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Abstract 

MicroRNA (miRNA) plays a key role in virus-host interactions. Here, we employed deep sequencing technology to 
determine cellular miRNA expression profiles in chicken dendritic cells infected with H9N2 avian influenza virus (AIV). 
A total of 66 known and 36 novel miRNAs were differently expressed upon H9N2 infection, including 72 up-regulated 
and 30 down-regulated miRNAs. Functional analysis showed that the predicted targets of these miRNAs were sig-
nificantly enriched in several pathways including endocytosis, notch, lysosome, p53, RIG-I-like and NOD-like receptor 
signaling pathways. These data provide valuable information for further investigating the roles of miRNA in AIV patho-
genesis and host defense response.
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Introduction, methods and results
H9N2 AIV has been circulating worldwide in multi-
ple avian species and is  endemic in poultry populations 
across Eurasia. On poultry farms, H9N2 AIV could result 
in a decrease in growth performance and egg produc-
tion, and reduce the efficacy of vaccine interventions, 
and cause serious disease and even death with secondary 
infections of bacterial or viral pathogens [1, 2]. Although 
great efforts have been made to develop intervention 
strategies to control H9N2 AIV infections in poultry, 
including a vaccination program with inactivated vac-
cines in China, H9N2 AIV outbreaks have continued to 
occur over the past two decades. Significantly, poultries 
have served as key intermediates in the transmission of 

AIV from avian species to humans, and H9N2 AIV has 
occasionally been transmitted from poultries to humans 
[1]. More seriously, H9N2 AIV has donated their inter-
nal genes to other subtype AIVs and facilitated the gen-
esis of other emerging human-lethal AIVs, such as H5N1, 
H7N9, H10N8 and H5N6 AIVs [1]. Therefore, under-
standing the interaction mechanism between H9N2 
AIVs and chickens is not only essential to the control of 
avian influenza in poultry, but also important for human 
health.

MiRNAs are non-coding RNAs with a length of about 
22 nucleotides, and could regulate gene expression by 
base pairing with the 3′- or 5′-UTR of the target mRNAs. 
They have been shown to be implicated in several cellular 
functions, including proliferation, differentiation, tumor-
igenesis, apoptosis, immune and inflammatory response, 
etc. An  increasing number of studies showed that influ-
enza virus infection can trigger changes of cellular 
miRNA profiles. For example, differential miRNA pro-
files were found in mouse lungs infected with the 1918 
pandemic H1N1 and seasonal H1N1 influenza viruses 
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[3]. Another study revealed strain-specific host miRNA 
molecular signatures associated with the swine-origin 
H1N1 and avian-origin H7N7 influenza A virus in human 
A549 cells [4]. Differential miRNA expression profiles 
have been observed in chicken lungs during H5N3 AIV 
infection [5]. In addition, H9N2 AIV infection has been 
shown to activate the immune responses of mouse and 
avian dendritic cells by regulating the expression of miR-
NAs [6–8]. All of these studies suggest that miRNAs play 
an important role in the complex interactions occurring 
between influenza viruses and their hosts [9]. However, 
such studies of H9N2 AIV have focused on a very limited 
number of miRNAs using reverse transcription quantita-
tive PCR (RT-qPCR) or traditional microarray analyses.

Dendritic cells (DCs) are able to sense invading viruses 
and play a key role in the host defense response to virus 
infection [10]. Upon encountering viral pathogens, DCs 
produce interferons (IFN) and other regulatory cytokines 
that contribute to the innate immune response, and then 
migrate to secondary lymphoid organs and present anti-
gens to T cells to induce adaptive immune responses [10]. 
However, some viral pathogens can induce the dysregula-
tion of DC function, which  in turn influences immuno-
logical homeostasis and the clinical outcome of infection 
[11]. Since H9N2 AIV could influence the host response 
to vaccine and the outcome of secondary infections, 
it is necessary to study the interaction between DCs 
and H9N2 AIV. In this study, we determined the global 
miRNA expression profiles in chicken DCs during H9N2 
AIV infection using deep sequencing technology for the 
first time, which may provide helpful insights into under-
standing the interaction between DCs and H9N2 AIV.

