
HAL Id: hal-02970479
https://hal.science/hal-02970479

Submitted on 18 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Influence Maximization in a RTB Setting
David Dupuis, Cédric Du Mouza, Nicolas Travers, Gaël Chareyron

To cite this version:
David Dupuis, Cédric Du Mouza, Nicolas Travers, Gaël Chareyron. Real-Time Influence Maximization
in a RTB Setting. Data Science and Engineering, 2020, 5 (3), pp.224-239. �10.1007/s41019-020-00132-
2�. �hal-02970479�

https://hal.science/hal-02970479
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Real-Time Influence Maximization in a RTB Setting

David Dupuis · Cédric du Mouza ·
Nicolas Travers · Gaël Chareyron

Received: 30/02/2020 / Accepted: 08/06/2020

Abstract To maximize the impact of an advertisement campaign on social
networks, the Real-Time Bidding (RTB) systems aim at targeting the most in-
fluential users of this network. Influence Maximization (IM) is a solution that
addresses this issue by maximizing the coverage of the network with top-k
influencers who maximize the diffusion of information. Associated with online
advertising strategies at web scale, RTB is faced with complex ad placement
decisions in real-time to deal with a high-speed stream of online users. To
tackle this issue, IM strategies should be modified in order to integrate RTB
constraints. While most traditional IM methods deal with static sets of top
influencers, they hardly address the dynamic influence targeting issue by inte-
grating short time decision, no interchange and stream’s incompleteness. This
paper proposes a real-time influence maximization (RTIM) approach which
takes influence maximization decisions within a real-time bidding environ-
ment. A deep analysis of influence scores of users over several social networks
is presented as well a strategy to guarantee the impact of an IM strategy in
order to define the budget of an ad campaign. Finally, we offer a thorough
experimental process to compare static versus dynamic IM solutions wrt. in-
fluence scores.

Keywords Real-Time Bidding · Influence Maximization · Social Network

D. Dupuis
Léonard de Vinci Pôle Universitaire, Research Center, Paris, France. E-mail:
david.c.dupuis@gmail.com

C. du Mouza & N. Travers
CEDRIC laboratory, Conservatoire National des Arts et Métiers (CNAM), Paris, France.
E-mail: firstname.lastname@cnam.fr

N. Travers & G. Chareyron
Léonard de Vinci Pôle Universitaire, Research Center, Paris, France. E-mail: first-
name.lastname@devinci.fr

2 D. Dupuis et al.

1 Introduction

Influence Maximization (IM) is a trend topic since Kempe et al. [18], known
as a maximum coverage problem of social networks. The goal is to find the
smallest subset of individuals in a social network, whom when targeted with a
piece of information will maximize its diffusion through social influence. Thus,
IM aims at maximizing the influence impact of a set of users. “Influence”
is “the power of causing an effect in indirect or intangible ways” (Merriam-
Webster). In other words, a user can be influenced if he saw the ad, interacted
with it, purchased the product or was encouraged to do so in the future.

Today, real-time bidding (RTB) outpaced other advertising strategies in
terms of online advertising [28,38] and social network services (SNS). RTB is
an online auction system which allows advertisers to bid in real time for ad
locations on a webpage loaded by users and thus to target them efficiently. In
RTB, advertisers see a stream of users, one at a time and have less than 100 ms
[38,37] to decide to bid or not. The bidders do not know what the auction
landscape looks like and consequently cannot oversee future connections.

In addition, RTB ad targeting relies essentially on web page content and
users’ profile. However, it lacks the social value of each customer as suggested
by Domingos and Richardson [10]. As far as we know no RTB algorithm at-
tempts to find an IM solution to improve bidding decisions. Thus, the aim
of our approach is to develop an IM algorithm capable of running with RTB
constraints. It is worth noting that IM could integrate the bidding aspect in
order to improve RTB, but this approach is left for future work.

Traditional IM algorithms, based on propagation models, propose various
optimization technic to statistically choose a seed set of users that maximizes
influence. Even if some IM algorithms compute it in real time, none of them
can work within a real-time bidding environment and satisfy its requirements.

Interestingly, the IM problematic in an RTB context is a twofold issue.
First, influence maximization needs to take into account time with real-time
bidding constraints: a short time, no exchange with the past, no time windows,
incompleteness of the stream (not all users are connected). Second, to maxi-
mize the impact of an ad campaign, it is necessary to know in advance how
much user it requires to target in the social network to guarantee a sufficient
coverage. In fact, it is necessary to define the more accurate budget to define
the best seed set size which maximizes the influence on the social network.

Indeed, whereas existing algorithms take hours or days to find a seed set up
to 200 seeds in a large social network [1], they do not cope with ad campaign
requirements with thousands of users or take into account the fact that chosen
users can be available online or not. The maximization problem needs to rely
on both propagation and real-time decision.

This article targets the issue with the following constraints:
– Real-Time Bidding: only an online user can be targeted,
– Processing Time: 100 ms to choose to target a user or not,
– Social Networks: the propagation influence score relies on a social network

containing millions of users and relationships,

Real-Time Influence Maximization in a RTB Setting 3

– Influence Maximization: thousands of users must be targeted just by ap-
pending them in real time while maximizing scores of large seed sets.

– Ad campaign guarantee: the size of the ad campaign is set in advance in
correlation to the social network to give a guarantee of its influence score.

Therefore, an IM algorithm is necessary to target influential users in an
RTB environment, capable of deciding in real time which users are worth tar-
geting. To achieve this we propose the Real-Time Influence Maximization
(RTIM). It is an IM algorithm which decides in real time the effectiveness of
an online user u, while static IM models only verify if this user u has been
chosen in the pre-computed seed set. Our main contributions are as follows:

– We propose an elegant approach for real-time influence maximization fo-
cusing on the stream of online users,

– We provide a deep analysis of users’ influence scores for various social
network datasets in order to showcase users’ behavior in IM,

– We give a model to give the estimation of the seed-set size in order to
guarantee the influence efficiency of an ad campaign on the network,

– We set up a thorough experimental setting for RTIM and IMM models on
different social networks.

In this article, we first review the literature on influence maximization. We
then explain the two stages of our algorithm: pre-processing and live, how they
relate to each other and allow us to solve the influence maximization problem
under RTB constraints. We follow on the RTIM implementation and we go
through the experimental process which compares our dynamic algorithm with
a static approach. We then present a methodology to estimate the impact of
an ad campaign which gives the estimation of the influence of a seed-set size.

2 IM State of the Art

Influence Maximization takes place in a social network graph G = (V,E)
where V is the set of vertices (users), E the set of directed edges (influence
relationships). In this graph G, a user is activated if he has successfully been
influenced by a neighbor and therefore influences his own outgoing neighbors.
A targeted user is a user who is not yet activated but for whom a piece of
information is shown to be propagated.

IM’s goal is to produce a seed set S of targeted users which maximizes
its influence on G. The optimal seed set (final result) is defined as S∗.

2.1 Propagation models

Kempe et al. [18] propose two common propagation models: Independent Cas-
cade (IC) and Linear Threshold (LT). The IC model considers that each user
can be influenced by a neighbor independently of any of his other neighbors.

4 D. Dupuis et al.

The LT model considers that a user is activated if the sum of successful influ-
ence probabilities from his neighbors is greater than his activation threshold.

Under the IC model, time unfolds in discrete steps. At any time step, each
newly activated node ui ∈ Va,∀i ∈ V gets one independent attempt to activate
each of its outgoing neighbors vj ∈ Out(ui),∀j ∈ V {i} with a probability
p(u, v) = eij . In other words, eij denotes the probability of ui influencing vi.

As explained in [13] there is a real challenge in acquiring real-world data
to build datasets containing accurate influence probabilities. Therefore theo-
retical edge weight models may be assumed, like in the following edge weight’s
models for the IC model:

– Constant: Each weight eij has a constant probability. In most solutions [4,
9,11,12,14,18], p is set at 0.01 or 0.1. Some define p ∈ [0.01, 0.1] [5,26].

– Weighted Cascade (WC): In this model, eij = 1
|In(vj)| where In(vj) is

the number of neighbors that influence u. Thus, all neighbors that influence
ui do so with the same probability. Therefore, it is easier to influence a user
with a low in-degree [4,5,9,11,12,7,8,18,30,31].

