L. Bihannic and O. Ayrault, Insights into cerebellar development and medulloblastoma, Bull. Cancer, vol.103, pp.30-40, 2016.

P. A. Northcott, Subgroup-specific structural variation across 1,000 medulloblastoma genomes, Nature, vol.488, pp.49-56, 2012.

M. D. Taylor, Molecular subgroups of medulloblastoma: the current consensus, Acta Neuropathol, vol.123, pp.465-72, 2012.

A. Gajjar, Pediatric brain tumors: innovative genomic information is transforming the diagnostic and clinical landscape, J. Clin. Oncol, vol.33, pp.2986-2998, 2015.

A. Gajjar, Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial, Lancet Oncol, vol.7, pp.813-820, 2006.

R. J. Packer, Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma, J. Clin. Oncol, vol.24, pp.4202-4208, 2006.

S. Asuthkar, Irradiation-induced angiogenesis is associated with an MMP-9-miR-494-syndecan-1 regulatory loop in medulloblastoma cells, Oncogene, vol.33, pp.1922-1933, 2014.

S. A. Stacker, Lymphangiogenesis and lymphatic vessel remodelling in cancer, Nat. Rev. Cancer, vol.14, pp.159-172, 2014.

R. H. Farnsworth, M. G. Achen, and S. A. Stacker, The evolving role of lymphatics in cancer metastasis, Curr. Opin. Immunol, vol.53, pp.64-73, 2018.

S. Karaman and M. Detmar, Mechanisms of lymphatic metastasis, J. Clin. Invest, vol.124, pp.922-928, 2014.

Q. Ma, L. C. Dieterich, and M. Detmar, Multiple roles of lymphatic vessels in tumor progression, Curr. Opin. Immunol, vol.53, pp.7-12, 2018.

T. P. Padera, E. F. Meijer, and L. L. Munn, The lymphatic system in disease processes and cancer progression, Annu. Rev. Biomed. Eng, vol.18, pp.125-158, 2016.

A. Aspelund, A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules, J. Exp. Med, vol.212, pp.991-999, 2015.

A. Louveau, Structural and functional features of central nervous system lymphatic vessels, Nature, vol.523, pp.337-341, 2015.

A. Louveau, Corrigendum: Structural and functional features of central nervous system lymphatic vessels, Nature, vol.533, p.278, 2016.

M. Absinta, Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI, Elife, vol.6, 2017.

A. Louveau, Understanding the functions and relationships of the glymphatic system and meningeal lymphatics, J. Clin. Invest, vol.127, pp.3210-3219, 2017.

M. Dufies, Sunitinib stimulates expression of VEGFC by tumor cells and promotes lymphangiogenesis in clear cell renal cell carcinomas, Cancer Res, vol.77, pp.1212-1226, 2017.

M. Lupu-plesu, Effects of proton versus photon irradiation on (lymph)angiogenic, inflammatory, proliferative and anti-tumor immune responses in head and neck squamous cell carcinoma, Oncogenesis, vol.6, p.354, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02375851

A. R. Harris, M. J. Perez, and J. M. Munson, Docetaxel facilitates lymphatictumor crosstalk to promote lymphangiogenesis and cancer progression, BMC Cancer, vol.18, p.718, 2018.

T. Tammela and K. Alitalo, Lymphangiogenesis: molecular mechanisms and future promise, Cell, vol.140, pp.460-476, 2010.

T. Duong, P. Koopman, and M. Francois, Tumor lymphangiogenesis as a potential therapeutic target, J. Oncol, vol.2012, p.204946, 2012.

F. M. Cavalli, Intertumoral heterogeneity within medulloblastoma subgroups, Cancer Cell, vol.31, p.6, 2017.

G. J. Prud'homme and Y. Glinka, Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity, Oncotarget, vol.3, pp.921-939, 2012.

B. Favier, Neuropilin-2 interacts with VEGFR-2 and VEGFR-3 and promotes human endothelial cell survival and migration, Blood, vol.108, pp.1243-1250, 2006.

M. Caunt, Blocking neuropilin-2 function inhibits tumor cell metastasis, Cancer Cell, vol.13, pp.331-342, 2008.

J. Wang, NRP-2 in tumor lymphangiogenesis and lymphatic metastasis, Cancer Lett, vol.418, pp.176-184, 2018.

T. Jiang, CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis, Blood, vol.120, pp.2330-2339, 2012.

E. C. Schwalbe, Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study, Lancet Oncol, vol.18, pp.958-971, 2017.

S. Parhar, H. Kaur, A. Vashist, and S. Verma, Role of podoplanin in potentially malignant disorders and oral squamous cell carcinoma and its correlation with lymphangiogenesis, Indian J. Cancer, vol.52, pp.617-622, 2015.

T. Milde, HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment, J. Neurooncol, vol.110, pp.335-348, 2012.

P. A. Northcott, The whole-genome landscape of medulloblastoma subtypes, Nature, vol.547, pp.311-317, 2017.

M. Rudzinska, J. K. Ledwon, D. Gawel, J. Sikorska, and B. Czarnocka, The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells, Oncotarget, vol.8, pp.114136-114155, 2017.

R. Wei, Human CAFs promote lymphangiogenesis in ovarian cancer via the Hh-VEGF-C signaling axis, Oncotarget, vol.8, pp.67315-67328, 2017.

