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matic iterative process embedded in the collaborative multidisciplinary analysis

(MDA) chains as applied in AGILE. Surrogate modeling techniques are applied,

taking into account the optimal sampling and the corresponding fidelities of the

samples. This paper will detail the different steps of the proposed collaborative

approach. As a test case handling qualities analysis of the AGILE reference

conventional aircraft is performed, by fusing the computed aerodynamic coef-

ficients and derivatives. A full set of aerodynamic data computed either with

different levels of fidelity or with only a low-fidelity tool has been derived and

evaluated. The data set with multiple levels of fidelity significantly improved

the accuracy of the flight performance analysis, especially for the transonic re-

gion in which the low fidelity aerodynamic method is not reliable. Moreover, the

test case shows that by combining a collaborative surrogate modelling approach

with fusion of the data sets, the fidelity of the analysis data can be significantly

improved giving maximum relative prediction error less than 5% with minimum

computation effort.
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Nomenclature

AGILE = Aircraft 3rd Generation MDO for Innovative Collaboration

of Heterogeneous Teams of Experts

API = Application Programming Interface

ACARE = Advisory Council for Aeronautics Research in Europe

SRA = Strategic Research Agenda

CAD = Computer Aided Design

CFD = Computational Fluid Dynamics

CSM = Computational Structural Mechanics

CPACS = Common Parametric Aircraft Configuration Schema

DOE = Design Of Experiments

DACE = Design and Analysis of Computer Experiments

EIF = Expected Improvement Function

FFD = Free-Form Deformation

FTP = File Transfer Protocol

IP = Intellectual Property

LES = Large-Eddy Simulation

MDA = Multidisciplinary Analysis

MDO = Multidisciplinary Design Optimization

MOE = Mixture of Experts

PHALANX = Performance, Handling Qualities and Loads Analysis Toolbox

PIDO = Process Integration and Design Optimization

RANS = Reynolds Average Navier-Stokes

(R)MSE = (Root) Mean Square Error

RSM = Response Surface Model

RCE = Remote Component Environment

SM = Surrogate Model

SMR = Surrogate Model Repository

S & C = Stability and Control

VLM = Vortex Lattice Method

XML = eXtensive Markup Language

csv = Comma Separated Values

lo-fi = Low fidelity (data)

hi-fi = High fidelity (data)

sp = Short Period mode

ph = Phugoid mode
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Symbols

α or AoA = Angle of Attack [deg]

β = Sideslip Angle [deg]

δ = Elevator deflection angle [deg]

Cp = Pressure Coefficient [-]

ω = frequency [rad/s]

z = damping ratio [-]

30

1. Introduction

Today’s latest large airliners in service, e.g., the A-380 and A-350, have over

6 millions of parts and have 150 000 design changes per year [1]. They show

both outstanding performance and a reduced environmental impact. This is

the result of a continuous optimization of the air-frame design and a progressive35

mastering by engineers of the interactions between systems and disciplines on

the same configuration [2]. Aircraft design nowadays is a mature process based

on an integrated approach, to handle the complexity of the product. However,

given the level of maturity of the classical “tube and wing” configuration, evolv-

ing business models for developing new aircraft only by improving upon existing40

practices, has the consequence that engineers have small margins for improve-

ments and future targets will be difficult to attain. Therefore, research centers

and industry need to work together in the exploration of new integrated design

concepts that can provide a disruptive approach and offer in this manner various

possibilities for safer and greener vehicles. The current design of aircraft is an45

extremely interdisciplinary activity incorporating simultaneous consideration of

complex, tightly coupled systems, functions and requirements. The design task

is to achieve an optimal integration of all components into an efficient, robust

and reliable aircraft with high performance that can be manufactured with low

technical and financial risks, and has an affordable life-cycle cost.50

To help achieve this goal, today’s aeronautics market requires a manufacturer

to develop more complex products by exploiting all opportunities provided, e.g.,
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high fidelity multidisciplinary tools and frameworks and powerful High Perfor-

mance Computing (HPC) capabilities [3]. Over the past 25 years the aeronauti-

cal industry has been transforming its operations to what can be called a system-55

oriented approach, instead of a functional-oriented approach. The primary focus

becomes one of integration of all disciplines. To help meet the challenge, the the

core activities in the new paradigm, against the traditional analysis activities

considered as “design-verification activities”, now become to numerically “flight-

test” a virtual aircraft with all its multi-disciplinary interactions in a computer60

environment as given by its different databases (aerodynamic, loads, stability

and control) [1, 2, 3]. This new development paradigm has been identified in

the ACARE Strategic Research and Innovation Agenda (SRIA) [4] as a major

challenge to make the design of a complete virtual aircraft up to certification a

reality. Several outstanding EU Framework RTD projects have addressed the65

notion of developing conceptual design methods with advanced close coupling

of the aerodynamics, structures and flight control disciplines upon a series of

evolutionary MDO systems. The FP6 STReP SimSAC (Simulating Aircraft

Stability And Control Characteristics for Use in Conceptual Design) [5, 6], VI-

VACE, CRESCENDO [7, 8] and TOICA are some of those projects at both70

research and industry levels. Keep in mind, that current engineering analysis

methods in designing complex systems rely very heavily on the knowledge and

intuition of the individual designer. There still exist information gaps between

the specialist component designs and the system level [2]. The challenge is to

bridge the gaps and mitigate their effects so that the design process becomes75

smoother and more efficient.