Chicken DCs were cultured from bone marrow cells 
with RPMI-1640 medium containing 5% FBS (Wisent Bio 
Products, Canada), 50 ng/mL chicken GM-CSF (Abcam, 
USA) and 10  ng/mL IL-4 (Kingfisher, USA), as previ-
ously described [12]. To identify miRNA changes of DCs 
infected with H9N2 AIVs, two small RNA libraries were 
constructed in triplicates for H9N2 AIV-infected (A/
duck/Nanjing/06/2003 strain, with a multiplicity of infec-
tion of 5) and mock-infected DCs at 6 h post infection, 
and then were sequenced by Solexa technology on Illu-
mina HiSeq XTen (Illumina, USA). Sequencing data have 
been submitted to the GEO database (accession num-
ber GSE147658). After removing low quality sequences, 
adapter sequences, and sequences smaller than 18 nt, 
6.76–10.49 and 10.38–10.67 million clean reads were 
obtained from the virus and mock infected groups. The 
length distribution of the clean reads was similar in infec-
tion and mock libraries, and the majorities ranged from 
22 nt to 23 nt in size (Additional file 1), which indicates 
the successful enrichment of mature miRNAs in the 
libraries of the two groups. These clean reads were then 

screened against the GenBank database and Rfam data-
base, and more than 80% of the annotated small RNAs 
(miRNA, tRNA, rRNA, and other non-coding RNA) 
were categorised as miRNAs (Additional file  2). Next, 
these clean reads were aligned with chicken miRNAs 
in miRBase version 21.0 database, and 4.29–8.12 and 
6.72–7.37 million clean reads were mapped to the known 
miRNA of chicken in H9N2 AIV and mock infected 
libraries respectively (Additional file  3). The rest reads, 
which were mapped to chicken genome, were further 
utilized to predict novel miRNAs using miRDeep2 soft-
ware as described previously [13]. Finally, we identified 
994 known and 9208 novel miRNAs in all libraries (Addi-
tional file 4).

To identify the differentially expressed miRNAs 
between H9N2 AIV-infected and mock-infected groups, 
the raw counts of miRNA reads were further normalized 
by transcripts per million reads (TPM), and the miRNA 
expression levels between the two groups were compared 
using the DESeq R package [14]. The estimated absolute 
log2-fold change of > 1, and a corrected p-value < 0.05 
were used as the thresholds for significant differently 
expressed genes. The results showed that 66 known 
and 36 novel miRNAs were significantly differentially 
expressed between the two groups (Table  1, Additional 
file  5). Of these miRNAs, 42 known and 30 novel miR-
NAs were up-regulated, and 24 known and 6 novel miR-
NAs genes were down-regulated following H9N2 AIV 
infection.

To understand the biological function of miRNAs dur-
ing H9N2 AIV infection, 13503 target genes were pre-
dicted for the significantly differentially expressed (SDE) 
miRNAs using RNAhybrid and miRanda software [15], 
and one miRNA targeted many mRNA and vice versa 
(Additional file 6). GO enrichment analysis of the target 
genes showed that the SDE miRNAs were involved in 
the regulation of cellular process, protein modification 
process, MAPK cascade, response to stimulus, protein 
metabolic process, and other processes (Figure 1, Addi-
tional file  7). To analyze the roles of these SDE miRNA 
in regulatory networks, KEGG pathway analysis was also 
performed for the target genes. The results showed that 
these targets were mainly involved in endocytosis, notch 
signaling pathway, RIG-I-like receptor signaling pathway, 
lysosome, p53 signaling pathway, and NOD-like recep-
tor signaling pathway (Figure 2, Additional file 8). These 
results indicate that the SDE miRNA may play a crucial 
role in regulating the cellular metabolic process, sig-
nal transduction and immune responses of DCs during 
H9N2 AIV infection.

