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Nice, France

Submitted to: J. Neural Eng.



2

Abstract. Objective. The use of non-invasive techniques for the estimation

of structural brain networks (i.e. connectomes) opened the door to large-scale

investigations on the functioning and the architecture of the brain, unveiling the link

between neurological disorders and topological changes of the brain network. This

study aims at assessing if and how the topology of structural connectomes estimated

non-invasively with diffusion MRI is affected by the employment of tractography

filtering techniques in structural connectomic pipelines. Additionally, this work

investigates the robustness of topological descriptors of filtered connectomes to the

common practice of density-based thresholding. Approach. We investigate the changes

in global efficiency, characteristic path length, modularity and clustering coefficient on

filtered connectomes obtained with the spherical deconvolution informed filtering of

tractograms and using the convex optimization modelling for microstructure informed

tractography. The analysis is performed on both healthy subjects and patients

affected by traumatic brain injury and with an assessment of the robustness of the

computed graph-theoretical measures with respect to density-based thresholding of

the connectome. Main Result. Our results demonstrate that tractography filtering

techniques change the topology of brain networks, and thus alter network metrics both

in the pathological and the healthy cases. Moreover, the measures are shown to be

robust to density-based thresholding. Significance. The present work highlights how

the inclusion of tractography filtering techniques in connectomic pipelines requires

extra caution as they systematically change the network topology both in healthy

subjects and patients affected by traumatic brain injury. Finally, the practice of low-to-

moderate density-based thresholding of the connectomes is confirmed to have negligible

effects on the topological analysis.

1. Introduction

Mapping the brain architecture and functioning is a core health ambition of the 21st

century and one of the greatest challenges of modern science [1]. Correspondingly,

many important neurological diseases and disorders have been shown to be related to

pathological alterations in the connectivity of the brain, calling for specific efforts in

research to better understand the network of neural connections composing the human

brain. The graph-like representation of brain networks is called connectome [2, 3].

The nodes of the aforementioned graph are defined by the brain regions that are being

studied, while the edges represent the connectivity strength between the nodes. These

edges can be defined in such a way that they represent either the function or the structure

of the brain. In the first case we are defining the functional connectome and in the

second case we have the structural connectome. The latter is the object of interest

of this work. The graph-theoretical analysis of connectomes unveiled some previously

unknown features of both anatomy and pathology of the human brain [4, 5]. The only

non-invasive technique that allows the reconstruction of such networks is diffusion MRI

(dMRI)-based tractography, which relies on the estimation of the white matter pathways

as a set of streamlines collected in a tractogram. The classical way to build a structural

connectome is based on counting the number of streamlines connecting two different

regions of the brain and assigning the obtained number to the corresponding edge of
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the graph. The methodological aspects related to this streamline-edge matching have

recently been analysed [6].

In the last twenty years more and more accurate tractography algorithms have

been developed, opening the doors to the exploration of the architecture of the white

matter [7]. Each of them aims at solving specific problems related to the estimation of

white matter fiber pathways, but the absence of ground truth knowledge on the white

matter architecture has prevented the community from building a consensual agreement

on a definitive way to estimate structural connectivity from dMRI.

Among the many problematic issues of tractography-based structural connectivity

estimation, the non-quantitative nature of tractography [8, 9], the methodological

limitations of dMRI-based tractography [10] and the presence of many false positive

connections within connectomes [11] are the ones that inspired some of the most

recent methodological advances in the field of non-invasive tractography. A

simplistic practice that aims at tackling some of the problems of tractography-based

connectomics is density-based thresholding, which is the act of excluding all the weakest

connections in the network until a graph of the wanted density is obtained [12].

Another class of algorithms going under the name of tractography filtering techniques

(TFTs) have been developed. These algorithms are designed to post-process the

tractograms obtained via dMRI-based tractography. Recently, three TFTs have been

presented to the community, namely the spherical-deconvolution informed filtering

of tractograms (SIFT2) [13], the convex optimization modelling for microstructure

informed tractography (COMMIT) [14] and the linear fascicle evaluation (LiFE) [15]

The latter is designed as a particular case of the more general COMMIT framework

and will not be studied in this work. The goal of TFTs is to assign to each

streamline a quantitative marker of the connectivity strength. Considering all these

connections it is possible to obtain brain networks that are also referred to as filtered

connectomes. The main difference between SIFT2 and COMMIT lies on the specific

issue of tractography that is tackled by employing them in the connectomic pipeline.

The SIFT2 weights are global representations of the cross-sectional area of the fiber

population represented by each streamline. Conversely, the coefficients retrieved by

COMMIT and LiFE correspond to the signal fraction associated to the signal profile

generated by each streamline. Despite providing a fundamental contribution to the

biological interpretability of the obtained connectomes, the SIFT2 model is not designed

to detect false positive connections. This task is explicitly tackled by the COMMIT and

LiFE models, which are defined in such a way that the resulting streamline coefficients

are zero-valued for a relevant part of the input tractogram. Section 2.2 is devoted to

the technical description of the mentioned differences.