Y. Morita, Cellular fibronectin 1 promotes VEGF-C expression, lymphangiogenesis and lymph node metastasis associated with human oral squamous cell carcinoma, Clin. Exp. Metastasis, vol.32, pp.739-753, 2015.

F. Morfoisse, Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1?-independent translation-mediated mechanism, Cell Rep, vol.6, pp.155-167, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631811

P. D. Ndiaye, VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness, Theranostics, vol.9, pp.661-675, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02454437

H. Huber, Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas, Eur. J. Cancer, vol.37, pp.2064-2072, 2001.

C. Jue, Notch1 promotes vasculogenic mimicry in hepatocellular carcinoma by inducing EMT signaling, Oncotarget, vol.8, pp.2501-2513, 2017.

Q. Liu, The relationship between vasculogenic mimicry and epithelialmesenchymal transitions, J. Cell Mol. Med, vol.20, pp.1761-1769, 2016.

M. A. Nieto, R. Y. Huang, R. A. Jackson, J. P. Thiery, and . Emt, Cell, vol.166, pp.21-45, 2016.

D. P. Ivanov, B. Coyle, D. A. Walker, and A. M. Grabowska, In vitro models of medulloblastoma: choosing the right tool for the job, J. Biotechnol, vol.236, pp.10-25, 2016.

M. M. Baldewijns, A low frequency of lymph node metastasis in clearcell renal cell carcinoma is related to low lymphangiogenic activity, BJU Int, vol.103, pp.1626-1631, 2009.

S. J. Grau, Podoplanin increases migration and angiogenesis in malignant glioma, Int J. Clin. Exp. Pathol, vol.8, pp.8663-8670, 2015.

A. Ero?lu, C. Ersöz, D. Karasoy, and S. Sak, Vascular endothelial growth factor (VEGF)-C, VEGF-D, VEGFR-3 and D2-40 expressions in primary breast cancer: Association with lymph node metastasis, Adv. Clin. Exp. Med, vol.26, pp.245-249, 2017.

Y. Hou, Expression of vascular endothelial growth factor receptor-3 mRNA in the developing rat cerebellum, Cell Mol. Neurobiol, vol.31, pp.7-16, 2011.

M. S. Amer, Inhibition of endothelial cell Ca 2+ entry and transient receptor potential channels by Sigma-1 receptor ligands, Br. J. Pharmacol, vol.168, pp.1445-1455, 2013.

A. Galeeva, E. Treuter, S. Tomarev, and M. Pelto-huikko, A prospero-related homeobox gene Prox-1 is expressed during postnatal brain development as well as in the adult rodent brain, Neuroscience, vol.146, pp.604-616, 2007.

P. Mauffrey, Progenitors from the central nervous system drive neurogenesis in cancer, Nature, vol.569, pp.672-678, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02186559

I. Olmez, Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha, Neuro Oncol, vol.20, pp.192-202, 2018.

Q. S. Wang, FOXF2 deficiency permits basal-like breast cancer cells to form lymphangiogenic mimicry by enhancing the response of VEGF-C/ VEGFR3 signaling pathway, Cancer Lett, vol.420, pp.116-126, 2018.

E. M. Thompson, The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival, Neuro Oncol, vol.19, pp.1217-1227, 2017.

P. C. Warnke, K. Kopitzki, J. Timmer, and C. B. Ostertag, Capillary physiology of human medulloblastoma: impact on chemotherapy, Cancer, vol.107, pp.2223-2227, 2006.

C. Jayasinghe, N. Simiantonaki, S. Habedank, and C. J. Kirkpatrick, The relevance of cell type-and tumor zone-specific VEGFR-2 activation in locally advanced colon cancer, J. Exp. Clin. Cancer Res, vol.34, p.42, 2015.

A. Decio, Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms, Am. J. Pathol, vol.184, pp.1050-1061, 2014.

C. A. Wang, DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination, J. Extracell. Vesicles, vol.9, p.1746529, 2020.

N. Garg, CD133 + brain tumor-initiating cells are dependent on STAT3 signaling to drive medulloblastoma recurrence, Oncogene, vol.36, pp.606-617, 2017.

B. Manoranjan, Medulloblastoma stem cells: modeling tumor heterogeneity, Cancer Lett, vol.338, pp.23-31, 2013.

R. C. Ji, Hypoxia and lymphangiogenesis in tumor microenvironment and metastasis, Cancer Lett, vol.346, pp.6-16, 2014.

Y. C. Guo, Macrophages regulate unilateral ureteral obstruction-induced renal lymphangiogenesis through C-C motif chemokine receptor 2-dependent phosphatidylinositol 3-kinase-AKT-mechanistic target of rapamycin signaling and hypoxia-inducible factor-1?/vascular endothelial growth factor-C expression, Am. J. Pathol, vol.187, pp.1736-1749, 2017.

C. D. Pham, Differential immune microenvironments and response to immune checkpoint blockade among molecular subtypes of murine medulloblastoma, Clin. Cancer Res, vol.22, pp.582-595, 2016.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

R. Bilton, Arrest-defective-1 protein, an acetyltransferase, does not alter stability of hypoxia-inducible factor (HIF)-1alpha and is not induced by hypoxia or HIF, J. Biol. Chem, vol.280, pp.31132-31140, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00321555