The way to solve this is to establish a robust, collaborative and integrated

framework with all disciplines involved to carry out real MDO. Ciampa and

Nagel [1] have identified that major obstacles in the current generation of MDO

systems are related to the efforts required to setup complex collaborative frame-80

works. Up to 60 to 80% of the project time may be necessary to setup such a

process. The 3rd generation MDO systems will rely on the integration of exper-

tise in the collaborative optimization and knowledge formalization of processes
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and disciplinary domains. The EU funded H2020 research project AGILE, Air-

craft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams85

of Experts [9] builds upon the projects mentioned above. It addresses the chal-

lenges by developing a next generation of aircraft MDO processes that target

significant reduction in aircraft development costs and time to market. AGILE

has formulated a novel design methodology, the so-called “AGILE Paradigm”,

which accelerates the deployment of collaborative, large-scale design and opti-90

mization frameworks.

The “AGILE Paradigm” emphasizes collaboration and integration by build-

ing a smooth design and analysis tool chain to carry out MDA (Multi-Disciplinary

Analysis) processes. The MDA process shall includes:

(1) the collaboration and integration of the tools, data and outputs from differ-95

ent disciplines;

(2) the collaboration and integration of the analyses from one discipline from

different tools of various fidelities. One major discipline - addressed in the pa-

per - concerns the construction of the aerodynamic database for stability and

control analysis.100

Assessment of aircraft maneuverability and agility at the conceptual design

stage brings great challenges in the design process regarding the stability and

control analysis over the entire flight envelope. A large look-up table of forces

and moments must be constructed by Computational Fluid Dynamics (CFD)

while we have to address the computational cost. A useful look-up table for sta-105

bility and control analysis, the so-called aerodynamic database, needs thousands

of entries because of the high dimensionality of the parameter space.

“Brute-force” calculation would be far too costly. But there are ways to

reduce the computational time. The first step is to use different CFD meth-

ods, from Large-Eddy Simulation via Reynolds-Averaged Navier-Stokes models,110

down to potential flow models, or even empirical methods from handbooks. Us-

ing the simplest method and geometry compatible with the level of accuracy

required for each flight state can dramatically reduce the computational cost.

The whole spectrum of computational models is widely used in modern
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aerospace industry. In order not to lose too much accuracy while saving compu-115

tational cost, the simplifying assumptions made to solve the standard Navier-

Stokes equations should be acceptable for each single entry. For example, for low

speed and non-accelerated small angle of attack flight, the in-compressible po-

tential flow models can give acceptable predictions with significant time saving

compared with Euler or RANS models.120

The second step concerns all the data obtained by the different CFD methods

over the entire flight envelope. In the database, dense low-cost and low-fidelity

data indicating the trend must be fused with sparse high-cost and high-fidelity

data correcting the low-fidelity data values [10].

The multi-fidelity modeling method is a means to navigate the flight state125

parameter space and cover the entire flight envelope in an effective way. A

procedure is devised to integrate the results from different simulation tools based

on different methods and having different complexity levels. Building the multi-

fidelity model involves two main steps:

1. Populate the aerodynamic database over the whole flight envelope by130

dense low-fidelity data samples;

2. Correct the data using sparse high-fidelity samples.

A method is developed for building a reliable aerodynamic database using

low-fidelity data and with a minimum number of high-fidelity samples includ-

ing automatically chosen new sample points. The term data fusion refers to135

integrating data from multiple data sources to combine them into a single, com-

prehensive model [11]. It is a useful technique in many fields. This paper

addresses aero-data fusion by using the aerodynamic data-sets obtained from

different sources (e.g. CFD tools) to produce an efficient and effective surrogate

model with minimum computational cost.140

Data fusion builds surrogate models based on data fitting when data is not

easily directly to obtain. The important issue is the accuracy of the model,

namely, how well the surrogate model represents the real data/model. The
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surrogate model can be used for many cases, and the uncertainties analyzed to

examine the accuracy of the surrogate model.145

This paper focuses on the establishment of a collaborative architecture (CA)

for aerodynamic data fusion by generating surrogate models and the handling

qualities analysis by the fused data. Section 2 describes the AGILE collaborative

framework and the different aerodynamic computations . Section 3 reviews the

aero data fusion work done before through a number of previous EU projects,150

and their similarity and differences compared with the work in AGILE. The

theoretical basis for constructing a surrogate model is reviwed. Section 4 details

how to establish the data fusion technology through collaborative surrogates.

Section 5 discusses the means of the choice of design of experiments (DOEs).

Applications of data fusion in the AGILE framework are presented in Section155

6, and Section 7 summarizes and concludes the work.

2. AGILE Project Overview

AGILE is a EU funded Horizon 2020 project coordinated by the Institute

of Air Transportation Systems of the German Aerospace Center (DLR). Its

objective is to implement the 3rd generation of multidisciplinary optimization160

through efficient international multi-site collaboration in overall design teams.