To confirm the data obtained through RNA-seq 
analysis, the miRNAs were isolated from a rep-
lica RNA sequencing infection experiment using 
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Table 1 Significantly differentially expressed known chicken miRNA in DCs induced by H9N2 AIV infection

miRNA H9N2-infected DCs 
(TPM)

Mock-infected DCs 
(TPM)

Fold change P value Style

gga-miR-302b-3p 8.800102678 0.321066631 27.41 1.03E−02 Up

gga-miR-302d 7.394757730 0.420683683 17.58 2.80E−02 Up

gga-miR-551-5p 16.17959332 0.963199892 16.79 2.76E−04 Up

gga-miR-449c-5p 30.39688718 2.132361815 14.26 7.23E−07 Up

gga-miR-551-3p 326.4538591 44.31762933 7.37 7.29E−31 Up

gga-miR-1666 15.19538833 2.457331401 6.18 7.86E−03 Up

gga-miR-187-3p 166.0448253 30.56495477 5.43 1.19E−15 Up

gga-miR-205b 13.92136269 2.579163928 5.39 2.85E−02 Up

gga-miR-1467-3p 223.8620766 49.12096621 4.56 6.74E−08 Up

gga-miR-365-3p 1805.885624 405.3167326 4.46 1.19E−32 Up

gga-miR-365b-5p 894.8004725 206.3600374 4.34 2.42E−14 Up

gga-miR-1708 14.70678182 3.420531293 4.29 4.00E−02 Up

gga-miR-21-3p 2753.261063 713.6833743 3.86 1.28E−30 Up

gga-miR-190a-3p 167.0188522 47.11513315 3.55 2.81E−08 Up

gga-miR-190a-5p 630.0087664 197.5629264 3.19 9.54E−17 Up

gga-miR-7467-3p 85.99901053 27.24794349 3.16 9.94E−06 Up

gga-miR-200a-3p 238.1628792 75.72797869 3.14 1.80E−11 Up

gga-miR-193a-3p 217.6650688 71.21556278 3.06 1.03E−05 Up

gga-miR-3535 274.4292255 91.00293488 3.02 1.33E−11 Up

gga-miR-29b-3p 86081.05620 29667.27626 2.90 2.39E−21 Up

gga-miR-103-1-5p 72.87844804 25.41928950 2.87 2.80E−02 Up

gga-miR-7467-5p 92.88247498 32.45298254 2.87 5.38E−06 Up

gga-miR-22-5p 10483.71708 3915.882453 2.68 2.26E−17 Up

gga-miR-451 5731.056244 2160.176030 2.65 1.05E−04 Up

gga-miR-20a-5p 40364.26188 15575.49639 2.59 8.40E−12 Up

gga-miR-155 26783.80295 10737.39804 2.49 1.19E−15 Up

gga-miR-1434 685.0883524 276.4517753 2.48 5.54E−09 Up

gga-miR-7 1759.477832 751.2428887 2.34 2.98E−11 Up

gga-miR-429-3p 326.3798282 139.7225717 2.34 3.99E−08 Up

gga-miR-200b-3p 125.0793544 53.86359132 2.32 5.96E−05 Up

gga-miR-29a-5p 571.6283718 250.7912729 2.28 3.55E−09 Up

gga-miR-15b-5p 13909.71515 6196.684286 2.24 1.77E−12 Up

gga-miR-33-5p 4032.377244 1814.920557 2.22 1.59E−10 Up

gga-miR-215-5p 266.1401100 121.3765857 2.19 6.69E−07 Up

gga-miR-101-2-5p 632.9850972 292.6375455 2.16 3.96E−08 Up

gga-miR-32-5p 2061.528955 955.6190685 2.16 1.35E−10 Up

gga-miR-153-3p 206.7604279 95.94182016 2.16 7.22E−04 Up

gga-miR-181b-5p 10563.99373 4909.109999 2.15 3.30E−06 Up

gga-miR-30e-5p 39176.41147 18594.68260 2.11 4.17E−08 Up

gga-miR-15a 24351.55946 11588.38769 2.11 8.35E−11 Up

gga-miR-22-3p 37910.33000 18564.17097 2.04 1.59E−10 Up

gga-miR-181a-5p 34649.54269 17283.22335 2.00 5.70E−08 Up

gga-miR-6594-5p 94.67578132 197.5792320 − 2.09 5.89E−05 Down

gga-miR-6642-5p 23.43620583 52.39678050 − 2.24 2.11E−02 Down

gga-miR-19b-5p 464.0802376 1045.118019 − 2.25 2.03E−11 Down

gga-miR-6556-3p 43.50229656 101.8832443 − 2.34 2.50E−04 Down