In order to understand how connectomic studies are affected by the use of TFTs, it

is of fundamental importance to explore the changes in network topology generated by

the use of filtered connectomes. With this objective in mind, in this study we are going

to investigate how four graph-theoretical metrics (GTM) of network integration and

segregation change with respect to the employed TFT and to density based thresholding.
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The reason why we specifically inspect measures of segregation and integration in the

context of connectomes comes from the small-worldness of the brain network topology,

which has been assessed by several studies in the last 15 years [16, 17, 18, 4] and its

behaviour is characterized by both high segregation and high integration. Section 2.4

will be devoted to a detailed presentation of the graph-theoretical aspects of small-

worldness and of the four studied network metrics.

Changes in brain network topology can also be due to the presence of pathology [19,

5] like traumatic brain injury (TBI), which is a network disorder that exhibits (among

others) changes in the small-worldness of the brain network [20]. Moreover, subjects

affected by TBI show an increase of the mean diffusivity coupled with a decreased

fractional anisotropy [21], which are two indicators of dMRI signal changes that can

affect the estimation of fiber tracts, and thus structural brain networks. For these

reasons it is not possible a priori to generalize the results obtained on healthy subjects

to the considered pathological case.

In addition, for each type of filtered connectome we investigate the robustness of

the considered graph-theoretical measures with respect to density-based thresholding.

A recent study by Civier et al. [12] partially investigated this robustness. The focus

of the mentioned analysis was specifically on the density-based thresholding aspect of

connectomic pipelines, therefore they factored out any other potentially influencing

factor by studying only connectomes obtained on healthy subjects through one specific

connectomic pipeline that involved SIFT2 in the tractography filtering step. As our

work will focus on the TFT step, we will extend the analysis of Civier et al. [12] to the

case where COMMIT is employed for both healthy subjects and TBI patients. The two

mentioned analyses will be performed on connectomes obtained on 100 healthy subjects

from the Human Connectome Project (HCP) database [22]. The high quality of the

data provided by the HCP database is not a realistic example of the data that are

acquired clinically. For this reason, we will extend the analysis to a dataset acquired

using a clinical protocol, which mandates short acquisitions. This dataset includes

both healthy subject and TBI patients, showing that additional care is needed in the

employment of TFTs as they have the potential to change the clinical interpretation of

the results.

The employed connectomic pipeline was designed to systematically include a

tractography filtering step. A recent and related study investigating the effects of

tractography filtering on the topology of brain networks is the work of Yeh et al. [23],

where the effects of the first version of the SIFT technique on the graph-theoretical

analysis of structural brain networks estimated with dMRI are evaluated. Inspired by

the novelties in the field of tractography filtering proposed in the last years [13, 14]

and the recently growing interest towards the field of patho-connectomics [19], this

work represents the first systematic comparison of the effects of the state-of-the-art

tractography filtering techniques on the graph-theoretical analysis of structural brain

networks estimated in-vivo‡. After this introduction, Section 2 and Section 3 will

‡ The present work has partially been presented at the 25th Meeting of the Organization for Human
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present the theoretical and methodological aspects of our work, respectively. The

results presented in Section 4 and discussed in Section 5 describe how the graph-

theoretical analysis of structural connectomes estimated non-invasively is affected by

the employment of tractography filtering techniques.

2. Background

2.1. Weighted Connectomes

The non-invasive estimation of the structural connectivity of the human brain is a

complex task that relies on the ability to track the white-matter pathways between

different regions of the brain. As already mentioned, dMRI-based tractography is

the only non-invasive technique that yields a representation of the axonal pathways

connecting different brain regions. These white matter pathways are obtained in the

form of streamlines by following the local orientation of the fiber bundles estimated from

dMRI data. The definition of structural connectome associated to a tractogram that will

be used throughout this work reads as follows. Consider each pair of brain regions i and

j, then define

cij =
∑

s∈S(i,j)

ws (1)

where S(i, j) is the set of streamlines terminating in regions i and j and ws is the

coefficient that quantifies the connectivity associated with streamline s. The structural

connectome is then represented as the symmetric matrix C = {cij}. This matrix is

a convenient representation of the connectome where each entry cij encodes the value

associated to edge i → j of the connectome and i and j are the two regions connected

by the edge. Finally, the connectivity matrix C is normalized by dividing each entry of

C by the sum of all the entries of the same matrix. Whenever cij = 0, we will assume

that the edge i→ j is not present in the graph. The resulting graph is sparse.

Defining ws = 1 for every s ∈ S we obtain the streamline-count (SC) connectome.

The reliability of these connectomes as estimators of structural connectivity has been

shown [8] to be limited by the complexity of the white matter configurations through

which tractography algorithms have to find their way [11] and by the way in which

each streamline is assigned to a certain edge in the connectome [6]. More sophisticated

definitions of the weights ws allow to correct for some of these biases, in particular

through the employment of tractography filtering techniques. The issues related to the

streamline-parcel assignment problem will not be solved by these techniques, as TFTs

do not change the geometry of the estimated fiber tracks or the shape of the parcels.

2.2. Tractography Filtering Techniques

The limitations of the SC connectome that we mentioned in Section 2.1 influence the

sensitivity and the sensibility of the structural connectomes estimated in-vivo [25, 11].

Brain Mapping [24].
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Moreover, dMRI-based tractography is not quantitative per-se, hence it needs to be

complemented in order to associate to each streamline the corresponding connectivity

strength. To solve this task, some top-down approaches have been researched and

presented in the form of TFTs, which act as post-processing techniques on an existing

tractogram. When a tractogram is filtered, a coefficient is associated to each streamline.