The 19 partners bring different knowledge and competences regarding aircraft

design and optimization. In this context the use of surrogate models is inter-

esting to efficiently assemble results coming from various sources and levels of

fidelity.165

Data fusion aims to handle the large amount of data to be computed for

each design cycle in the Multidisciplinary Design Optimization (MDO) process

by constructing surrogate models from the data produced by variable fidelity

analysis tools in the MDO framework. Methods like kriging, co-kriging, and

adaptive modeling techniques are used for fusing the outputs of each tool. This170

technique is well established (see for instance the recent review [12]) and con-

stitutes its own challenges in applying multi-fidelity MDA in AGILE.
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This paper uses the nomenclature L* to indicate the fidelity Level of a sim-

ulation model:

L0: empirical or handbook method;175

L1: linearized-equation method, e.g. linear aerodynamics, or vortex lattice

method (VLM) ;

L2: higher fidelity equation solvers with less simplifications, nonlinear-equation

methods (e.g. Euler equation solvers);

L3: highest fidelity equation solvers (e.g. RANS equations).180

The following part of this section will show the tools and mechanisms to be

used to establish the collaborative surrogate models within the AGILE frame-

work.

2.1. Tools for establishing the collaborative workflow

This section introduces the collaboration tools that were developed and ap-185

plied and that support the AGILE collaborative surrogate modelling.

2.1.1. Collaborative work language CPACS

During the collaborative and integrated design process, data need to be

exchanged. Managing the interconnections is complex and prone to errors.

Adoption of a standardized, data-centric scheme for storage of all data improves190

consistency and reduces risks of misconceptions and errors in the process. It

however requires an initial effort to make interfaces between analysis modules

and the data archive. The CPACS (Common Parametric Aircraft Configuration

Schema) [13, 14, 15] is widely used in the frame of AGILE.

CPACS is an XML-based representation of an aircraft design. In AGILE195

the aircraft design is contained in a single CPACS file. The analysis tools

available from the various partners must read the input from the CPACS file

and produce the output in the form of aggregating the data in the updated

CPACS file. Making a tool available for sharing in AGILE requires wrapping
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the tool to map CPACS onto the tool’s legacy input and output. The CPACS200

tools TIGL and TIXI [15] support integration, use and inspection of CPACS

information.

2.1.2. RCE

The RCE integration environment and workflow manager [16] implements

the sequence of analysis modules and manages the local data exchange and205

translation as well as logging the process. RCE makes it easy to set up and run

a local workflow also using modules in which the engineers are not discipline-

experts. Creating collaborative workflows as collections of local RCE workfows

is done via Brics [17], which allows to “call” a module or a tool (and so produce

results) remotely on “the specialist” computer. The remote specialist receives210

a request for some calculation or analysis. The input is generally a CPACS file

containing all the information required. The new data generated are added to

the CPACS file and sent back to the requester.

2.1.3. Brics

The interconnection mechanism available in AGILE is Brics [18, 17], de-215

veloped by NLR. Brics provides technology for interconnecting PIDO environ-

ments and for defining and streamlining workflows that cross organizational

borders, while complying with the security constraints and dealing with the se-

curity measurements of the collaborating partners. Brics comprises protocols

and middleware that facilitate remote execution of sub-processes from within220

a process, independent of the local PIDO environment (i.e., workflow man-

ager) being used. Brics is based on a “single-task” protocol that arranges the

execution and data flow between an orchestrating (“master”) process in one

organization and a remote (“slave”) sub-process in another organization under

control of a specialist who is notified to start the sub-processes. To cater for225

iterations, Brics supports the notion of a “multi-task” protocol, enabling a re-

mote specialist to easily deal with series of similar sub-processes. Brics also

supports easy experimentation with different set-ups of collaborative scenarios
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to support the Design Campaigns and configuration of services involved. Its

nonintrusive character facilitates easy integration with existing COTS as well230

as in-house developed tools and solutions. It enables the AGILE partners to

experience collaborative scenarios.

2.1.4. AGILE Collaborative Architecture (CA) steps

Ciampa et.al [18] reviewed the whole collaborative architecture used to sup-

port AGILE framework, which is also supporting the collaborative data fusion235

technology. The Collaborative Architecture deployment steps are as follows [18]:

1. CPACS compliance for all tools;

2. Process integration by RCE;

3. Provide accessibility by Brics.

All the tools used in CA must be made CPACS compatible, in other words, the240

integration framework (RCE) must support different fidelity tools per discipline

and tools for different disciplines. Zhang [19] shows the study of CPACS com-

pliance for the variable fidelity aerodynamic tools, with one of the applications

being data fusion. Within AGILE frameworks CPACS is used as common data

format for tools interaction. Usually the workflow (including tools operated245

by different specialists) is integrated into some workflow environment, such as

RCE, with tools callable using Brics.