– Tri-valency Model: Here, the weight of edges is randomly chosen from
a list such as {0.001, 0.01, 0.1} [4,7,17]. In very large or dense networks,
the tri-valency model may actually have edge weights far greater than the
weighted cascade model due to the number of neighbors each user has.

For the LT model, the general edge weight rule is that the sum of the
weights must equal one. Therefore, the WC model applies to LT. Additional
alternative models can be found in [24] with an extensive IM state-of-the art.

The IC model is very useful to model information diffusion when a single
exhibition to a piece of information from one source is enough to influence
an individual. It is also a simpler model to study than LT. The LT model
doesn’t change the fundamental approach of our algorithm and we believe
that it should be simple to extend it to LT. For these reasons, we limit our
approach to IC. In addition, we define the edge weights using the WC model,
because it corresponds better to the simulation of the diversity of influence
between individuals in a real-world social network.

2.2 Properties

Kempe et al. [18] prove that the influence maximization problem is a monotone
and sub-modular function. It is also an NP-Hard problem under both the IC
and LT models. Chen et al. [4] prove that computing the influence score of a
seed set is #P-Hard under the IC model.

For both IC and LT models, adding users to the seed set always increases
its global influence score which corresponds to the positive monotone property.

Moreover, the propagation function f is sub-modular if it satisfies a natural
diminishing returns property i.e., the marginal gain from adding an element v
to a set S is at least as high as the marginal gain from adding the same element
to a superset of S. Formally, a sub-modular function satisfies: ∀S ⊆ T ⊆ Ω and

Real-Time Influence Maximization in a RTB Setting 5

x ∈ Ω\T, f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T). This sub-modular property
is essential as it guarantees that a greedy algorithm will have a (1 − 1/e − ϵ)
approximation to the optimal value [25]. Many IM algorithms of the state-of-
the art rely on this theoretical guarantee to validate their strategy.

2.3 Computing score

Influence Score: Authors in [39] elaborate the exact influence spread function
for the IC model as an inclusion-exclusion based equation. We generalize their
inclusion-exclusion based equation into equation 1.

In Equation 1, the influence score of a seed set S, of size k, is defined as
the sum of activation probabilities aS(v) of any node v ∈ V when users in
S are targeted. The activation probability of a user is the probability that
there exists a path between that user and any targeted user. As we write in
Equation 1, the probability that a path exists is the union of the existence of
any path between a user and any targeted user. It’s clear here that computing
this formula is exponential in complexity.

σ(S) =
∑
vi∈V

aS(vi) =
∑
vi∈V

P(
∪

pj∈Puvi

pj),

Puvi
= {all paths event existence between u and vi}

(1)

Determining the seed set S of k users among N which provides the maxi-
mum global influence score σ(S) is a NP-hard problem since it requires com-
puting the global influence score of any combination of k users, so there are(
N
k

)
combinations to test for any given k. Even when assuming the seed set

is known, computing its global influence score has been proven to be #P-
Hard [17]. Due to the exponential nature of computing the influence score,
Kempe et al. [18] offer an alternative which consists in running n = 10, 000
influence propagation simulations and averaging the scores into a final influ-
ence score result. This is called the Monte Carlo approach and we write an
influence score computed with this method as σMC(). This estimation method
allows us to produce a good approximation for the influence score and we can
thus efficiently compute: σMC(S) ∼ σ(S)

2.4 Algorithms

Clearly presented by in [1] and [2] there are three main categories of IM algo-
rithms: greedy, sampling and approximation.

GREEDY [18], CELF [20] and CELF++ [14] are all three lazy-forward
algorithms which take advantage of the sub-modularity property of the IM
problem and thus guarantee an approximation of (1 − 1/e − ϵ). To find S∗

they start with S = ∅ and incrementally add node v which brings the largest
marginal gain: σMC(S ∪ v) > σMC(S), until |S| = k. However, continuously
computing σMC(S) is costly. CELF [20,14] attempt to remedy this by storing

6 D. Dupuis et al.

certain scores to take advantage of the sub-modular property and avoid recom-
puting other scores but this doesn’t provide any significant gain in runtime.
Thus, those greedy algorithms do not scale for large seed sets or large graphs.

Borg et al.’s method [3] (referred to as RIS: Reverse Influence Sampling),
TIM, TIM+ [31], or IMM [30] use topological sampling. In the transpose
graph, they generate a set R of size θ of random paths of greatest influence
by picking users uniformly at random (Reverse Reachable (RR) sets). Using
a greedy method, they build S∗ by continuously adding to S∗ the user who
covers the greatest number of RR sets and removing them from R. As shown
by [1] sampling algorithms are significantly faster because σMC(S∗) is only
computed once the final solution is found. However, their theoretical guarantee
depends on θ which is computed by ϵ in (1− 1/e− ϵ) and l which determines
their runtime factor l2 ∗ log(n). Experimentally they use ϵ = 0.5 and l = 1
which means that precision is sacrificed for scalability.

Approximation algorithms such as EaSyIM [11], IRIE [17], SIMPATH [15],
LDAG [6] or IMRANK [7], SSA-Fix [16], offer heuristics to compute σ(S).
Instead of computing the union of all paths as indicated in Equation 1 they
consider the most probable path. RLP [22] uses live edges and propagation
paths to optimize computation time. They can run select the top k influential
users. While scalable they do not provide theoretical guarantees [1].

Mining and learning strategies try to enhance the extraction of seed sets.
DIEM [32] proposes to learn propagation models on the influence graph to
produce a prediction model. C2IM [27] focuses on influence communities’ ex-
traction in order to ease the connection to the influencers. [36] proposes the
factorization of bandits’ methods in order to predict influencers through itera-
tions of reward strategies. However it hardly scales in seed set sizes (generally
50) and, moreover, models are not designed to be time dependent and flexible.

OIM [19], AIM [34] and TAIM [33] are recent works on real-time influence
maximization which need to be noticed. They propose adaptative strategies
that compute the seed set dynamically by incrementally watching the influence
impact of users on time windows and choose the optimal one on this setting.
OPIM [29] also proposed an extension of Borg’s solution [3] by deriving in
real time the approximated seed set and then choose the node with the largest
marginal coverage. Even if those strategies properly approximate the seed set
influence iteratively, it cannot fit with RTB constraints for which a decision
must be made on a single user (bid) and not on a set of users at once. Thus it
cannot be an approximation on the whole graph but a local decision at once.

Conclusions: All of these algorithms provide proper scientific solutions to solve
the IM problem. The common rule is that an algorithm which has high ac-
curacy will take weeks to find its seed set and vice versa an algorithm which
runs in a couple of hours will have less accuracy. However, these algorithms
compute the seed set in a static graph environment and assume that every user
must be available at any time to be targeted. This approach is not appropriate
to graphs with more than tens of millions of users with proportionally many
edges [1]. There exists a large number of specific IM contributions which have

Real-Time Influence Maximization in a RTB Setting 7

been listed in [24]. It shows clearly that very few contributions have been made
regarding the analysis of the IM challenge in a stream of online users. We must
notice [35] which proposes an interesting solution with sliding windows that
computes local Influence Maximization. However it does not scale up for large
seed set lists; more than 100 while thousands are required.

Therefore, none of the existing IM solutions can perform well under real-
time bidding constraints. Indeed it requires that all users in S appear during
the campaign to guarantee the maximization of the static IM strategies. These
algorithms compute the seed set in a static environment rather than a dynamic
one, as we hope to achieve, with RTB constraints.

To this end, we offer RTIM, Real-Time Influence Maximization which tar-
gets influential users in real time, henceforth generating a seed set of influencers
under real-time bidding constraints. To ensure this, RTIM takes place in two
stages: a pre-processing stage and a live stage which we now present.

3 RTIM Approach

RTIM is meant to perform in an RTB environment. The latter, consists of
users who, through their devices connected to the Internet, are navigating on
websites. As soon as a user arrives on a webpage which sells its ad slots through
a real-time bidding environment, the IM algorithm has to determine whether
it is useful for targeting. In minutes, millions of users are quickly navigating
through many dozens of websites each leading for any RTB advertising agency
to a continuous stream of online users [38]. Advertisers can only target, with
advertisements, users who appear in the stream and target them under 100 ms
which corresponds to the bidding platform delay. As we know, these users,
all belong to a very large social network through which they may be sharing
information and influencing one another. It is therefore in the advertiser’s
interest to take advantage of the social network value of each user that appears
in the RTB stream. In addition, these same advertisers, with large budgets seek
to acquire or convert (i.e., activate) many users, most through targeting.