This coefficient quantifies the connectivity that is associated to the specific streamline

and corresponds to the ws defined in equation (1). Recently, three techniques have

been presented to the research community. These are the spherical-deconvolution

informed filtering of tractograms (SIFT2) [13], the convex optimization modelling for

microstructure informed tractography (COMMIT) [14] and the linear fascicle evaluation

(LiFE) [15]. In this study we are going to focus only on SIFT2 and COMMIT, as LiFE

can be formulated as a particular case of COMMIT.

The SIFT2 model assigns a coefficient to each streamline in such a way that

the fiber density computed from the fiber orientation distribution functions (fODF)

matches the one obtained from the weighted tractogram. This formulation has the

advantage of attaching a biological interpretation to the coefficients associated to the

streamlines, as they can be interpreted as the mean cross sectional area along the

fiber. The main limitation of this method is its inability to detect false positive

connections, whose presence could affect the graph-theoretical analysis of the estimated

brain networks, but it can assign very small weights which will give little impact to

the corresponding streamlines. This is not the case of the COMMIT model, whose

mathematical formulation yields solutions that include many zero-valued streamline

weights. This sparsity-promoting formulation was proved to be effective in false

positives detection [11]. The COMMIT framework is based on a forward model that

transforms streamlines into the expected dMRI signal profile, allowing to define a convex

optimization problem that finds the linear combination of streamline signal profiles

that best matches the acquired dMRI signal. The coefficients retrieved by COMMIT

correspond to the signal fraction associated to the signal profile generated by each

streamline, hence their biological interpretability is more limited with respect to one

of the SIFT2 weights. The interpretability issue comes from the type of quantity

modelled. While SIFT2 is designed to describe the expected fiber density computed

from the fODFs, COMMIT relies on the pure dMRI signal, avoiding the potential biases

introduced by the transformation of the signal into the fODFs. Table 1 summarizes the

differences between the two considered TFTs.

SIFT2 COMMIT

Sparsity No Yes

Interpretability High Low

Reference Fiber density dMRI signal

Table 1. Summary of the distinctive features of the two employed TFTs, SIFT2 and

COMMIT. The lack of sparsity in SIFT2 comes with an increased interpretability of

the result.
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2.3. Density-based thresholding

As we mentioned in Section 1, a simple technique that aims at eliminating some spurious

connections from the connectome is the density-based thresholding. Thresholding a

connectome means to exclude all the edges whose weight is below a certain threshold,

which is equivalent to applying the transformation

c̃ij = cij · δ>τ (cij) (2)

where C̃ is the thresholded connectome and δ>τ is the indicator function that takes value

1 if its argument is greater than the threshold τ and zero otherwise. The arguments

in favour of employing thresholding are mostly based on the necessity to eliminate the

pervasive spurious weak connections produced by probabilistic tractography in order

to reduce their influence in the topological analysis [26, 27]. This is related to the

interpretation of probabilistic tractography as a Monte Carlo method, where an event

(connection) happening with low frequency (having low edge weight) is assumed to be

less likely to belong to the ground truth. While being true in many fields of science,

this assumption is wrong in the case of tractography, as the strength of the biological

connectivity within the brain spans over several order of magnitudes [4], hence a small

connectivity value does not necessarily correspond to a false positive connection.

Density-based thresholding is defined as the act of pruning the weakest connections

until a pre-determined network density is reached, where this density is defined as

the ratio between the number of edges in the network and the number of potential

connections of the same network, namely

d =
ne

nv · (nv − 1) /2
(3)

where ne is the number of edges, nv is the number of nodes and d is the graph density.

Notice that this is not strictly a tractography filtering technique, but we consider it as

it is an attempt to remove false positive connections from the connectome.

2.4. Graph-theoretical analysis

The topological properties of connectomes have been of interest since the introduction

of the concept of brain network. It has been established that brain networks exhibit

the so-called small world [16, 17, 18, 4] behaviour. This concept describes a hybrid

combination of high clustering and short path length [4] and was first introduced to

explain the small world behaviour of social relations [28], where few acquaintance steps

are sufficient to connect two people from very distant (both geographically and socially)

regions of the world. The classical approach to small-worldness estimation considers the

ratio between two global measures of the integration and the segregation of the network

respectively [29].

The integration of a network can be measured through the characteristic path length

(CPL). Let d(i, j) be the length of the shortest path (in Dijkstra’s sense [30]) between
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two nodes on connectome C. The CPL of C is

` =
1

n

∑
i 6=j

d(i, j) (4)

where n is the number of nodes considered in the graph and the sum is performed on

every pair of distinct nodes i and j. The CPL is a reverted marker of the integration

of a network, as a high characteristic path length corresponds to a low integration.

The quantity defined in equation (4) is not well-defined for disconnected graphs, as the

distance between two nodes belonging to distinct connected components of the network

cannot be computed. To overtake this limitation, the global efficiency (GE) measure

was introduced [31]. Its formulation reads as follows

e =
1

n

∑
i 6=j

1

d(i, j)
. (5)

To ensure the well-posedness of equation (5) we extend the definition of path length to

the case where there exists no connected path between i and j. In this case we define

d(i, j) = ∞. Notice that while this extension would break the definition of CPL, it

suits the definition of GE, as the corresponding term in equation (5) would be equal to

zero. Consequently, the presence of isolated subnetworks in the connectome decreases

its efficiency but it does not disrupt the measure. We also highlight that long paths

have a bigger influence on CPL than on GE.

