the
prior ensemble, xr,

N

1 . 2
spread = v Z (xlf— <Xt >) . (15)

i=1

The reliability of the ensemble has been checked previously
with the rank histograms. Then, the smaller the spread after
the analysis, the better the analysis. Figures 11 and 12 show
the spread of the prior ensemble, the updated ensemble after
spatial localisation and the updated ensemble after a mul-
tiscale analysis (spectral 4 spatial localisation), respectively,
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Figure 11. Ensemble spread of the prior (a), the updated ensembles
obtained with (a) the spatial localisation only or with (¢) the multi-
scale analysis (spectral + spatial localisation), according to Eq. (15)
(full spectrum) for the SSH.

for the full spectrum and after extraction of the large scales
( €10, I], with [, = 34).

The multiscale analysis allows to decrease the ensemble
spread more than the spatial localisation. The spread is much
more reduced along Jason tracks; see Fig. 11c. This decrease
is especially important for the large scales; see Fig. 12c. For
the large scales, the spread of the updated ensemble by spec-
tral localisation is not shown due to similar results to those
of multiscale analysis. Thus, knowing that all these ensem-
bles are reliable, the more efficient algorithm is the multi-
scale analysis because it has further reduced the spread of
the ensemble and is the closest to the true state.

5.4 Multivariate analysis

Multivariate analysis consists in extending the observational
update to non-observed variables, like temperature and salin-
ity, in the state vector during the analysis. The experimental
setup remains the same. The aim is to evaluate the impact of
the multiscale analysis on these non-observed variables and
to check that it does not introduce more error than the spa-
tial localisation. These errors could increase during the next
forecast and cause some unrealistic values. For this purpose,
we compute the score defined by Eq. (14) for each degree
for the spatial localisation (spat) and for the multiscale anal-
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Figure 12. Same as Fig. 11 but after extraction of the large scales
(I €105 Ic], with I = 34; see Eqgs. 2 and 3).

ysis (spct+ spat). Then, we compute, for each level and each
degree, the ratio of these scores, following Eq. (16).

Pspat

Ratio = (16)

Pspet+spat

Figure 13 shows these results for the temperature and salin-
ity. Each depth in this figure thus corresponds to the ratio of
the blue and black curves of Fig. 7, no longer for the SSH but
for the temperature or salinity instead of SSH.

On average, below and around the critical degree [, = 34,
the multiscale analysis further reduces the error as compared
to the spatial localisation only. In a few cases, at basin scales,
multiscale analysis appears to produce poorer results than
spatial localisation. However, this effect is small as compared
to the improvement made at the other depths and large scales.
For smaller scales, these two analyses give similar results. It
is consistent with the fact that a similar spatial localisation is
done for the both analyses and with the results obtained for
SSH (see Fig. 7).

6 Conclusions

We have formulated and evaluated a multiscale analysis ap-
proach for ensemble ocean data assimilation that provides
a better recovering of the large scales than the current spa-
tial analysis with spatial localisation. It has been developed
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Figure 13. Improvement obtained by the multiscale analysis for temperature (a) and salinity (b). This improvement is measured by com-
parison to spatial localisation only using the ratio in Eq. (16). Blue (respectively red) colour corresponds to a better (respectively worse)
correction of the error using the multiscale analysis as compared to spatial localisation only.

to be used in the existing data assimilation system of Mer-
cator Océan used in the CMEMS project. This new scheme
consists in performing a spectral analysis with spectral local-
isation for the large scales and a spatial analysis with spatial
localisation for the residual scales.

The transformation to the spectral domain and the spectral
localisation provides consistent ensemble estimates of the
state of the system (in the spectral domain, or after backward
transformation to the spatial domain). In terms of accuracy,
this spectral localisation recovers the large-scale structures
better than the spatial localisation. For the large scales, spec-
tral localisation yields lower errors than spatial localisation
while keeping a reliable ensemble. Conversely, the spatial lo-
calisation is still preferable for the small scales.

This new spectral approach also gives a new point of view
to diagnose the system. Traditional diagnostics as ensemble
mean, spread, correlations structures, rank histograms, etc.,
give information at each scale and no longer only for the full
field.

The multiscale analysis, which is a hybrid scheme combin-
ing spectral localisation for the large scales and spatial local-
isation for the residual scales, keeps the advantages of these
two localisations. Consequently, it can significantly improve
the current use of various ocean observing systems, partic-
ularly with regard to the large-scale information contained
in sparse distribution of observations as altimeters or ARGO
floats.

The direct perspective of this study is to implement and
test the method in the real CMEMS system developed at Mer-
cator Océan. The target is (i) to check that the method can
be applied without deep modification of the existing system,
(ii) to evaluate the operational gain that is obtained by an im-
proved control of the large-scale signal and (iii) to enhance
the diagnostic of the system by evaluating the performance
separately for each scale. Some data assimilation steps have
already been successfully carried out in the same context of
our study (not shown). In the longer perspective, the imple-
mentation of this multiscale approach for ensembles might

Ocean Sci., 15, 443-457, 2019

improve the CMEMS products of Mercator Océan as the re-
analysis which is used by a large scientific community.
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