Figure 1 shows the Brics application from a client workflow and a server

workflow, to enable a specialist to respond to a request to run the “tool”, and

to accomplish remote tool execution. The (input) CPACS file is downloaded250

(from a server of e.g., a customer) using Brics, and it is sent to the “Tool”

operated by a local specialist. After execution, the (output) CPACS file is sent

back and uploaded (to the customer who calls for this service) using Brics. Since

the data fusion service involves many tools those are not operated by a single

site, the communication between the tools is made by Brics calls as illustrated255

in Fig. 1. The numbered arrows indicated the actions. First, the input files for

12



the remote service are uploaded to the central data server in a neutral domain

(1). Next, the remote specialist gets notified (2), who in response may start the

service (3). The service first retrieves the input files from the data server (4),

runs the tool that implements the service (5), and uploads the output files to the260

data server (6). Finally, the output files are downloaded to the client’s side (7),

and the client workflow continues. For proof of concept, partners in AGILE have

formed teams to apply data fusion as part of RCE workflows via Brics, which

will provide data fusion solutions for the whole AGILE MDA system. More

details about the AGILE collaborative approach can be found in [18, 20, 21].265

Figure 1: Schematic overview of Brics application in AGILE from within a client workflow

and a server workflow, to accomplish remote tool execution [20].

2.2. Surrogate Model Repository

Many surrogate models of various types have been created in the AGILE

project, e.g. to support reuse of knowledge and models, efficient optimization

and partner collaboration. The question then arises how to manage, share and

deploy these models which must be applied with care. Bounds on the allowed270

input space for the surrogate model need to be clearly specified, e.g. to avoid

extrapolation. Furthermore the prediction accuracy of the outputs must be

specified, so that the user has a clearer idea of its applicability, quality and

limitations. To address these aspects a specific Surrogate Model Repository

(SMR) has been developed as part of the AGILE Development Framework.275

The SMR is a central broker for registration, storage, deployment and usage of

surrogate models so that these may be shared and reused in collaborations in a
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managed way. SMR development details can be found in [20, 22].

With respect to the sharing of surrogate models two cases have been consid-

ered in the frame of AGILE and are supported by the SMR.280

• Full share: Share all of the compiled binary code of a surrogate model (SM)

to support its use by others. In this case the complete SM implementation,

e.g., an executable program such as Mixture of Experts (MOE) is uploaded

to the SMR with meta-information describing its usage. The SM may be

used by downloading its code and running it.285

• Partial share: Share only the usage of a SM, others may use the SM ‘as a

service’ while the code remains at the owner’s or developer’s site. In this

case only the meta-information of the SM is uploaded to the repository.

The SMR provides a user interface to directly use this SM by calling the

remote service.290

In addition to the sharing capabilities, the SMR can export a neutral XML

format (i.e., CMDOWS [21]) that supports usage of the SM as part of a workflow

system without further intervention of the SMR. As such the SMR can interface

to other components in the AGILE Development Framework. An illustration of

this export facility is described in [23]. The SMR may also function as broker295

with respect to the creation of surrogate models. The user of the SMR may

indicate that a specific surrogate model instead of a high-fidelity model must be

used within an analysis. If the desired surrogate model does not exist already,

the SMR initiates a surrogate model creation process behind the scenes. The

role of the SMR both for sharing and for triggering the creation of surrogate300

models is depicted in Fig. 2.

Section 6.2.2 will describe an example of surrogate model deployment through

the SMR, using a surrogate model that was developed with the data fusion ser-

vice. A partial share is applied: the SM is provided “as a service”. This process

can be semi-automatic, which is depicted in Figure 3, and facilitated by Brics,305

a common building block for the realization of collaborative workflows and part

of the AGILE development framework [20].
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Figure 2: The Surrogate Model Repository as library for sharing surrogate models and as

broker for creating surrogate models on demand.

Figure 3: Depiction of the “under the hood” process for an “as a service” calculation.

3. Review of the Aero Data Fusion Applications

Using CFD frameworks for aero-table generation and model assessment is

not new. In this section the authors will review the work have been done be-310

fore through a number of EU projects for aero-table generation using surrogate

models, or aero-data fusion. The similarities and differences compared with the

current work (within AGILE framework) will also be discussed.

Zhang [24] presented a method for efficient creation of the aerodynamic

database for the X-31 experimental aircraft, from low fidelity (Euler) and high315

fidelity (RANS) CFD sources. The challenge is to make reasonable predictions
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at extremes of the flight envelope. A co-Kriging interpolation model is used

for aerodynamic moments, forces and span loads, with a “decision support sys-

tem” based on the root mean squared error (RMSE) and expected improvement

function (EIF). Proper Orthogonal Decomposition for data reduction is used to320

predict aero-loads. This work was done within FP7 project ALEF, Aerodynamic

Loads Estimation at Extremes of the Flight Envelope [25].

Da Ronch et al. [26] have constructed the aero-table used for flight dynamics

by kriging-based surrogate model based on CFD computations. The aerody-

namic models are of various fidelities from semi-empirical prediction method to325

CFD by different solvers. The sampling space is enriched by iterative sampling

based on the root mean squared error (RMSE) and expected improvement func-

tion (EIF) which is discussed as the “fill-in strategy” in [27]. Five test cases are

shown for aero-table generation and the flight handling qualities analysis. The

work provides a quite complete reference for the aero-table generation technol-330

ogy by data fusion of various fidelity aerodynamics. However, the aerodynamic

models with different levels of fidelities are prone to data-loss by communicating

with different tools/solvers.