To evaluate the segregation of a network it is possible to compute the global

clustering coefficient (CC) [32]. Let t = (i, j, k) be a triplet, namely a set of three

nodes that form a connected partition of the connectome. If the triplet is connected by

exactly two edges it is called open triplet, otherwise it is a closed triplet. For every node

i in the graph we can define its corresponding local CC as

CC(i) =

∑
i 6=j
∑

k 6=i 6=j cij · cjk · cki(∑
i 6=j cij

)2
−
∑

i 6=j c
2
ij

(6)

where cij is the weight associated to the edge i→ j encoded in the connectivity matrix

and the sums are to be intended for every pair/triplet of nodes satisfying the specified

inequality. The global clustering coefficient is then obtained as the arithmetic average

of the local CCs across all the nodes

CC =
1

n

n∑
i=1

CC(i) (7)

where n is the number of nodes in the graph. The CC describes the average degree of

connectivity in the neighbourhood of the nodes by measuring how each node tends to

create a cluster around itself [33]. A different point of view on segregation is offered

by the concept of modularity (MO) [34]. Given a partition of the network (i.e. a

subdivision of the nodes in communities), modularity gives a measure of the proportion

between the number of direct connections pointing towards nodes belonging to the same
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community and the number of direct connections leaving the community. Modularity

is mathematically defined as

Q =
1

2m

∑
i,j

(
Ci,j −

ki · kj
2m

)
δ(γi, γj) (8)

where m is the sum of all the weights of the edges in the network, Ci,j is the connectivity

matrix associated to the studied network, ki is the sum of all the weights of the edges

connecting to node i, γi is the community to which i belongs and δ(γi, γj) is the

Kronecker delta taking value 1 if γi = γj and zero otherwise. The shift of paradigm

brought by the concept of modularity as opposed to the one of clustering coefficient is

shown in Figure 1 with an example on two simple graphs. The first graph is the junction

Figure 1. Both the represented graphs show an evident modular structure, where

the communities are two cycles in the first graph and two cliques in the second graph.

The modularity of the two graphs is relatively similar (0.37 for the union of cycles and

0.46 for the union of cliques). Conversely, the clustering coefficient of the two graphs

is radically different (0.00 for the union of cycles and 0.92 for the union of cliques).

The integration measures computed on the two graphs show the expected behaviour:

the higher characteristic path length of the community of cycles is reflected in the

lower efficiency of the same network with respect to the one computed on the clique

community, where the symmetrical phenomenon appears. Each edge is associated to

a weight equal to 1.

of two cycles through a single edge. This graph exhibits a non-trivial modularity, which

is coherent with the fact that it was defined as the union of two communities. On the

contrary, its clustering coefficient is null as the set of triplets does not contain any closed

triplet. The second graph is still defined as the junction of two communities, but each

community is defined as a clique (i.e. a fully connected graph). The modularity of

this graph is higher than the one of the union of cycles. This reflects the presence of

more connections among the nodes of each community. The added edges impacted the

clustering coefficient even more, taking a value close to the one that would be obtained



10

for a fully connected graph. The reason why this happens is that the graph actually is

almost fully connected. In particular, only the two central nodes have triplets that are

not closed. This example showed how the two measures of segregation (MO and CC) are

sensitive to different effects of the presence of community and they are not equivalent.

The ensemble of the measures of integration (GE and CPL) and segregation (CC

and MO) gives a global picture of the topology of the studied connectomes with a

particular attention towards the small-worldness of brain networks.

3. Methods

3.1. Data and preprocessing

HCP subjects. From the HCP database we considered the list of 100 unrelated

subjects (U100 group) dataset available at the Connectome Coordination Facility [35,

36, 37]. These data were acquired on a Siemens Magnetom Skyra 3T MRI system

and preprocessed with the minimal preprocessing pipeline for the Human Connectome

Project, which includs EPI distortion correction via FSL’s topup [38, 39] and eddy

current and subject motion correction via FSL’s eddy [40, 37]. For a detailed discussion

on the preprocessing pipeline employed for this dataset, the interested reader can refer

to the original paper of Glasser et al. [22]. Aiming at minimizing the influencing factors

in the study, we used the preprocessed data that are available at the Connectome

Coordination Facility. For each subject we have 288 images subdivided in 18 volumes

at b = 0s/mm2 and 90 diffusion-weighted volumes obtained at uniformly distributed

directions at b = 1000s/mm2, b = 2000s/mm2 and b = 3000s/mm2 for a total of 3

shells.