gga-miR-1712-5p 24.56364507 57.59468264 − 2.34 1.11E−02 Down

gga-miR-6696-3p 55.97845749 136.4756894 − 2.44 1.04E−02 Down

gga-miR-1559-3p 571.3932734 1401.389558 − 2.45 2.33E−13 Down
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miRNA isolation kit (TIANGEN, China). The iso-
lated miRNAs were first polyadenylated with polyA 
polymerase and then were reverse transcribed into 
complementary DNA (cDNA) with a poly(T) adapter 

primer (TIANGEN, China). Ten SDE miRNAs were 
selected for validation by quantitative reverse tran-
scription PCR (qRT-PCR) using the miRNA qPCR 
SYBR Green Detection Kit (TIANGEN, China). The 

Table 1 (continued)

miRNA H9N2-infected DCs 
(TPM)

Mock-infected DCs 
(TPM)

Fold change P value Style

gga-miR-15b-3p 53.47288137 134.9119737 − 2.52 5.41E−06 Down

gga-miR-1759-3p 15.33179667 41.36731788 − 2.70 1.02E−02 Down

gga-miR-130b-3p 7672.726337 21287.07056 − 2.77 9.60E−18 Down

gga-let-7a-2-3p 19.28809129 53.87717145 − 2.79 1.44E−03 Down

gga-miR-34c-5p 7.702176123 23.13412006 − 3.00 4.81E−02 Down

gga-miR-365-2-5p 15.08675579 53.42821336 − 3.54 3.28E−04 Down

gga-miR-15c-3p 5.398144233 20.51538185 − 3.80 2.33E−02 Down

gga-miR-92-5p 82.93267399 316.4139231 − 3.82 2.53E−14 Down

gga-miR-193b-5p 5.710651656 22.56361416 − 3.95 1.15E−02 Down

gga-miR-184-3p 4.083834071 16.96911507 − 4.16 4.11E−02 Down

gga-let-7b 141.4738821 623.2702767 − 4.41 3.18E−26 Down

gga-miR-128-1-5p 26.18173380 119.0613949 − 4.55 6.81E−11 Down

gga-miR-31-3p 6.390196622 33.92087134 − 5.31 1.95E−04 Down

gga-miR-6575-3p 3.409378134 20.08863924 − 5.89 2.31E−02 Down

gga-miR-1591-3p 1.921727259 11.45189329 − 5.96 3.79E−02 Down

gga-miR-31-5p 70.91080554 448.1771463 − 6.32 1.54E−12 Down

gga-miR-1702 19.45910134 203.4676260 − 10.46 1.20E−07 Down

Figure 1 Gene Ontology (GO) of the top 25 biological processes enriched by predicted target genes from SDE miRNAs. The horizontal 
axes denote the GO terms. The vertical axes represent the number of DEGs (left) and the −log (P value) (right) for each term. A full list of GO terms is 
shown in Additional file 6.
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miRNA-specific forward primers used in this study are 
shown in Additional file  9. The results confirmed the 
up-regulation of five known and one novel miRNAs, 
and the down-regulation of three known and one novel 
miRNAs in H9N2 AIV-infected DCs compared with 
the mock cells (Figure  3A). The results of qRT-PCR 
were consistent with the data obtained from RNA-seq, 
although larger fold change values were obtained from 
qPCR for some selected miRNAs.

Finally, eight target mRNAs for the 10 SDE miRNAs 
were also selected for qRT-PCR analysis (Figure  3B). 
The results showed that SUMF1, CTBP1, NOD1, and 
CTNS were down-regulated, and S1PR3, DLL1, and 
FGF5 were up-regulated, which was inversely corre-
lated with the expression of their miRNAs (Figure 3C). 
However, the expression of other one gene (RAB2A) 

was positively correlated with the expression of their 
miRNAs.