The originality of our approach lies in its ability to target users who appear
in this dynamic stream by estimating whether they will have a significant gain
based on previously targeted users in the same stream and belonging to the
same social network. Thus providing a solution to the influence maximization
problem and producing a large set of users for a realistic ad campaign. While
traditional approaches determine the best seed set of targeted users, at the cost
of expensive computation, by processing a static graph in which any user is
considered online and available for targeting at any given moment. Contrary to
these solutions, RTIM allows us to adapt our influence maximization strategy
to an advertisement campaign taking place in an RTB streaming environment
and which requires targeting tens of thousands of users.

Furthermore, we choose to compare RTIM with the static algorithm IMM
(“Influence Maximization with Martingales” [30]). Indeed, IMM has proven
that it can compute an effective seed set in a reasonable time regardless of

8 D. Dupuis et al.

the graph size. Even more so, it can compute large seed set sizes of tens of
thousands of users as an RTB advertising campaign requires it.

Static algorithms, such as IMM [30], correspond to an optimistic approach
where they assume that the users from their pre-computed seed set will nec-
essarily be online in the stream. However, without integrating a probabilistic
model based on real and precise figures about the connection rate of the dif-
ferent users, which is hardly possible on large social networks like Twitter,
many users of the pre-defined seed set won’t be available to target during the
advertisement campaign. In contrast, our greedy approach, which can be con-
sidered as a pessimistic approach, allows us to dynamically fill our seed set
with online users of interest for the advertisement campaign.

Our RTIM algorithm is composed of two steps. First a pre-processing step
which computes the influence score of every user in the graph. Second, when
reading the dynamic stream in real-time (called the “live stage”), for each
user in the stream, we determine whether his influence score is high enough
or the probability of him being activated by a previously targeted user is
low enough. When a user is targeted during this live stage, we update the
activation probability of the users in his neighborhood.

3.1 Step I: Pre-Processing - Building the Influence Graph

First, we attribute a weight to each edge which estimates the influence that
depends on the number of incoming edges of a vertex. This influence estimation
between direct neighbors is commonly adopted in influence propagation [26].
We call this graph the influence graph GI(V,E,wI) defined formally as follows:

Definition 1 (Influence graph) Consider G(V,E) the social graph where V
is the set of vertices and E ⊆ V 2 the set of oriented edges. The influence graph
for G is the graph GI(V,E,wI) with the same sets of vertices and edges and a
weighted function wI : E → R such that for an edge eij from vertice vi to vj:

wI(eij) =
1

indegree(vj)

Figure 1 depicts the influence graph for a social network between 5 users.
For instance, user u2 who follows or is influenced by users u1, u3 and u5 has
each of his incoming edge e ∈ E weighted by:

wI(e12) = wI(e32) = wI(e52) = 1/3 = 0.33

To estimate the influence score, we use the Monte Carlo approach by run-
ning n simulations, where n is a large number (10, 000 in [18]). The influence
score of each user u is the average number of users activated for all simulations.

For each single simulation, we test the existence of each outgoing edge of
a user (i.e. followers of u1) in G by generating a random number r ∈ [0, 1] and
checking whether r reaches the activation probability, so that r < wI(eij).
If it is, the edge eij exists with probability wI(eij). For example, for user u1

Real-Time Influence Maximization in a RTB Setting 9

u1

u2

u3

u4

u5

0.330.5 0.33
0.25

1
0.25

0.5
0.25

0.33
0.5

0.25
0.5

Fig. 1 Influence graph GI with
weighted edges

u2 u4 u3 u5 u4 u1 …users
stream

t1

u1

u2

u3

u4

u5

0.330.5
0.33

0.25

1
0.25

0.5
0.25

0.33
0.5

0.25
0.5

t2

u1

u2

u3

u4

u5

0.330.5 0.33
0.25

1
0.25

0.5
0.25

0.33
0.5

0.25
0.5

t3 t4 t5 t6

Fig. 2 Ex. of the live stream (T) of available users

we test his followers, the two edges e12 and e13 are tested with random values
that give 0.3 < wI(e12) and 0.6 > wI(e13). Consequently, only u2 is considered
activated since we can consider that a path exists between u1 and u2.

When a neighbor is activated, we can then recursively test each of the
neighbor’s outgoing edges with the same method. We stop when no more
neighbors are activated (the influence propagation stops along the edges). That
is, u2 cannot reactivate a node already activated by u1. For instance, with
0.7 > wI(e23) and 0.4 < wI(e25), user u5 is activated. Recursively, we test the
edge e53. In our example, the influence score of user u1 (for the first simulation)
is equal to 2 with activated users: u2 and u5.

Since the simulations are all independent and the graph data structure
is only read during the process, we can run the n simulations in parallel.
However running 10,000 Monte Carlo simulations for each user u ∈ G remains
extremely costly when considering real large advertisement campaigns where
the expected seed set reaches tens of thousands of users. Consequently, this
computation must be performed offline.

We store all the values in a vector I of user influence scores:

∀ui ∈ G, Ii = σMC(ui)

3.2 Step II : User targeting at runtime

With the influence score computed in the pre-processing step, RTIM is able to
select, during the RTB stream, users to target. Consider the temporal stream
of users T in which appears every online connection event of the users u ∈ G.
Since a user can only be targeted when he appears in the stream, we need to
decide in real-time whether he is worth targeting or not. To make this decision,
our RTIM algorithm takes into consideration two criteria:

i) Is the user influential enough?
ii) What is the probability that he was already activated by the ad through

one of his influential and targeted neighbors?

10 D. Dupuis et al.

To verify these two criteria, we set two thresholds, θI and θA, respectively
the minimum influence score and the activation probability. Whenever a user
is online, we check whether his influence score is important enough to be a
potential target for the advertisement campaign or not. If his influence score is
above the influence threshold θI (i.e., considered to be an influencer) we check
the probability for this user to be presented the advertisement by the users
he follows (i.e., already activated). If this probability is above the threshold
θA, we value that it is not worth presenting the advertisement since it is very
likely that it has already been presented to a user he follows who will have
influenced him. Otherwise, the user is targeted and added to the seed set.

When we target a user who satisfies these two thresholds, his activation
probability is set to 1. This change, which impacts the activation probability
of other users in the network, must be taken into account.Therefore, from
the targeted user, we update the activation probability of neighboring users
by propagating his influence. This will enable us to make better targeting
decisions for future users who appear in the stream.

Figure 2 illustrates the stream of online users and their interconnected
graph. T is a basic example of an RTB stream where users appear one at a
time in discrete steps (in red/bold) and can only be targeted when available.
As soon as RTIM makes a decision to target or not the user, he is no longer
available. When the first user u2 appears (time t1), we verify his influence score
I2. His activation probability is necessarily 0 because he is the first user in T .
If I2 > θI then we consider that u2 tries to activate his followers u1, u3 and
u5, and propagate to their own neighbors. Then we update their activation
probability. Assume that u1 is activated (A1 > θA) while u3 and u5 are not.

When user u4 is online (t2), his influence score is insufficient to be targeted.
We skip him and wait the for the following online user. Then, when user u3

appears in the stream (t3), he is considered to be an influencer (I3 > θI) and
not activated by u2 (A3 < θA). As for u2, he is targeted and propagates the
activation probability to his neighbors u1, u2, u5 and u4. When u5 appears in
T at t4, even if I5 is higher than θI , he is considered to be influenced by both
u2 and u3 (assume that A5 > θA). Thus it is not worth targeting him.

By applying the whole stream of users T , our approach generates the seed
set S∗ where every user u ∈ G verifies θI and θA. The key point resides in the
fact that RTIM maximizes the influence of connected users while removing
those who are too close to users already targeted.

We present the different algorithms, within RTIM, which are required for
the runtime processing, in the following section.

4 RTIM Model

Traditional influence maximization algorithms, like IMM, have an optimistic
approach since they determine statically the users to target based on the final
global influence score of the set of targeted users. So they assume with a prob-
ability of 1 that these users will connect within the advertisement campaign

Real-Time Influence Maximization in a RTB Setting 11

period. If the advertisement campaign is not time-limited, i.e., we consider
an infinite stream of users online, these solutions potentially maximize the
total score of the campaign. However, with a limited time window for the
advertisement campaign, not all these users will likely appear online.