Clinical. The clinical dataset consisted of 39 adults with moderate to severe TBI

acquired 3, 6, and 12 months after their injuries. The 3-month subset was selected for

this study and 35 age-matched healthy controls with similar gender and duration (years)

of education were added. This study was approved by the University of Pennsylvania

institutional review board. All participants provided written informed consent either

directly or by proxy via a legally authorized representative. The TBI patients were

recruited from outpatient clinical programs at the Drucker Brain Injury Center at the

MossRehab Hospital. They were screened to include only patients with predominantly

diffuse TBI [41]. Healthy controls were recruited through local advertising and word of

mouth, and underwent a clinical interview to ensure that they had no known history of

TBI that resulted in alteration or loss of consciousness. The MRI data were acquired

on a Siemens 3T Tim Trio system. Diffusion weighted images were acquired in two runs

of 30 directions at a b = 1000s/mm2 with 7 b = 0s/mm2 images dispersed throughout

each acquisition. The data were acquired with TR = 6500ms and TE = 84ms and a

90 degree flip angle at a resolution of 2.18 × 2.18 × 2.2mm3. A structural MPRAGE

image was finally acquired with TR = 1620ms and TE = 3ms, a 15 degree flip angle,
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and an image resolution of 1 × 1 × 1mm3. All images were manually inspected for

artifacts. If artifacts were present in < 25% of the volumes of the DWI acquisition,

those volumes were removed from the series before processing. All volumes that were

flagged for removal contained motion-induced signal drop-out artifacts. If more than

25% of volumes contained artifacts, the scan was rejected and removed from the sample.

The final sample size was 35 TBI patients and 34 healthy controls, giving in total 69

subjects. The TBI cohort includes 23 male and 12 female subjects with age in the 19-53

years range (mean ± standard deviation= 32.71± 13.45 years) and the healthy controls

cohort includes 25 male and 9 female subjects with age in the 18-65 years range (mean

± standard deviation= 34.35±9.8 years). The hypothesis that the TBI patients and the

healthy controls populations are age-matched is supported by a two-sample two-sided

t-test with an alpha equal to 0.05 comparing the average of the age distribution of the

two cohorts (t = 0.58, p = 0.57).

Diffusion MRI data were denoised using a local PCA method [42], followed by

brain extraction with FSL’s BET tool [43] on the first b0 image. The denoised data

and brain mask were input to FSL’s eddy to correct the data for motion and eddy-current

distortion [44]. Because reverse phase-encoded data was not acquired, EPI distortion

correction was not possible. Finally, the brain was extracted a second time with BET

on the motion-corrected average b0 image.

3.2. Connectomic pipeline

A five-tissue-type image [45] of each subject was obtained with the Freesurfer

pipeline [46] implemented in Mrtrix3 [47]. The estimation of the fiber orientation

distribution functions (fODFs) was tailored on each dataset due to the lack of multi-shell

data in the clinical cohort.

• HCP subjects: response functions for each tissue were computed using the multi-

shell multi-tissue (MSMT) response function estimation algorithm provided by

Jeurissen et al. in their work on MSMT constrained spherical deconvolution

(CSD) [48] and the fODFs were computed using the MSMT-CSD algorithm [48,

49] with a maximal spherical harmonics order of ` = 8.

• Clinical: the unsupervised algorithm of Dhollander et al. [50] was used for

estimating the white matter response function, while fODFs were computed using

the CSD algorithm [51] with a maximal spherical harmonics order of ` = 6.

The obtained fODFs were used for probabilistic anatomically-constrained tractography

(ACT) with the iFOD2 algorithm [45]. The seeding was performed from the gray matter

- white matter interface (GMWMI) and a total of 2 millions of streamlines was obtained.

On both datasets, the cortical parcellation used for evaluating the structural

connectivity between regions was extracted with the automated labeling system of

Desikan et al. [52] via Freesurfer [46].

Tractography filtering was then performed on both datasets via SIFT2 and

COMMIT. The forward model of COMMIT was defined as follows. The diffusivity
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within the intra-cellular (IC) compartment was modelled as a stick with parallel

diffusivity equal to 1.7 · 10−3mm2/s, the diffusivity in the extra-cellular compartment

was modelled with a zeppelin under the tortuosity assumption with a fixed intra-cellular

volume fraction equal to fIC = 0.7 and the isotropic compartment was described as

a linear combination of two isotropic balls of radial diffusivity 1.7 · 10−3mm2/s and

3 · 10−3mm2/s respectively. The terms stick, zeppelin and ball are borrowed from the

taxonomy of Panagiotaki et al. [53]. To complete the analysis, we also computed the

streamline count (SC) connectome associated to each tractogram.

The computation of global efficiency (GE), characteristic path length (CPL),

clustering coefficient (CC) and modularity (MO) as they are defined in Section 2.4 was

performed with the Python implementation of the brain connectivity toolbox [29]. In

particular, modularity was computed by averaging the results of 100 runs of the Louvain

algorithm [54]. These metrics were computed on every connectome of every subject. In

order to investigate the robustness of these metrics to density-based thresholding, each

GTM was computed also on the same connectomes thresholded at unitary intervals from

1% to the base density d%, where d is the density of the non-thresholded connectome.

Figure 2 gives a graphical overview of the connectomic pipeline employed in this

work.