Ghoeryshi et al. [28] solved this mis-matching by addressing the geometry

and mesh treatment using a high level conceptual aircraft description, i.e., a so-335

called XML-aircraft description used in software CEASIOM (the Computerized

Environment for Aircraft Synthesis and Integrated Optimization Methods) [6,

29]. Kriging was used to construct all of the aero-table entries and co-kriging was

used to update the aero-table with additional samples calculated. The sampling

method used is to identify non-linearities in the force and moment tables. The340

flight handling qualities are thus predicted and analyzed by the Simulation and

Dynamic Stability Analyser (SDSA) [30].

Similar work was done in [31] for the Standard Dynamic Model (SDM),

with filling up the tables by co-kriging [27]. For example, to construct the

lateral coefficients in the baseline table, the handbook code DATCOM [32] is345

used to generate the initial static tables as low fidelity data, and co-kriging

with a few Euler results are used to update the tables. The prediction of the
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aerodynamic forces from the static tabular model and the slow motion replay

show close agreement as expected. The slow motions used are trimmed level

flight, pull-ups with constant and varying angle of attack, wingover and 90-deg350

turns. Disagreement appears at fast maneuvers with the presence of unsteady

terms. The work shows the usefulness of the limits of the tabular aerodynamic

models by co-kriging surrogates.

The work has been extended at the University of Liverpool, and applied to

3 test cases, namely, the Standard Dynamic Model, the Ranger 2000 jet trainer,355

and the Stability and Control Unmanned Combat Air Vehicle [33]. For each

case, a tabular aerodynamic model is constructed based on CFD predictions

nd a kriging interpolator to populate the tables, with validation against wind

tunnel experiments and flight test measurements.

Da Ronch et al [34] have investigated the methodology for aero-loads gen-360

eration by surrogates and applied to the Transonic Cruiser aircraft (TCR). The

basic rule is to predict an effective model with minimum number of samples

(namely, minimum computing time). Kriging is used to predict the surrogate

model. Two design of exmperiments strategies were investigated. The first one

is a traditional Latin Hypercube approach, and the second strategy is the adap-365

tive design of experiments (ADOE) technique. The result shows that ADOE

provides better predictions especially for complex and non-linear engineering

phenomena, such as pitch moment coefficient and aerodynamics at transonic

speeds. The ADOE approach is adapted into the the DOE technology for the

current work, details can be seen in Section 5.370

The work by Da Ronch [26], Ghoeryshi [28, 31] and Vallespin [33] within

the FP6 project SimSAC started in year 2006, Simulating Aircraft Stability

And Control Characteristics for Use in Conceptual Design [5, 6]. It was applied

to various aircraft models, the Transonic Cruiser model (TCR), an Asymmet-

ric aircraft model, the DLR-F12 model, a B747-like model, the Ranger 2000375

aircraft, the Standard Dynamic Model (SDM), and the Stability and Control

Unmanned Combat Air Vehicle (SACCON). Table 1 summarizes the data fusion

from some of the previous EU projects mentioned above as well as the current
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AGILE projects. As AGILE is built upon the previous projects, the data fu-

sion technology is improved in a number of aspects with the outcomes used for380

handling qualities analyses. The outstanding features are to bring it into the

collaborative architecture, with all the tools loosely coupled and integrated by

RCE and accessible by Brics (see Section 2.1). w The DOEs strategies (see

Section 5) have been improved, and data can be stored and retrieved through

SMR, see Section 2.2. The application will be discussed in Section 6.385

AGILE ALEF SimSAC

(2015-2018) (2009-2012) (2006-2009)

Aero. CPACS Standard CEASIOM-based

Models CAD XML

CFD

Tools

Multi-Fidelity Mid-to-High Multi-Fidelity

CPACS-compliance Fidelity CEASIOM-compliance

Surrogate

Models

various surrogates External External

co-kriging/MoE/etc. co-kriging co-kriging

CA RCE & Brics - CEASIOM

platform can across firewall

Collaborative Brics, SMR via Emails via Emails

Process features PIDO at diff. sites/locations & FTP etc & FTP etc.

Table 1: Projects

4. Data Fusion Through Collaborative Surrogates

4.1. Surrogate models overview

A surrogate model is a cheap-to-evaluate function ŷ = g(x) approximation

to the exact but expensive-to-evaluate function y = f(x). Another name is

Response Surface Model (RSM). A used-to-be-well-known example is the table390

of logarithms which reduces arduous exact manual calculation to much quicker

approximate calculations by repeated table lookup, interpolation, and addition.

18



In this paper data fusion means the integration of results from different

simulation models into a single surrogate model. In AGILE the surrogate models

are constructed by different methods provided by partners. In the context of

this paper the RSM function is specified as:

[force and moment coefficients] = RSM(α, β,Alt,Mach, ...,D) (1)

where the aerodynamic variables are α the angle of attack, β the sideslip angle,

Alt the flight altitude and the Mach number. The data set is denoted by D.