RTIM’s strategy is quite different since it considers that the probability
that a user will appear in the stream is undefined. Therefore, the decision of
targeting a user is done in real-time when he is available, considering whether
this user is a good “influencer” while not already having been influenced by
other users during the campaign. So RTIM can be considered as a pessimistic
algorithm since we decide to add a user to the final seed set instantaneously,
even if a “better” user to add to the seed set appears later in the stream.

Upon targeting a user, his activation probability is immediately set to 1
because he is considered to be activated on the spot. This change in the tar-
geted user’s status means that other users around him are likely to also be
activated through his influence. In the following part, we discuss the activa-
tion probability graph which allows us to update the activation probability of
neighboring users, with respect to time (i.e., the user position in the stream).

Activation probability graph. At time t0, when T starts, we create the activa-
tion probability graph as the influence graph GI described in Section 3.1.

We can adopt the matrix representation for the graph in the following:

MGI
(V,E) = AG × InDegV

where AG is the adjacency matrix, i.e., AG [i, j] = 1 if there exists an edge
from user ui to user uj , 0 otherwise, and InDegV is the indegree vector, with
InDegV [i] =

1
indegree(ui)

.
The activation probability vector AV is initialized as the −→

0 vector.

Activation probability updates. Consider we have at time tk−1 > t0, an activa-
tion probability vector AV (tk−1). Then assume that at time tk, a user ui con-
nects and we decide to target him. So his activation probability AV (tk−1)[i]
is now set to 1. This probability update impacts other probabilities in the
graph. Indeed, users who follow ui are now more likely to see this advertise-
ment and consequently we may avoid targeting them in the future. We must
update other activation probabilities through influence propagation according
to existing links in the graph to obtain the AV (tk) probability vector.

Definition 2 (Activation probability propagation) Consider the social
graph G(V,E) and its influence graph GI(V,E,wI) as stated in Section 3. The
activation probability vector AV (tk) for G at tk is recursively defined as:{

AV (0)(tk) = MGI
(V,E)×AV (tk−1)

AV (i+1)(tk) = MGI
(V,E)×AV (i)(tk)

12 D. Dupuis et al.

So, after targeting a user ui (AV (tk−1)[i] = 1) the vector is recursively
combined with the activation probability graph MGI

in order to propagate the
activation while obtaining a convergence after i iterations:

AV (tk) = AV (∞)(tk) = MGI
(V,E)×AV (∞)(tk)

This model corresponds to a Matrix population model [21]1. Thus, we can
guarantee its convergence since the Eigenvalues of MGI

(V,E) are real strictly
positive (the matrix is real, asymmetric and non-diagonal). Moreover the prop-
agation is an increasing and monotone function bounded to −→

1 .
As the stream of users goes by RTIM will take less risk and target the best

user when available because there is no certainty that a better user will appear
later on. On the contrary, if the stream is infinite, then the probability that
a user will appear is necessarily 1 and thus IMM, on an infinite stream, will
always perform better than RTIM.

The aim of RTIM is to determine in real-time if a user is a good influencer
while not already having been influenced by other users. To achieve this, our
model relies on the probability a targeted and activated user has of influencing
and activating other users. The issue is to determine the proper thresholds in
order to fill the seed set both efficiently and effectively.

To target influencers, we need to determine users worth targeting but also
when users are considered activated by influencers. For this we define the
threshold θI as the minimum influence score for which we can consider the
top-k influencers. Therefore, we propose to set θI to the influence score of the
kth influencer. We also define the activation probability threshold θA which
is the likelihood of a user being activated. By default we set θA to 0.5. Any
user whose activation probability is greater than θA is considered to have
been activated and therefore will have attempted himself to propagate the
information provided by an influencer and is therefore not worth targeting.

During the live stage, we need to update the current online user’s activation
probability while checking if he is a worthwhile influencer. To achieve this, we
need to compute all of the most reliable paths between this user and any
activated neighbor of depth less than d. For that user, if his influence score
is above θI and his activation probability is below θA, the user is targeted.
Otherwise we ignore him.

In Equation 1 we explained that the probability of a user v being activated
by any node u ∈ S is the probability of all paths between v and any user in S,
(i.e., aS(u) = P(

∪
pj∈Puvi

pj)). Here, we consider S = u, where u is the online
user who has just been targeted and considered activated.

Notice that if we consider the paths between u and v as being independent
then we obtain equation 2:

A[u] = P(
∪

pj∈Puv

pj) = 1−
∏

wi∈Pd
uv

(1− wi),

wi ∈ Pd
uv = {all path weights of length d from u to v}

(2)

1 Not a Markov chain since the sum of a column can exceed 1: MGI
(V,E) = AG×InDegV

Real-Time Influence Maximization in a RTB Setting 13

Algorithm 1 Updating activation probabilities
Require: a graph G, nodes u and v, user v’s activation probability A[v], the set of user u’s

neighbors Nu, current path weight p, depth d
1: procedure ActivationScores(G, u, p, d)
2: for v ∈ Nu do
3: A[v]← 1− (1−A[v]) ∗ (1− p ∗ wuv)
4: if d > 1 then
5: ActivationScores(G, v, p ∗ wuv , d− 1)

Youtube LiveJournal Twitter
of nodes 1.13M 3.99M 41M
of edges 5.97M 69.3M 1.46B
Degree Mean 10.53 34.70 70.50
Degree Variance 10,304.01 7,381.26 6,426,184.47
Degree Standard Deviation 101.50 85.91 2,534.99

Table 1 Datasets characteristics

Algorithm 2 RTIM Live
Require: a graph G, a user u, the sorted list of influence scores I, influence threshold θI ,

u’s activation probability A[u] of size |V|, a depth d, a temporal stream of users T , the
seed set S, seed set max size k

1: Initialize A← −→0
2: while |S| < k do
3: u← next(T)
4: if I[u] ≥ θI and A[u] ≤ θA then
5: ActivationScores(G, u, 1, d)
6: S ← S ∪ u

This theoretical bias is validated if we consider the paths to be of length no
more than 2. This is true because between two nodes all paths of length 2 are
necessarily independent. Therefore, we use Equation 2 with a maximum depth
of 2 to update the activation probability of a user.

Due to the directed property of the influence graph, for algorithmic and
computational purposes it is easier to update the activation probabilities of a
recently targeted and activated user. Hence, when a user is targeted, we update
the activation probabilities of all his neighbors up to a maximum depth d.

Algorithm 1 illustrates updates of activation probabilities. For each neigh-
bor v of user u, we propagate his activation probability (line 3). Then, while
the depth of propagation is sufficient we follow the propagation recursively
(line 4&5). In the worst case, it runs in O(|V |d) when all users are intercon-
nected. Since in most cases, our networks are not dense (see Table 1), updating
the activation probabilities is done very fast (see Table 4) and we set d to 2.
However, it is not necessary to be extremely fast for very large and dense net-
works, such as Twitter, as updating the activation probabilities can take place
in a separate thread during the live stage.

For the live stage of RTIM, we consider that if any neighbor (of depth d) of
a user is targeted then we update his activation probability. First, Algorithm 2
initializes the activation probabilities to the 0 vector (line 1). Then, while the

14 D. Dupuis et al.

100 101 102 103 104 105
101

102

103

104

105

106

User rank sorted by influence score

In
flu

en
ce

sc
or

e

Youtube
Youtube Zipf-Mandelbrot

LiveJournal
LiveJournal Zipf-Mandelbrot

Twitter
Twitter Zipf-Mandelbrot

Fig. 3 Datasets’ influence score distributions

seed set is not filled (line 2) we check each new incoming user u if he validates
both θI and θA (line 3&4). Deciding to target a user (line 4) is done in O(1)
and is thus instantaneous. If he does we add u to the seed set and propagate
the activation by applying Algorithm 1 (line 5&6).