3.3. Statistical analysis

In order to understand the differences between the connectomes obtained on distinct

datasets or with a particular TFT, statistical analyses were performed with an alpha

of 0.05 in all experiments. First, we evaluated the density of the connectomes obtained

with each TFT. A separate analysis was performed for each subject cohort. The

normality of the distribution of those values was assessed by inspecting the normal

probability plot of the raw data for each considered TFT. A two-tailed dependent-

samples t-test was employed to test if the use of TFTs changes the average density

of the connectomes within the subject cohort. Furthermore, we analysed the values of

the GTMs computed on each connectome. For each considered GTM we analysed each

subject cohort independently. The normality of the raw values of the GTM computed on

connectomes built with a specific TFT was tested using the Anderson-Darling test and

the statistical significance of the differences between the results obtained with distinct

TFTs was tested using the Mann-Whitney U test [55] and measured with the rank-

biserial correlation (an effect size measure defined in the [−1, 1] range). To account for

multiple comparisons, a false discovery rate (FDR) correction was performed with the

Benjamini–Hochberg procedure [56]. Finally, we performed an edge-wise comparison

between the filtered connectomes obtained from the two clinical subject cohorts (TBI

patients and healthy controls). Each TFT was studied independently. For each edge of

the connectome, the normality of the distribution of the edge weights for one subject

cohort and one TFT was tested using the Anderson-Darling test and the statistical

significance of the differences between the edge weight distribution in TBI patients and
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Figure 2. The represented connectomic pipeline is the one employed throughout this

work. The first step is the pre-processing and the co-registration of the T1-weighted

(T1w) and the diffusion-weighted magnetic resonance images (DWI). The T1w image

was used to obtain the Desikan atlas and the five-tissues-type image. The DWI allowed

to estimate the response functions and the fODFs (with the multi-shell multi-tissue

algorithm for the HCP dataset and the single-shell single-tissue algorithm for the

clinical dataset) that were necessary to perform anatomically constrained tractography

(ACT) with the second order integration of the FOD (iFOD2) algorithm seeding from

the gray matter - white matter interface (GMWMI). Finally, the tractography filtering

step allowed to define the filtered connectomes whose topology was the object of interest

of this study. Notice that SC connectomes were obtained by skipping the tractography

filtering step.

in the healthy controls was tested with the Mann-Whitney U test. The magnitude of

this difference was then evaluated using the rank-biserial correlation effect size measure.

FDR correction was performed with the Benjamini–Hochberg procedure.

4. Results

We processed the data presented in Section 3.1 and for each subject we built the

structural connectivity matrices both by employing one TFT among COMMIT and

SIFT2 and by not employing any TFT, hence considering the streamline-count (SC)

connectome defined in Section 2.1. Figure 3 shows the effect of the inclusion of TFTs
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in connectomic pipelines on the density of the resulting connectomes. Each box-and-

whisker plot represents the density of the filtered and non-filtered connectomes obtained

from a single subject cohort. We report that SIFT2 has no effect on the density of

connectomes. On the contrary, COMMIT has the effect of shifting the mean towards

lower values, hence lowering the density of the connectomes with respect to the one of the

SC/SIFT2 connectomes. The normal probability plots of the raw values of the density

of the connectomes reported in Figure A1 of the supplementary materials support the

assumption that these values are normally distributed. The statistical significance of the

differences observed between the COMMIT and the SC/SIFT2 connectomes (the latter

are equivalent) is supported by the t-test performed on the HCP subjects (t = 40.69,

p ≤ 0.05), the healthy controls of the clinical dataset (t = 39.23, p ≤ 0.05) and the TBI

patients (t = 49.11, p ≤ 0.05). The mean density of the COMMIT connectomes of the

HCP subjects is 2% lower than that of the SC/SIFT2 connectomes, while the shift in

the case of both the healthy controls and TBI patients from the clinical dataset is equal

to 19%.

In order to understand how the interpretation of patho-connectomic studies can

be changed by the use of TFTs, we performed an edge-wise statistical comparison

of the connectomes obtained with each TFT on the pathological cohort of subjects

affected by TBI against the healthy controls from the clinical dataset. Each TFT was

analysed independently. The Anderson-Darling test performed for each edge of the

connectome and reported in Figure A2 of the supplementary materials supports the

assumption that for a fixed edge, the edge weights from one subject cohort are not

normally distributed in general. The results presented in Figure 4 show how the set of

edges exhibiting statistically significant differences between TBI patients and healthy

controls are different for every TFT.

We analysed the three connectomes per subject from the graph-theoretical point of

view by computing the Global Efficiency (GE), the Characteristic Path Length (CPL)

the Louvain Modularity (MO) and the Clustering Coefficient (CC) of each connectome.

The obtained values are reported in Figures A3 and A4 of the supplementary materials.

The effect of TFTs on these metrics is then presented in Figure 5, which shows the

results of Mann-Whitney U tests between the values of GTMs calculated under each

TFT, displayed as the rank-biserial correlation effect size, within each cohort (HCP,

TBI patients or clinical healthy controls). Only significant differences with p ≤ 0.05 are

shown. These plots highlight two distinct phenomena:

• SIFT2 and COMMIT connectomes are not equivalent from the graph-theoretical

point of view, as there are significant non-negligible differences between the GTMs

computed on connectomes computed with the two TFTs;

• both the SIFT2 and the COMMIT connectomes exhibit topological differences with

respect to the unfiltered SC connectomes.

The two phenomena can be observed for every GTM (GE, CPL, CC, MO). We note that

the results obtained from the HCP database show the presence of significant differences
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Figure 3. Each box-and-whisker plot represents the density of the connectomes

obtained via SC, SIFT2 and COMMIT on subjects in specific cohorts (HCP, healthy

controls of the clinical dataset and TBI patients respectively). SC and SIFT2

connectomes systematically have the same density.

between the GTMs computed with each pair of TFTs. On the contrary, the clinical

dataset shows less differences, even if they are present in every GTM. In particular,

no significant difference was detected between the GE computed with COMMIT and

SC. Also, CPL, CC and MO do not exhibit significant differences when computed with

SIFT2 and SC.