Surrogate modeling has two distinct steps, first the training to produce the395

g−function, and second, the use of the generated g-function. The data set D is

the training set. In this paper y represents the computations of forces, moments,

structural deformations and stresses, etc., associated with a particular flight

state of a defined aircraft configuration which is the x. Evaluation of y requires

at least a flow solution, and possibly a complete aero-servo-elastic simulation.400

The training should produce a RSM with maximal accuracy and minimal cost is

required for producing the training set. This is done by the choice of f (multi-

fidelity modeling characterized by fidelity level, L0–L3) and by the choice of a

training set. Much effort has been devoted to algorithms for the choice of an

optimal training set, as described in [35].405

Evaluation of a surrogate model requires the input x and the corresponding

results of the training, e.g. a set of polynomial coefficients, or a look-up table

with the whole flight envelope (flight states, or x), processed in to the function

g:

ŷ(x) = g(x,D) (2)

It is assumed that the evaluation will be made for many (thousands) values of

x for a single D. The training, including the choice of the training set, is an

iterative process. In a single iteration k, an algorithm M increments/fuses the

training set with a set {x, y}k and updates D:

Dk+1 = M(Dk, {x, y}k) (3)
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For the new D, another algorithm S suggests new samples for testing the accu-

racy requirements:

{x}k+1 = S(Dk+1). (4)

Both the M and S algorithms make frequent use of g.

A typical RSM kit contains computer codes for an RSM evaluator g, data

fuser algorithm M and sampling algorithm S, plus a proviso (see Section 5.1) to

evaluate f . A developed instance, the data fusion process, which is ready to run,

and improved on further, will contain g, M , S and the data set D. Fig. 4 shows410

an example of a module-independent data fusion workflow exchanging data using

Brics. It should be noted that exchanging D for each call is impractical in

general, due to the size of D. Therefore, in the standard use cases, D is built

on one partner’s network/machine, and then made available. The f−samples

however can easily be exchanged using Brics since the large discretization and415

solution files (CFD mesh, finite element mesh for CSM) are usually only stored

locally. However, for the purpose of tracking possible bugs, etc., the parameters

used in mesh generation and simulation should be accessible also “after the fact”

to the network.

Figure 4: Workflow for data fusion in the MDA chain, interchangeable modules exchanging

data using Brics.

Use of an existing developed instance requires (access to) computer code g420
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and data set D. The g and M functions are in principle well known and open.

S may involve some proprietary tools which raises IP and access issues, and

as D embodies information about a design, it also has distribution and access

restrictions. Within AGILE a specific Surrogate Model Repository (SMR) was

developed that deals with theses issues, see [22] and Section 2.2.425

4.2. Surrogate models description

There are various ways to build surrogate models, the popular ones are for

example, polynomial interpolations, the Radial Basis Function (RBF) and Krig-

ing interpolation. In this section it describes two of the mostly used surrogate

models in AGILE. Note that, in AGILE framework, the various surrogate mod-430

els are free to choose to build the CA as long as they follow the steps described

in Section 2.1.4.

4.2.1. Kriging and co-kriging

Kriging is a method for scattered data interpolation which sees the data to

be predicted as a stationary stochastic field with correction of the predictions

depending only on their relative location. The co-kriging process provides a

technology for the multi-fidelity results where a great quantity of low-fidelity

data is coupled with a small amount of high-fidelity data to enhance the accuracy

of a surrogate model. The approximation is obtained by updating the correlation

ψ and the correlation matrix Ψ to the co-variance c and co-variance matrix C

between the low (cheap) and high-fidelity (expensive) observations. The co-

kriging estimation ŷ at x∗ is:

ŷco(x∗) = F̃(β, x∗) + cTC−1(y − F̃) (5)

Where F̃ is the mean value obtained by the regression model predicted in the

same pattern as kriging, by considering both lo-fi and hi-fi samples. If the435

prediction is made at the ith high-fidelity points, and the lo-fi data have mc

design sites, then c is the mc + ith column of C. Equation (5) is an interpolator

of the hi-fi data just like ordinary kriging, but the lo-fi data will regress in a
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well defined sense unless it coincides with the expensive observations ye. Details

about kriging, co-kriging and Gaussian Process can be found in [36, 27].440

4.2.2. Mixture of experts

The Mixture of Experts (MOE) is a technique which combines local sur-

rogate models in order to approximate heterogeneous functions (flat and steep

regions, first and zero order discontinuities) dividing the problem space into

homogeneous regions. In the context of this paper, the mixture of experts tech-

niques is used to mix multi-fidelity models as co-kriging. The main idea of

mixture of experts is to provide a clustering of the training basis into regions

where the function to be approximated is expected to be continuous or at least

more simple. In this specific case, the local experts ŷk dedicated to each cluster

k, which are the co-kriging models defined in Eq. (5). As explained in [37, 38],

the Gaussian mixture model provides a way to create a global model and predict

its value at a new point xnew of the design space as a recombination of the local

models:

ŷ(xnew) =

K∑
k=1

P(κ = k|x = xnew)ŷk(xnew) (6)

In this equation (6), K is the number of clusters, P(κ = k|x = x∗) denoted by

gating network, is the probability to lie in cluster k knowing that x = xnew and

ŷk is the local expert built on cluster k. The number of clusters K is chosen

automatically to minimize the generalization error on a validation data set [39].445

MOE has been made available to AGILE partners for different applications as a

remote service [40, 41]. MOE has also been wrapped using the Brics connection

protocols to enable the transfer of models (constructed on data provided by the

user) and not only the results of the evaluation of the models.