Consider Figure 2 as an example. Its influence score vector I is:

I⊤ =
[
2.3423 3.0232 3.7802 1.6932 2.3423

]
During the live stage, we read the RTB stream T with maximum seed size

k = 3, θA = 0.5 and θI = 3.0, as example settings. At t = 0, we initialize the
activation probability vector to A0 =

−→
0 (line 1). At t = 1, the first user in T ,

u2, has I[u2] = 3.0232 > θI and A[u2] = 0, so we target him and update the
activation probability of his neighbors. Which gives us:

A1⊤ =
[
0.54125 1.0 0.4257 0.25 0.54125

]
At t = 2, user u4 has I[u4] = 1.6932 < θI . We ignore him because his

influence score is too low. At t = 3, for u3, I[u3] = 3.7802 > θI and A[u3] =
0.4257 < θA, so we target u3, and update the activation probability vector:

A2⊤ =
[
0.7303 1.0 1.0 1.0 0.7303

]
In the remainder of the stream T , A[u5] = 0.7303 > θA and u4 is already

targeted (A[u4] = 1.0), so S∗ = {u2, u3}. Notice how the final seed set size is
less than the maximum seed set size k = 3. It is due to the time-dependent
live stream which prevents filling the seed set.

Real-Time Influence Maximization in a RTB Setting 15

Dataset B r0 α X2-Pearson value
Youtube 8× 104 11 0.78 0.976
LiveJournal 1.55× 103 0 0.395 0.971
Twitter 1.7× 106 6 0.99 0.969

Table 2 Zipf-Mandelbrot parameters for graph datasets

5 Influence Analysis

Our model is experimented with empirical datasets of different sizes: Live-
Journal, Youtube and Twitter. These graph datasets have interesting prop-
erties that can be exploited in order to understand the impact of the Real-Time
Bidding environment on the influence maximization interactions of users.

To achieve this, we need to understand the way more closely that users
are interconnected for each dataset and study their topologies. We can see
in Table 1 the global statistics that highlight the different sizes. We see here
the graph composition of all three datasets (# nodes and # edges), and node
degrees (mean, variance and standard deviation).

We can see that Youtube is the “smallest” graph with fewer connections
(mean degree of 10) but with a high variation of degree compared to its size.
LiveJournal is highly connected with a high number of edges and a mean
degree of 34. However, users are more homogeneously connected with a low
variance and standard deviation. Twitter, on the other hand, is the biggest
graph in which users can have varying numbers of connections with a mean
degree of 70 but a variance of 6.4M and a standard deviation of 2.5k. This
analysis helps understand the subtle performance of RTIM for each dataset.

As for the distribution of users’ influence score, to estimate the influence
score of each user we applied Monte Carlo simulations on each dataset for
every node in the social networks. The result of each MC influence score is a
correct approximation of the real score.

Figure 3 shows the distribution of influence scores for our graph datasets
(reduced to 105 but analysis was done on all users). These distributions can
be characterized by a standard Zipf-Mandelbrot distribution [23], traditionally
used for distribution of ranked data. It is defined by:

B

(r0 + r)α

where r is, here, the rank of the influencer. r0 is a constant representing the
number of top influencers. B corresponds to the starting score modifier and α
is the decreasing speed of scores.

Table 2 gives the corresponding values for those Zipf-Mandelbrot distribu-
tions and the Pearson Xi-Square values (observation probabilities).

Youtube and Twitter behave similarly with a huge r0 (resp. 11 and 6)
leading 100 to 750 top influencers. We can see that Twitter has more top
influencers with a high score and then drops faster than Youtube.

16 D. Dupuis et al.

Youtube LiveJournal Twitter
Influence score Uniform Log Uniform Log Uniform Log

1 ≤ I ≤ 2 37.79% 19.92% 37.43% 17.78% 86.33% 80.55%
2 < I ≤ 5 43.25% 40.69% 36.71% 39.42% 12.02% 16.13%
5 < I ≤ 10 11.01% 18.88% 17.18% 26.27% 1.13% 2.12%

10 < I ≤ 100 7.46% 18.71% 8.66% 16.45% 0.48% 1.08%
100 < I ≤ 1, 000 0.47% 1.71% 0.03% 0.08% 0.04% 0.10%

1, 000 < I 0.02% 0.10% 0.00% 0.00% 0.00% 0.02%
Stream size 226,978 399,796 4,165,223

Table 3 Streams’ influence score distributions

LiveJournal behaves differently with very few top influencers compared
to Youtube or Twitter. The low value r0 shows that top influencers’ score
decreases faster at the beginning of the curve.

However, the decreasing speed of the influence score α witnesses really high
values (resp. 0.78 and 0.99) which means that it is harder to become a top
influencer on Twitter than Youtube. Likewise, the number of influencers is
really high with a B value between 104 and 106 leading to a long tail which
only starts after more than 105 for Youtube and 2× 105 users for Twitter.

On the other hand, LiveJournal’s score curve decreases slower than the
others with an α of only 0.395 giving the idea that the number of connections
between users are closer to the average than Twitter or Youtube. Conse-
quently, the long tail is reached more slowly than the others (4× 105 users).

This conclusion is interesting in order to understand the impact of these
social networks on influence maximization. Indeed, targeting top influencers
in real-time requires choosing influencers according to their estimated score.
For instance, users from the long tail are pretty identical and cannot be dif-
ferentiated from each other, thus the decision to target or not an influencer
depends on α which tells us how much influencers’ score evolves.

6 Experiments

All of our experiments are run on a server of make Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz with 56 CPUs and 462Gb of RAM memory.

We wish to show in this section the impact of choosing influencers in a real-
time bidding stream of users. In order to do this, we need to compute users’
influence scores, generate multiple streams of users with varying distributions
and compare the final solution of each algorithm for different graph datasets.

6.1 Experimental process

Since RTIM is an IM algorithm which runs under RTB constraints, we want to
compare it to an existing IM algorithm. We choose IMM [30] because in [1] it
is proven to have the best compromise between computation speed, scalability

Real-Time Influence Maximization in a RTB Setting 17

and accuracy. In particular, IMM can compute seed sets with thousands of
users on our largest dataset. We run all algorithms in a specific experimental
process involving three stages: pre-processing, live stream generation and live
stream process. The code for IMM is provided by [1] in C++.

Stage I: Pre-processing. First, we run IMM in its entirety and add k users to its
seed set SIMM . Recall that IMM states that every user in the graph appears
equiprobable, and more precisely assumes that they will appear in the stream.
However, during the ad campaign, it is more likely that not all the users will
be available online. Since our objective is to target a large number of users in
the stream, as would happen in a marketing campaign, we set k = 10, 000. We
compute IMM’s optimal seed using ϵ = 0.1. It can do this in seconds and very
easily scale to large graphs (see [1] for a proper analysis of IMM performance).

RTIM uses the Monte Carlo approach to compute the influence score of each
user in the graph. We run n parallelized simulations per node (n = 10, 000).
Even so, for large graphs, this operation can take several days, so to make it
scalable we limit it to a depth of 3 on large graphs to reduce pre-processing time
to a few hours at most. Thanks to the graph topology with a high connectivity
(see Section 5), the Monte Carlo simulations converge faster. As a counterpart
we lose in influence score precision but believe the error to be negligible. The
influence scores of each user are stored in a vector I for future use.

Stage II: Live stream generation. It’s during this stage that we read our RTB
stream and both algorithms have the opportunity to target influential users.
Since no real streams of connected users are available online, we simulate
users’ behavior in the social networks with different distributions. To the best
of our abilities, we haven’t found well-founded models for RTB social stream
generation. So, we simulate the RTB stream of users in the three different social
networks by randomly picking users based on two distributions. Notice that a
user can appear several times in the stream. Here are the two distributions:

– Uniform: we suppose that all users have equal probability of appearing in
the stream. This distribution can be considered to be the worst case where
highly connected users can appear as frequently as poorly connected users
or where top influencers can appear as frequently as low influencers.

– Log: we suppose that users who have more in/out edges in the graph are
more likely to be connected. User probability of being in the stream is:

P (ui ∈ S) = log(degui
)∑

ui∈V log(degui
)

where degui
is the degree of ui, the sum of in-degree and out-degree. We

apply a logarithm on the number of edges per user in order to give users
with a low influence score a reasonable probability of showing up in the
stream. In fact, due to the distribution of edges in the graph, some users are
highly connected to other ones and represent the large majority of online
users in the stream even though this does not reflect the reality. This Log

18 D. Dupuis et al.

Targeting time Activation time
Average Average Median Max

Youtube 0.5 µs 70.3 ms 6.30 ms 193.4 ms
LiveJournal 1.0 µs 61.1 ms 6.03 ms 192.0 ms
Twitter 3.1 µs 85.9 ms 44.5 ms 411.1 ms

Table 4 Target and update activation probabilities time

stream can be considered to be the best case where highly linked users are
more likely to be present in the stream, and potentially top-influencers.