Figure 6 shows the relative change of the graph-theoretical metrics computed on

the filtered connectomes of each subject in the three cohorts pruned with density-based

thresholding. In particular, the first row of panels shows the relative change of the

GTM computed at specific density with respect to the one computed at base density

for the HCP dataset for each considered TFT. The shape of the resulting curves is

qualitatively similar to the one reported in [12, Figure 1] not only for the SC and

SIFT2 connectomes (as one would expect, since the experimental setup of the present

and the cited work are very similar) but also for the COMMIT connectomes, which

we recall having a different base density. There is no evident qualitative difference
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Figure 4. These panels show the results of the edge-wise statistical comparison of

connectomes of patients with brain injury versus the healthy controls of the clinical

dataset using the Mann–Whitney U test with FDR multiple comparisons correction on

SC, SIFT2 and COMMIT connectomes. The displayed rank-biserial correlations are

obtained from the Mann-Whitney U test where the healthy controls are the first group

and the TBI patients are the second group. For example, the red dots correspond to

connections for which the controls are likely to be stronger than the patients. Only

significant differences with p ≤ 0.05 are shown.

between the deviation curves of the healthy controls from the clinical subjects (second

row) and the TBI patients (third row). When compared to the deviation curves of the

HCP dataset, it is possible to notice that the latter shows less inter-TFT variability.

Tables 2, 3 and 4 report the maximal density across all subjects in the three datasets

respectively such that the relative change of the considered graph-theoretical measure

is below the 1% and the 5% threshold for each type of connectome. We observe

that the robustness of connectomes built via streamline count is similar to the one

of connectomes built employing tractography filtering techniques. Table 4 shows that

integration measures (GE and CPL) are more robust to density-based thresholding if

investigated on connectomes built via COMMIT. Segregation measures show comparable

performances among the three filtering techniques.

5. Discussion and Conclusions

In this study, we investigated how the topological analysis of structural brain networks

estimated from dMRI is affected by the use of tractography filtering techniques and

density-based thresholding in connectomic pipelines. In particular, each considered

dataset has been processed separately with SIFT2 and COMMIT in addition to being

thresholded.

Analysing data of both clinical quality (shorter acquisition, more noise) and research

quality (longer acquisition, less noise) we had the possibility to explore the effects of

tractography filtering techniques on the topological analysis of structural brain networks

estimated from dMRI data. The clinical cohort involved subjects affected by TBI,
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Figure 5. Each row of 3x3 matrices represents data from a unique subject cohort.

Each column made of 3x3 matrices shows the results for a specific GTM. Each

3x3 matrix shows the rank-biserial correlation effect size measure between the GTM

computed with the TFTs indexed by row and the column of the observed entry. The

displayed rank-biserial correlations are obtained from the Mann-Whitney U test where

the first group is indexed by the row and the second group is indexed by the column.

For example, the effect size on MO of COMMIT (group 1) with respect to SC (group

2) is reported to be 0.97, which means that whenever one compares the MO of a

COMMIT connectome with the one of a SC connectome, it is likely that the first will

be higher than the second. Only significant differences with p ≤ 0.05 are shown.

a connectivity disorder of the brain that changes the topological properties of brain

networks and is characterised by high inter-subject heterogeneity. The inclusion of the

research quality data represented by the HCP subjects reflected the two necessities of

testing the studied state-of-the-art techniques on high quality data for reference and to

give a preliminary insight on the effects of these techniques on data that in some years

could be available in the daily clinical practice.

Understanding if and how the interpretation of patho-connectomic studies is

affected by the use of TFTs is of fundamental importance. In the present work we

showed that while performing edge-wise comparisons between cohorts of healthy and

TBI-affected subjects, one should take into account that the use of TFTs does change

the set of edges showing significant differences. The result can not be straightforwardly

generalized to any other pathology. In light of the fact that TFTs have different

effects on the HCP dataset and on the clinical dataset and keeping in mind that
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Figure 6. Each panel concerns the analysis of the robustness to density-based

thresholding of filtered connectomes obtained from one subject cohort. The plots show

the relative change of the graph-theoretical measure computed at a specific density

with respect to the one computed at base density. The vertical ticks represent the

base density of the connectomes of each subject. The gray bands indicate the 1%

range and the 5% range around the no-deviation line.

ground-truth knowledge on the topology of brain networks is not available, we observe

that the interpretability of studies of group differences between populations could be

unpredictably affected by the use of tractography filtering techniques. Extra caution

and further investigations addressing the specific problem of the nature of these effects

are required.