Discussion
In recent years, high-throughput sequencing technol-
ogy has been effectively used to identify differentially 
expressed miRNAs, on a genome-wide scale, during 
viral infection. Increasing studies showed that miR-
NAs, as ubiquitous regulators of gene expression, play 
an important regulatory role in virus-host interactions. 
Nevertheless, the roles of miRNA in the regulation of 
host responses to H9N2 AIV infection in chicken DCs 
are poorly understood. In the present study, high-
throughput sequencing approach was subjected to 
identify differentially expressed miRNAs in chicken 
DCs in response to H9N2 AIV infection. A total of 66 
known and 36 novel differentially expressed miRNAs 

Figure 2 Top 20 KEGG pathways enriched by predicted target genes from SDE miRNAs. The color scale and the circle on the right–hand side 
illustrate the significant level and target gene number of the indicated pathway. A full list of pathways is shown in Additional file 7.
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were identified successfully. Among these 66 know 
SDE miRNAs, 12 miRNAs (miR-22-3p, miR-22-5p, 
miR-30e-5p, miR-31-5p, miR-32-5p, miR-33-5p, miR-
92-5p, miR-155, miR-184-3p, miR-215-5p, miR-451 and 
let-7b) are also found to be differentially expressed in 
chicken lungs, immune organs, and embryo fibroblasts 
during H5N3, H5N1 and H9N2 AIV infection [5, 16, 
17]. In addition, another 7 know SDE miRNAs (miR-
7, miR-21-3p, miR-34c-5p, miR-187-3p, miR-200a-3p, 
miR-429-3p and miR-1434) are identified in other virus 
infected chickens [18–20]. Therefore, these DE miR-
NAs might play a vital role in the interaction between 
chicken DCs and H9N2 AIV.

The innate immune responses are the first line of host 
defense against virus infection. Emerging data have 

showed some miRNAs can inhibit or promote virus repli-
cation by regulating host innate immune responses. Sev-
eral of the SDE miRNAs identified in this study can target 
genes that are associated with immune responses. It has 
been reported that miR-7 is widely conserved in animal 
species and is up-regulated during invertebrates and ver-
tebrate’s virus infection, such as poliovirus and white spot 
syndrome virus (WSSV). In crab, the miR-7 could inhibit 
host anti-viral immune response by targeting Myd88 to 
enhance WSSV replication [21], whereas the miR-7 up-
regulation induced the inhibition of poliovirus infection 
in human cells [22]. Similarly, miR-7 was also found to be 
up-regulated in human influenza virus infection [23] and 
in H9N2 AIV infection in this study. Additionally, miR-
21-3p has been found to be down-regulated during H5N1 

Figure 3 Validation of miRNAs and their mRNA targets expression by quantitative RT-PCR. The expression changes of 10 miRNAs (A) and 
their mRNA targets (B) in the H9N2 AIV-infected DCs was calculated using the  2−ΔΔCT method and represented as the n-fold change relative to 
the mock-infected DCs. The 5 s and β-actin genes were used as the reference genes for miRNA and mRNA respectively. C Relationships between 
miRNAs and mRNA targets. Red indicates the up-regulated miRNAs (circle) and target mRNAs (hexagon); green indicates the down-regulated 
miRNAs and target mRNAs.
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AIV and 2009 pandemic H1N1 influenza virus infec-
tion and could promote influenza virus replication by 
repressing the expression of HDAC8 gene in A549 cells 
[24]. But, the miR-21-3p was found to be up-regulated 
in chicken DCs during H9N2 virus infection in the pre-
sent study. Therefore, the role of miR-7 and miR-21-3p in 
H9N2 virus infection needs to be further studied.