Moreover each stream is a subset of the total number of users, we choose
10% of the total number of users. In this setting, we ensure that all the users
are not necessarily available online during the ad campaign: |T | = 10%× |V |

Table 3 gives for each stream the proportions of influence scores and size in
our experiments. As expected Uniform distributions contains lower influence
scores while Log focuses more on higher scores (more than 10). As seen in
Figure 5, LiveJournal produces lower scores so does the stream. According
to Twitter it witnesses a huge amount of low scores with more than 80% in
both Uniform and Log distributions. It is due to the large stream (above 4M
connections) and stick to the distribution of Twitter scores. However, with
respect to the proportions even with 1.20% of the stream, the number of high
influence scores is higher than LiveJournal and Youtube.

Stage III: Live stream process. For IMM, if a user in the stream belongs to
SIMM , he is targeted and added to the seed set S∗

IMM . A user is targeted only
once, even if he appears twice. At the end of the stream: S∗

IMM = SIMM ∩ T
For each user ui in the stream, RTIM will verify its targeting conditions. It

will check that the user’s activation probability ap(ui) is below the activation
threshold θA, and if his influence score σMC(ui) is greater than the influence
threshold θI . If both conditions are satisfied then ui is targeted instantaneously
(see Algorithm 2). At which point he is added to the final seed set S∗

RTIM

and we update the activation probability of his neighbors up to depth 2 (see
Algorithm 1). The update operation can be done by a separate thread.

Table 4 gives the time spent to target and update propagation probabilities
in the network. It shows that the average targeting time is very low with
a constant time wrt. the number of users and the update time is less than
100 ms which satisfies our real-time requirement, and in most of the case far
less (median). However, some updates on large dense graphs can take up to
411 ms. This is still negligible since a user cannot influence another in less
than half a second.

6.1.1 Stage IV: Seed Sets Evaluation

To compare the performance of both IM algorithms we compute and compare
σMC(S∗

IMM) and σMC(S∗
RTIM) during the live stage in order to analyze how

the seed set score evolves. Because of the computation cost of σMC(S), during

Real-Time Influence Maximization in a RTB Setting 19

0 1 · 105 2 · 105
0

5,000

10,000

Stream of users

Se
ed

se
t

si
ze

RTIM log IMM log RTIM uniform IMM uniform

Fig. 4 Seed set size evolution with Youtube

0 1 · 105 2 · 105
0

2 · 105

4 · 105

Stream of users

Se
ed

se
t

sc
or

e
Fig. 5 Seed set score evolution with Youtube

the live stage, the score of the seed set is computed for every 100 users added
to the seed set, or 1,000 for large seed sets on Twitter.

6.2 Experimental results

Youtube. In the following, we see the evolution of the seed set during the
stream both for influence score and size. Figure 4 and 5 give the results pro-
duced with a stream of 2.27× 105 connected users over the Youtube dataset.

Figure 4 shows the evolution of the seed set size. We clearly see that IMM
hardly finds pre-defined influencers, especially for the Uniform distribution.
RTIM evolves almost linearly with twice as many seeds for the Uniform distri-
bution and 3.3 times more for the Log one. According to the Log distribution,
RTIM finds more influencers and reaches k faster. The sudden stop of the
RTIM seed set at 1.89× 105 users is due to the fact that the marketing cam-
paign is over with a full seed-set of k = 10, 000 users.

Figure 5 shows that RTIM produces seed sets with higher scores than IMM.
Uniform and Log streams witness different evolution. In fact, IMM hardly finds
influencers in the Uniform distribution where highly connected users are less
likely to be available online. This explains why IMM’s seed set evolves slowly.
On the other hand, RTIM targets users according to their local influence on
the graph and thus has more targeting opportunities.

According to the Log distribution, IMM is closer to RTIM since top-
influencers are more present in the stream. Consequently, it takes time for
IMM to reach this goal by the end of the stream with a similar score (1,105
less), while RTIM stopped earlier when the seed set size reached k. This con-
firms the fact that IMM is better at maximizing k than RTIM in an infinite
stream, however, in a finite campaign this is not the case.

Interestingly, the score growth is higher at the beginning of the stream and
we observe a logarithmic evolution of the score. In fact, during the stream

20 D. Dupuis et al.

0 1 · 105 2 · 105 3 · 105 4 · 105
0

5,000

10,000

Stream of users

Se
ed

se
t

si
ze

RTIM log IMM log RTIM uniform IMM uniform

Fig. 6 LiveJournal’s seed set size evolution

0 1 · 105 2 · 105 3 · 105 4 · 105
0

2 · 105

4 · 105

Stream of users

Se
ed

se
t

sc
or

e
Fig. 7 LiveJournal’s seed set score

process finding new influencers is more unlikely since they have already been
selected (IMM) or activated by targeted neighbors (RTIM). Since the evolution
of size is almost linear (Figure 4), this logarithmic evolution of the seed set
score confirms the fact that chosen users bring less influence than previous
chosen ones, explained by the sub-modular property of the IM problem.

LiveJournal. This dataset is evaluated with a stream of 4× 105 online users.
Figure 6 shows the evolution of seed set sizes. We can see that IMM finds

very few expected influencers and produces 8.5 times fewer seeds for the Uni-
form stream (resp. 7 for the Log stream) than RTIM. In fact, RTIM targets
influencers more easily than IMM. This is explained by the specific distribu-
tion of scores we explained in Section 5 with a very slow decreasing of the
scores (α = 0.395). It is confirmed by the fact that LiveJournal has a low de-
gree standard deviation and variance. Thus RTIM adapts locally to the users’
connection with similar scores while IMM only focuses on pre-chosen seeds.

We can see in Figure 7 that the evolution of seed set scores are really
different from the Youtube dataset. Pre-determined seeds have a huge impact
on the final seed set score since very few influencers appears in the stream while
RTIM has the opportunity to choose a “similar” score in the neighborhood.

We can also see that RTIM obtains a lower seed set score for the Uniform
distribution than the Log one. It is due to the fact that RTIM Log fills the
seed set more quickly after only 2.38× 105 users in the stream. The impact of
the specific distribution of scores of LiveJournal and the fact that users have
high mean degrees (with a low variance) give more chances for common users
(lower scores) to ease information propagation.

Twitter. Seed sets produced for the Twitter dataset are presented in Figure 8
and 9. The stream is composed of 4.17× 106 connected users.

Figure 8 shows that RTIM seed sets evolve very quickly for both Uniform
and Log streams. This is due to the huge amount of high score users of the
Twitter distribution (B = 1.7× 106 - Section 5), consequently RTIM targets

Real-Time Influence Maximization in a RTB Setting 21

0 1 · 106 2 · 106 3 · 106 4 · 106
0

5,000

10,000

Stream of users

Se
ed

se
t

si
ze

RTIM log IMM log RTIM uniform IMM uniform

Fig. 8 Seed set size evolution with Twitter

0 1 · 106 2 · 106 3 · 106 4 · 106
0

5 · 106

1 · 107

Stream of users

Se
ed

se
t

sc
or

e
Fig. 9 Seed set score evolution with Twitter

any user in the stream that reaches the threshold θI . On the other hand, IMM
evolves more slowly, 10 times less for Uniform (resp. 3.5 times less for Log).
RTIM fulfills the ad campaign k = 10, 000 after 4× 106 users in the stream.

In Figure 9 the seed set scores evolve similarly to the Youtube dataset
(Figure 5) with close scores for the Log stream, even if the gap is higher due
to huge seed set scores (600,000 less). The effect of the high decrease of the
influence score (α = 0.99 in Table 1) is observable here where IMM targets
high influencers that have sufficient impact to grow rapidly while RTIM targets
good influencers to guarantee a global impact in a minimum amount of time.

6.3 Conclusions

Our experiments showed that RTIM provides better seed sets score while max-
imizing the score in a minimum of time while IMM succeeds in maximizing on
the whole dataset. The impact of the live stream distribution between Uniform
and Log is such that both methods behave clearly better on users with very
high degrees (top influencers) however IMM is more sensitive to this setting.