The effect on the single edge weights induced by each TFT is reflected by the

different density of each type of connectome. Looking at Figure 3 it is possible to

notice how the impact of COMMIT on the density of the connectomes of the 100 HCP

subjects is relatively small. On the contrary, connectomes obtained from the subjects of

the clinical dataset show a remarkable difference between the density of those computed

via SC/SIFT2 and those computed via COMMIT. As we reported in Section 4, there is

a difference of ∼ 17% between these two densities. Moreover, the average density of the

COMMIT connectomes obtained from the clinical dataset is very close (2% difference)

to the one obtained for the HCP subjects. This similarity allows us to conjecture the



19

SC COMMIT SIFT2

>1% >5% >1% >5% >1% >5%

GE 11% 6% 11% 6% 13% 7%

CPL 26% 26% 23% 23% 19% 19%

MO 24% 13% 30% 16% 30% 16%

CC 35% 22% 37% 25% 39% 26%

Table 2. Maximal density across all subjects in the HCP dataset that realized a

deviation of at least 1% and 5% from the base value of each studied graph-theoretical

metric GE, CPL, MO and CC computed on the three types of connectomes SC,

COMMIT and SIFT2. Considering only low-to-moderate pruning, the obtained results

are in line with the ones shown in [12].

SC COMMIT SIFT2

>1% >5% >1% >5% >1% >5%

GE 13% 6% 10% 8% 12% 7%

CPL 19% 19% 19% 19% 20% 20%

MO 36% 18% 31% 12% 36% 18%

CC 48% 30% 42% 26% 49% 30%

Table 3. Maximal density across all subjects in the healthy clinical dataset that

realized a deviation of at least 1% and 5% from the base value of each studied graph-

theoretical metric GE, CPL, MO and CC computed on the three types of connectomes

SC, COMMIT and SIFT2. Considering only low-to-moderate pruning, the obtained

results are in line with the ones shown in [12].

SC COMMIT SIFT2

>1% >5% >1% >5% >1% >5%

GE 13% 12% 9% 9% 13% 7%

CPL 18% 18% 19% 19% 18% 17%

MO 36% 18% 28% 14% 36% 18%

CC 49% 30% 39% 23% 48% 29%

Table 4. Maximal density across all subjects in the TBI patients dataset that realized

a deviation of at least 1% and 5% from the base value of each studied graph-theoretical

metric GE, CPL, MO and CC computed on the three types of connectomes SC,

COMMIT and SIFT2. Considering only low-to-moderate pruning, the obtained results

are in line with the ones shown in [12].

existence of a characteristic density of structural brain networks which may be better

captured by sparsity-inducing TFTs. Confirming this conjecture will require further

investigations. Nevertheless, the sensibly lower spatial and angular resolution of the

clinical data could have affected the sharpness of the fODFs, inducing the creation of

many spurious connections that COMMIT detected in the filtering procedure.

In this study we also explored the changes in the global efficiency, the characteristic
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path length, the modularity and the clustering coefficient on connectomes obtained

through a connectomic pipeline involving a tractography filtering step where SIFT2

or COMMIT were used. Connectomes determined with the streamline count strategy

served as a reference since they are computed excluding the tractography filtering step.

From the results presented in Figure 5 we confirm that the topology of connectomes is

changed by the employment of tractography filtering techniques. These changes appear

in both the high resolution data represented by the HCP subjects and the low resolution

data acquired in a clinical study. Moreover, clinical data showed changes both in healthy

subjects and in TBI patients. On another note, the differences between the results

obtained on different datasets by both SIFT2 and COMMIT suggest that the quality

of the data is highly influential also in connectomic pipelines involving tractography

filtering techniques.

As discussed in the paragraphs above, the changes caused by the employment of

TFTs involve every aspect of connectomic studies from edge weights through connectome

density to graph-theoretical analyses. In particular, the effect on the distribution of

the edge weights within the connectome could be modified by TFTs. Studying this

distribution is particularly interesting when selecting the optimal threshold for density-

based thresholding of the connectomes, which could be employed in order to remove the

weakest edges of the filtered connectomes. This had already been thoroughly studied

by Civier et al. [12] in a recent work by considering only SIFT2 connectomes and

healthy subjects from both the HCP database and clinical acquisitions. In this work we

successfully replicated their experiments and we extended their analysis by considering

an additional TFT, i.e. COMMIT, and a supplementary cohort of subjects affected

by TBI. In Figure 6 we give evidence to the fact that low-to-moderate density-based

thresholding does not affect the analysis of filtered connectomes obtained from data of

TBI patients. We confirm that low-to-moderate pruning is not advisable as it would

require to justify the choice of the threshold by means of arbitrary or heuristic-based

arguments at the price of no evident beneficial effect.

A possible improvement of this work regards the number of employed streamlines,

as we considered tractograms made of 2 million streamlines compared to the ones used

in [12], where the authors considered tractograms composed of 10 million streamlines.

This choice was induced by the limited capability of COMMIT to work on tractograms

with more streamlines than the ones used here. The influence of this parameter on the

performed analysis will be studied in future works.

Overall, this study highlights that the application of SIFT2 and COMMIT

to diffusion MRI-based structural connectomics affects the measurement of global

efficiency, characteristic path length, modularity and clustering coefficient of the

estimated brain networks. Moreover, the interpretation of group differences in patho-

connectomics is altered by the use of TFTs. As such, more research and extra caution are

needed prior to incorporating tractography filtering into connectomic analysis pipelines

in clinical studies. Finally, the practice of density-based thresholding in the context of

graph-theoretical studies of structural brain networks obtained via tractography filtering
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is confirmed to have negligible effects both on healthy subjects and patients affected by

traumatic brain injury.

Open science

All of the code needed to reproduce this study will be made available under reasonable

request to the corresponding author. The connectomes obtained from the subjects of

the HCP database are available at https://osf.io/7cner.
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