In addition, two DE miRNAs, miR-155 and miR-
130b-3p, identified in this study have been reported to 
have an antiviral activity in chicken cells. As one of the 
widely studied miRNAs, miR-155 is generally believed 
to be a multifunctional miRNA and plays a critical role 
in cancer, immune and inflammation response, and viral 
infection. It was reported that miR-155 is required for the 
function of B and T lymphocytes and dendritic cells [25], 
and the induction of this microRNA negatively modu-
lates host innate immune responses and suppresses Japa-
nese encephalitis virus replication in human microglial 
cells [26]. However, miR-155 was found to suppress the 
TLR3 expression in chicken embryo fibroblast cells and 
HD11 cells [27], and contributed to the increased sus-
ceptibility to Marek’s disease in chickens [28]. However, 
other studies showed that the miR-155 enhanced type I 
interferon expression via targeting SOCS1 and TANK, 
and suppresses infectious bursal disease virus replication 
in DF1 cells [29]. The miR-130b-3p belongs to the miR-
130/301 family and has been found to take part in the 
regulation of cytokine expression. A recent study showed 
that the miR-130b-3p could target socs5 to enhance the 
expression of STAT in chicken DF1 cells, which contrib-
utes to the increase of IFN-β and, further suppresses the 
replication of infectious bursal disease virus [30]. There-
fore, it is worth for further study whether these micro-
RNAs play a regulatory role in H9N2 AIV infection via 
regulating host innate immune response.

Some miRNAs are able to target multiple mRNAs, 
which may be involved in the regulation of multiple cell 
processes. GO enrichment analysis of the potential tar-
geted genes showed that these DE miRNAs are mainly 
involved in the regulation of metabolic process, signal 
transduction and immune response (Additional file  6). 
The KEGG pathway analysis showed that DE miRNAs 
are involved in the regulation of endocytosis, Notch 
signaling pathway, RIG-I like receptor signaling path-
way, lysosome, p53 signaling pathway, and other path-
ways (Additional file 7). The Notch signaling pathway is 
known as a well-conserved throughout metazoans, and 
plays a fundamental role during embryonic develop-
ment that is associated with cell fate determination, and 
immune regulation. It is known that various viruses can 
exploit the Notch signaling pathway to regulate viral rep-
lication and affect the fate of infected cells. In human, 
HIV could inactivate Notch signaling to result in the 

inhibition of KSHV lytic replication and the induction 
of pro-proliferative and -survival cytokines, such as IL-2 
and TIMP-1 [31]. Conversely, influenza virus infection 
activated Notch signaling by up-regulating the Notch 
ligand Delta-like 1 expression in mice macrophages, 
and blocking of Notch signaling led to higher virus load 
with an impaired production of IFN-γ in mice lungs [32]. 
Although the Notch signaling pathway has been reported 
to be involved in regulation of cell proliferation and dif-
ferentiation in chickens [33], there are no reports about 
the effects of this pathway in virus infection in chickens. 
Therefore, further work is required to determine the spe-
cific roles of Notch signaling in the interaction between 
H9N2 virus and chicken DCs. Lysosomes are acidic and 
hydrolytic organelles within cells, which are known pri-
marily to degrade macromolecules or infected pathogens 
delivered by endocytosis, phagocytosis, and autophagy, 
and play vital roles in innate immunity recognition, anti-
gen presentation, and pathogen elimination [34, 35]. In 
the current study, 100 genes of the lysosome pathway 
were predicted to be targeted by 91 DE miRNAs. These 
results suggested that these miRNAs might be involved 
in the regulation of the innate immune response and 
antigen presentation functions of DCs by targeting the 
lysosome pathway during H9N2 infection.

In summary, the miRNA expression profiles in chicken 
DCs upon H9N2 AIV infection was evaluated by deep 
sequencing. A total of 66 known differentially expressed 
miRNAs and 36 novel miRNA candidates were identi-
fied, supporting the point that certain miRNAs are essen-
tial in host and virus interaction. Target prediction and 
functional analysis showed that these miRNAs may be 
involved in the regulation of host defense response and 
viral replication during H9N2 AIV infection. However, 
further research is needed to investigate the specific role 
of these miRNAs during H9N2 infection in DCs.
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