The seed set score curve is logarithmic, this is due to the sub-modular
property of the influence maximization problem. Indeed, the more users we
add to the final seed the smaller the marginal gain to the overall seed set.

We saw that the distribution of users’ influence score has an impact on the
effectiveness of both IMM and RTIM methods. First, the decrease of those
scores is in favor of RTIM when α is low (LiveJournal) where IMM makes a
choice on similar influencers while RTIM targets only available ones. Second,
graphs with very high influence scores (induced by B) give RTIM more choices
of influencers (even with average scores) and so it fills up the seed set quickly.

22 D. Dupuis et al.

7 Seed-Set Size Guarantee to Maximize Ad Campaigns

Although finding the optimal seed set of size k to maximize the influence
of a network is the focus of Influence Maximization, one other issue is to
determine in advance the correct value for k. In fact, making the choice of
top-k influencers for an ad campaign is crucial in order to give a guarantee of
the budget to reach a sufficient number of users on the network.

The choice of the seed-set size will help advertisers to decide how much
they wish to influence of social networks. With a guarantee of efficiency, they
will determine the impact of the ad campaign in advance and maybe more if
the IM algorithm performs better than expected.

The issue is for a given seed set size to guarantee or estimate its influence
score; the number of activated users. For instance, on the Twitter network
with tens of millions of users, rather than targeting millions of users to reach
everyone (100%); we may only want to target tens of thousands of users to
reach 25% of the social network.

However, as discussed in the state-of-the-art, finding seed set in a network
of N users, there are 2N total seed sets to test in a brute force approach to
search for the optimal seed set S∗ and by setting k there are

(
N
k

)
combinations.

As fat as we know, no existing IM paper has established a method of deter-
mined the proper seed set size, nor do existing IM algorithms offer guarantees
of finding a seed set capable of covering a given portion of the network.

7.1 Expected Seed Set Size

We denote k∗p the expected seed set size which influences a sufficient number
of users in the graph given by the rate p. Thus k∗p is the seed set size that
guarantees to reach r × |V | users, where p is a percentage between 0 and 1.

Although the expected k∗p, is bounded between 1 and p× |V |, we can infer
that k∗p is at least equal to the number of connected components in G in order
to reach disconnected communities of users.

In order to give k∗p, we propose an approach that estimates them. It consists
in randomly sampling as many users necessary to influence p× |V | users. We
apply propagation models on each sampled user in order to see if he activates
his neighborhood or not. The final sample size is a possible seed-set size k′p.
This random sampling is performed until convergence of the sample size.

Of course, to give a better approximation of k∗p, activated users during
a sampling cannot be targeted. The number of uniformly chosen users that
activate p × |V | users is an estimation k∗p. The expected seed-set size is then
computed using the average of the results for each iteration, where I is the
number of iterations required to reach convergence: k∗p ≈

∑
i∈I k′

p(i)

I .

Real-Time Influence Maximization in a RTB Setting 23

Reach Seed Set Size by edge weight models
% # users 0.01 0.1 0.3 0.5 0.7 0.8 0.9 WC

100 15,233.00 14,919 12,183 7,768 5,037 3,292 2,669 2,173 7,589
95 14,471.35 14,159 11,428 7,024 4,320 2,657 2,114 1,724 6,912
90 13,709.70 13,399 10,680 6,312 3,680 2,162 1,703 1,384 6,331
80 12,186.40 11,886 9,220 4,982 2,586 1,375 1,044 824 5,318
70 10,663.10 10,377 7,806 3,777 1,687 758 525 373 4,428
60 9,139.80 8,874 6,434 2,693 948 275 124 48 3,622
50 7,616.50 7,378 5,114 1,730 360 26 13 9 2,883

Table 5 Nethept expected Seed Set Sizes k∗p according to the reach

Reach Seed Set Size by edge weight models
% # users 0.01 0.1 0.3 0.5 0.7 0.8 0.9 WC

100 12,006.0 10,915 6,817 3,378 1,806 940 655 440 5,778
95 11,405.7 10,316 6,222 2,792 1,241 450 243 123 5,213
90 10,805.4 9,720 5,636 2,232 749 118 3 2 4,708
80 9,604.8 8,534 4,498 1,208 15 2 2 2 3,820
70 8,404.2 7,360 3,408 339 2 2 2 2 3,057
60 7,203.6 6,197 2,376 2 2 2 2 2 2,391
50 6,003.0 5,048 1,408 2 2 2 2 2 1,811

Table 6 HepPh expected Seed Set Sizes k∗p according to the reach

7.2 Preliminary Experiments

To achieve those simulations, we used the Nethept and HepPh [14] graph
datasets composed of 15,200 nodes (resp. 12,006) and 61,300 edges (resp.
80,578). We ran experiments using various edge weighting methods, like Weigh-
ted Cascade (like in RTIM) as well as edge weights in [0.01, 0.1, 0.3, 0.5, 0.7, 0.8,
0.9] to test the effect of weights on the size of k∗p. Reach is the number p and
its correspondence in number of users who are activated by a sample.

Tables 5 and 6 give results of simulations of k∗p for each edge weights
strategy according to the given reach p. We can say that p corresponds to the
goal of an ad campaign. We can see that the seed set size increases the smaller
the edge weights are. For constant weights, when those values are higher than
0.3 reaching at least of half the network requires very low seed set sizes, 360
for Netept where the number of edges is lower than HepPh, and a size of 2 for
HepPh which is the number of connected components.

It also shows that the WC weight model requires to target 7,589 users to
reach 100% of users in Hep and 5,778 users must be targeted to reach 100%
of users in Phy which corresponds to half the number of users in the graph.

It is interesting to notice that most of state-of-the-art algorithms deal with
small seed set sizes (mostly 300) in order to make it scalable in terms of
computation time. We show in these experiments that it requires far more
users to influence at least half the number of users. However, remind that we
give an expected seed set size and not the optimal one which means that any
IM algorithm must give a higher influence score to be efficient.

24 D. Dupuis et al.

7.3 Conclusion

Our approach offers an approximation of k∗p which would provide a valuable
indicator of the budget of an online advertising strategy given how much it
would cost to target k∗ number of users during the campaign. Moreover it
gives a threshold of efficiency of IM algorithms.

8 Conclusion

In this article we have shown that it is possible to answer the influence max-
imization problem in a real-time bidding environment, which up to now has
not been applied to IM algorithms. We have shown that static IM algorithms,
such as IMM, can solve this problem in a reasonable time with a seed set of
10,000 influencers. However, RTIM is a solution that competes static IM by
using a dynamic IM algorithm based on the local influence of each user. With
streams or ad campaign of finite size can outperform static algorithms.

It is important to note that the RTB environment is more complex so
than the constraints which we used. For instance, a user who was targeted
should not have seen the ad, click on it, or even convert. Indeed, the influence
probability for a targeted user is equal to 1. For future works, we propose to
extend RTIM to answer more RTB constraints. Contrary to IM algorithms,
RTIM could choose to target another user if a previous user who was targeted
was not considered as activated. We can therefore, make RTIM much more
interactive with dynamic user behavior while static solutions cannot.

In addition, should the graph be updated, it is not difficult to recompute
local influence scores, if necessary, or keep targeting users in the live stream.
Whereas, static IM needs to recompute the seed set for each new graph.

We can also improve RTIM by adapting the θI threshold when processing
the live stream. In fact, online user behavior, such as periodicity connections,
has an impact on the final seed set score.

Acknowledgements This research is supported and financed by Kwanko. We thank them
for their contributions.