4.3. Data Fusion within the collaborative MDA Chain450

As described at the beginning of the paper, in overall MDO, some tools may

need large amounts of data, for instance, the flight simulation tool used for

Stability and Control (S&C) analysis needs a complete aerodynamic-database

as its input. Some entries in the database can be computed by high-fidelity
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analysis modules, but not all of them, therefore we need data fusion between455

various fidelity levels. The fused database, thereafter, will be delivered to the

e.g. flight simulation tool.

The data fusion used for AGILE project is implemented as a process, and it

calls for other tools to run the process. The whole fusion procedure is iterative.

This section shows how the surrogate-based data fusion is implemented in460

the MDA chain, and how deployment and application of the surrogate model is

facilitated by the Surrogate Model Repository.

Figure 5 shows how the datafusion workflow is executed, the three mod-

ules (described later in the paragraph) can be execute at different locations by

specialists. This workflow is implemented with RCE which allows to use the465

Brics plug-in to share information between the main computer and specialist’s

computer, in the way as Fig. 1 describes.

The data fusion package includes the development/delivery of: (1) the surro-

gate model builder/fuser M and model evaluator g; (2) the sampling module S;

(3) the samples computation module f (aerodynamic module); (4) the graphic470

feedback module.

This package can be used for fusing computed tables of forces and moments

for the purpose of aero-dataset construction. Namely, it can be used for fusing

the aerodynamic coefficients data from different tools (sources) and fideli-

ties, and storing the surrogate models.475

Figure 5 spells out the data fusion service in the MDA chain. It has three

core modules shown below, the graphic feedback module can be used separately

and is not included in the MDA chain.

• Preparation Module: It prepares the training data storing in the CPACS

file design study branch, or in two separate column-based csv files;480

• Surrogate Modeling Module: The surrogate model builder is provided

by different tools/partners. This module also includes the “sampling ser-

vice”. The surrogate modeling techniques are

(1) co-kriging [27] is provided by Airinnova AB in Matlab based on the
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DACE toolbox [42], or its alternative Python’s built-in persistence485

Model (scikit-learn), containing the co-kriging model parameters cor-

responding to the co-kriging surrogate trained with incoming train-

ing data. The resulting Model file (both Matlab-based and Python

built-in) can be read by Python and used by the Py scikit-learn tool-

box. So that it can be stored, transferred, shared and re-produced490

by partners via SMR without Matlab license.

(2) Mixture of Experts (MOE) method for surrogate modeling is pro-

vided by ONERA [39] as an executable file. It will output one (bi-

nary) file containing the MOE model parameters corresponding to

the MOE surrogate trained with incoming training data. The MOE495

strategy [37, 38] recalled in Section 4.2.2 has been made available to

AGILE partners for different applications [41, 43, 44].

• Aerodynamic Module: In this module the new samples are computed

by aerodynamic tools. In this paper, the L1 aerodynamic data are pro-

vided by Tornado, which is a Vortex Lattice Method code [45]; L2 aerody-500

namic data are provided by SU2 tool [46] which is a computational fluid

dynamics simulation software. Both of the tools are operated by different

specialists at different sites. Other aerodynamic tools can be integrated

into this MDA chain by modifying their API to the data fusion package,

through the 3 steps described in Section 2.1.4.505

5. Design of Experiments

This section discusses the issues about the design of experiments, including

the sampling algorithm and the design domain validity used in the collaborative

data fusion described ini Section 4.3.

5.1. Smart Sampling Algorithm510

The “smart sampling” is employed to determine new sampling locations and

to choose the tools (variable fidelity). The smart sampling scheme uses a mixture
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Figure 5: Data fusion service in the MDA chain with 3 stages.

of sampling methods with the stopping criteria by examining the MSE or the

RMSE (Root Mean Square Error). The sampling identifies a number of sampling

locations. The response at the sampling points can be evaluated in parallel,515

with a constraint to ensure that the sample locations found having a significant

distance between each other to avoid overemphasis of the interpolation on a

small portion of the predicted function. Due to the inherent nature of the

sampling algorithm S (shown in Fig. 6), it is strongly coupled with the RSM

evaluator g, namely, kriging or co-kriging surrogate models.520

Figure 6 shows the workflow of the smart sampling technology. For each iter-

ation, the new samples (low-fidelity, or lo-fi & high-fidelity, or hi-fi) are merged

so that the surrogate model is updated and the RMSE is computed and com-

pared with the defined tolerance, or tol, chosen by the user. If the stopping

criteria are met, the iteration ends. Otherwise new samples are suggested ac-525

cording to the listed methods in Fig. 6 and described in the following. The

new suggested samples will be computed by the corresponding tools and will be

added to the samples to update the surrogate model. The computational tool

fidelity is also suggested.