References

1. Arora, A., Galhotra, S., Ranu, S.: Debunking the myths of influence maximization: An
in-depth benchmarking study. In: Proc. SIGMOD ’17, pp. 651–666. ACM, New York,
NY, USA (2017). DOI 10.1145/3035918.3035924

2. Aslay, C., Lakshmanan, L.V., Lu, W., Xiao, X.: Influence maximization in online social
networks. In: Proc. WSDM’18, p. 775–776. ACM, New York, NY, USA (2018). DOI
10.1145/3159652.3162007

3. Borgs, C., Brautbar, M., Chayes, J., Lucier, B.: Maximizing social influence in nearly
optimal time. In: Proc. SODA ’14, pp. 946–957. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA (2014). DOI 10.5555/2634074.2634144

Real-Time Influence Maximization in a RTB Setting 25

4. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral mar-
keting in large-scale social networks. In: Proc. KDD’10, pp. 1029–1038. ACM, Wash-
ington, DC, USA (2010). DOI 10.1145/1835804.1835934

5. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In:
Proc. KDD’09, pp. 199–208. Paris, France (2009). DOI 10.1145/1557019.1557047

6. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under
the linear threshold model. In: Proc. ICDM’10, pp. 88–97. Sydney, Australia (2010).
DOI 10.1109/ICDM.2010.118

7. Cheng, S., Shen, H., Huang, J., Chen, W., Cheng, X.: Imrank: influence maximization
via finding self-consistent ranking. In: Proc. KDD’14, pp. 475–484. Gold Coast , QLD,
Australia (2014). DOI 10.1145/2600428.2609592

8. Cheng, S., Shen, H., Huang, J., Zhang, G., Cheng, X.: Static greedy: solving the apparent
scalability-accuracy dilemma in influence maximization. CoRR abs/1212.4779 (2012)

9. Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Sketch-based influence maximization
and computation: Scaling up with guarantees. In: Proc. CIKM’14, pp. 629–638. Shang-
hai, China (2014). DOI 10.1145/2661829.2662077

10. Domingos, P., Richardson, M.: Mining the network value of customers. In: Proc.
KDD’01, pp. 57–66. ACM, New York, NY, USA (2001). DOI 10.1145/502512.502525

11. Galhotra, S., Arora, A., Roy, S.: Holistic influence maximization: Combining scalability
and efficiency with opinion-aware models. In: Proc. SIGMOD ’16, pp. 743–758. ACM,
New York, NY, USA (2016). DOI 10.1145/2882903.2882929

12. Galhotra, S., Arora, A., Virinchi, S., Roy, S.: ASIM: A scalable algorithm for influence
maximization under the independent cascade model. In: Proc. WWW’15, pp. 35–36.
Florence, Italy (2015). DOI 10.1145/2740908.2742725

13. Goyal, A., Bonchi, F., Lakshmanan, L.V.: Learning influence probabilities in social
networks. In: Proc. WSDM’10, pp. 241–250. ACM, New York, NY, USA (2010). DOI
10.1145/1718487.1718518

14. Goyal, A., Lu, W., Lakshmanan, L.V.: CELF++: Optimizing the greedy algorithm for
influence maximization in social networks. In: Proc. WWW ’11, pp. 47–48. ACM, New
York, NY, USA (2011). DOI 10.1145/1963192.1963217

15. Goyal, A., Lu, W., Lakshmanan, L.V.S.: SIMPATH: an efficient algorithm for influence
maximization under the linear threshold model. In: Proc. IEEE ICDM ’11, pp. 211–220.
Vancouver, BC, Canada (2011). DOI 10.1109/ICDM.2011.132

16. Huang, K., Wang, S., Bevilacqua, G., Xiao, X., Lakshmanan, L.V.S.: Revisiting the
stop-and-stare algorithms for influence maximization. Proc. VLDB Endow. 10(9), 913–
924 (2017). DOI 10.14778/3099622.3099623

17. Jung, K., Heo, W., Chen, W.: Irie: Scalable and robust influence maximization in social
networks. In: Proc. IEEE ICDM’12, pp. 918–923. Brussels, Belgium (2012). DOI
10.1109/ICDM.2012.79

18. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a
social network. In: Proc. KDD’03, pp. 137–146. ACM, New York, NY, USA (2003).
DOI 10.1145/956750.956769

19. Lei, S., Maniu, S., Mo, L., Cheng, R., Senellart, P.: Online influence maximization. In:
L. Cao, C. Zhang, T. Joachims, G.I. Webb, D.D. Margineantu, G. Williams (eds.) Proc.
SIGKDD’15, pp. 645–654. ACM (2015). DOI 10.1145/2783258.2783271

20. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., Faloutsos, C., VanBriesen, J.,
Glance, N.: Cost-effective outbreak detection in networks. In: Proc. KDD ’07, pp. 420–
429. ACM, New York, NY, USA (2007). DOI 10.1145/1281192.1281239

21. Leslie, P.H.: On the Use of Matrices in Certain Population Mathematics. Biometrika
33(3), 183–212 (1945). DOI 10.1093/biomet/33.3.183

22. Liang, W., Shen, C., Li, X., Nishide, R., Piumarta, I., Takada, H.: Influence maximiza-
tion in signed social networks with opinion formation. IEEE Access 7, 68837–68852
(2019). DOI 10.1109/ACCESS.2019.2918810

23. Mandelbrot, B.B.: The fractal geometry of nature, vol. 1. WH freeman New York (1982)
24. N., S., B., A., Bhattacharya, S.: Influence maximization in large social networks: Heuris-

tics, models and parameters. Future Generation Comp. Syst. 89, 777–790 (2018). DOI
10.1016/j.future.2018.07.015

26 D. Dupuis et al.

25. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maxi-
mizing submodular set functions—i. Mathematical Programming 14(1), 265–294 (1978).
DOI 10.1007/BF01588971

26. Ohsaka, N., Akiba, T., Yoshida, Y., Kawarabayashi, K.: Fast and accurate influ-
ence maximization on large networks with pruned monte-carlo simulations. In: Proc.
AAAI’14, pp. 138–144. Québec City, Québec, Canada (2014)

27. Singh, S.S., Kumar, A., Singh, K., Biswas, B.: C2im: Community based context-aware
influence maximization in social networks. Physica A: Statistical Mechanics and its
Applications 514, 796 – 818 (2019). DOI https://doi.org/10.1016/j.physa.2018.09.142.
URL http://www.sciencedirect.com/science/article/pii/S0378437118312822

28. Spencer, S., O’Connell, J., Greene, M.: The arrival of real-time bidding. Tech. rep.,
Google (2011)

29. Tang, J., Tang, X., Xiao, X., Yuan, J.: Online processing algorithms for influence max-
imization. In: Proc. SIGMOD’18, p. 991–1005. ACM, New York, NY, USA (2018).
DOI 10.1145/3183713.3183749

30. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: A martingale
approach. In: Proc. SIGMOD’15, pp. 1539–1554. ACM, New York, NY, USA (2015).
DOI 10.1145/2723372.2723734

31. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: Near-optimal time complexity meets
practical efficiency. In: Proc. SIGMOD’14, pp. 75–86. ACM, New York, NY, USA (2014).
DOI 10.1145/2588555.2593670

32. Tian, S., Zhang, P., Mo, S., Wang, L., Peng, Z.: A learning approach for topic-aware
influence maximization. In: J. Shao, M.L. Yiu, M. Toyoda, D. Zhang, W. Wang, B. Cui
(eds.) Web and Big Data, pp. 125–140. Springer International Publishing, Cham (2019)

33. Tong, G., Wang, R., Ling, C., Dong, Z., Li, X.: Time-constrained adaptive influence
maximization (2020). URL https://arxiv.org/abs/2001.01742

34. Tong, G.A., Wu, W., Tang, S., Du, D.Z.: Adaptive influence maximization in dynamic
social networks. IEEE/ACM Transactions on Networking 25, 112–125 (2017)

35. Wang, Y., Fan, Q., Li, Y., Tan, K.L.: Real-time influence maximization on dy-
namic social streams. Proc. VLDB Endow. 10(7), 805–816 (2017). DOI
10.14778/3067421.3067429

36. Wu, Q., Li, Z., Wang, H., Chen, W., Wang, H.: Factorization bandits for online influence
maximization. In: Proc. KDD’2019, pp. 636–646 (2019)

37. XXX, et al.: RTIM: A real-time influence maximization strategy. In: Proc. WISE’19,
vol. 11881, pp. 277–292. Springer, Hong Kong, China (2019). DOI 10.1007/978-3-030-
34223-4_18

38. Yuan, S., Wang, J., Zhao, X.: Real-time bidding for online advertising: Measurement
and analysis. CoRR abs/1306.6542 (2013)

39. Zhang, M., Dai, C., Ding, C., Chen, E.: Probabilistic solutions of influence propagation
on social networks. In: Proc. CIKM ’13, pp. 429–438. ACM, New York, USA (2013).
DOI 10.1145/2505515.2505718