The methods used to suggest new samples are described below, and the rules530
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Figure 6: The ”smart sampling” technology workflow.

are understood as a hierarchical sequence (from 1 to 5):

1. Borders: only applies when loading the initial samples. Check the ”bor-

ders” of the DOE domain, if the hi-fi samples are missing at any of the

border locations, add them (computed by hi-fi tools). This must be done

at the first step of the sampling, because Kriging relies on the assump-535

tion of constant mean and variance within the domain of interest, and is

not performing well at extrapolation. The low-fidelity data tends predicts

the wrong trends, that the high-fidelity samples must be added to correct

the wrong trend especially at the borders of the design domain to avoid

extrapolation.540

2. MaxMin: finds the local maximum or minimum of the surrogatte model

and the new samples will be added there. The position of the local maxima

or minima is computed by considering the full surrogate model, comparing

any function values with all the points inside a sphere of radius previously

computed and centered in it. The sphere radius is initially computed545

as minimum of the Euclidean norms of any two points with all non-equal

coordinates. If the function value is bigger or smaller than all the others in

the sphere, the point is marked as local maximum or minimum respectively
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[47]. The “MaxMin” method can at a time recommend n-set of samples

(defined by user). The new samples shall be computed by L1 tool (lo-fi)550

by default if tool fidelity is not specified.

3. MaxHessian: finds/computes the maximum curvature of the surrogate

model and the new samples will be added there. The new samples shall

be computed by L1 tool (lo-fi) by default. Computation details can be

found in Appendix in [40]. This method only becomes active if MaxMin555

fails.

4. EIF : finds the Expected Improvement Function (EIF) location [27] and

the new samples will be added there only when the MaxMin and Max-

Hessian fail to add the effective samples, i.e., the new samples suggested

by previous methods are already or very close to the existing samples via560

a distance criterion threshold chosen by the user. The new samples shall

be computed by L1 tool (lo-fi) by default.

5. MaxLoc: finds the maximum RMSE locations and new samples will be

added there. This method is used only when the maximum RMSE is not

significantly improved compared with previous iterations:

RMSE(k + 1) > ν · RMSE(k) (7)

where 0 < ν < 1 is the improvement factor chosen by the user, thus the

sampling method shall be “switched” to MaxLoc.

As stated above, except Borders, the new samples suggested by all other565

methods will be computed by L1 tools (lo-fi) by default. There is a hierarchy

of models and the highest fidelity one is considered as the truth, i.e., we have

no error estimate between the highest fidelity models and the “reality”. We

wish to use lower fidelity (lo-fi) models where they give results close to the hi-fi

models, so first use lo-fi until error estimate satisfies lo-fi criterion. Then hi-fi570

points are filled in until the error estimate between response surface and hi-fi is

small enough (i.e., fulfills the hi-fi criterion). Note that this may “waste” lo-fi

calculations in regions where lo-fi is bad so hi-fi is necessary.
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The hierarchical sequence of choosing samples is based on an investigation

and combination of methods stated in [27, 34, 47], the goal being to improve575

the surrogates using minimum number of samples, i.e., minimum computing ef-

forts. First check the borders to avoid extrapolation, then enrich the surrogate

models by infilling the points suggested by MaxMin and MaxHessian, which al-

lows the predicted models quickly converge upon an maximum/minimum value,

or a peak/dip of the true function [27, 47]. This is particularly useful when580

the model to be predicted is highly non-linear, such as CL, Cm aero coefficient

curves especially for transonic flight conditions. If the above two methods fail,

which means the search only finds a local optimum, or does not even find a local

minimum/maximum (for example, the large portions of the surrogate function

landscape are flat), the surrogate model does not approximate the whole func-585

tion well, a sampling strategy that can search away from the current minimum

and explore other regions is required. The EIF is error based exploration which

is suitable for the situation stated above. In many situations, the EIF function

would give the same recommended sampling locations as the Max/Min and

MaxHessian. However, the EIF may be not so efficient when the prediction590

“thinks” that the function is very smooth [27] that EIF function diminishes to

a very small value, with a very small estimated error RMSE. The small error

leads to an overemphasis on exploitation of the prediction and the sampling ap-

proach falls into the trap because the unknown Kriging model based parameters

is assumed to be estimated correctly. MaxLoc is used to improve the surrogates595

at the locations with the largest MSE values if the maximum RMSE is not sig-

nificantly improved by Find EIF. The source fidelity for the samples also needs

to be upgraded accordingly. The infilling samples suggested by maximum MSE

locations tends to make a uniform distribution over the design domain, which

may “waste” samples. The ideal scenario is to find the best fitted model as600

quickly as possible, that the sample points get “clustered” at the non-linear

parts, and get “scattered” at the linear parts.

It shall be possible to choose freely between source tools with different fidelity

levels. The criteria for going to the next fidelity level and to switch method are:
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• If the new suggested samples are already in the hi-fi sampled domain,605

switch to the next method level. For example, if the MaxMin suggests a

new sample that is already in the hi-fi sampled domain, we then use the

MaxHessian.

• If the new suggested samples are already in the lo-fi sampled domain but

not in the hi-fi sampled domain, upgrade the fidelity.610

• If a low fidelity tool fulfills the lo-fi accuracy criteria, for example, if the

maximum RMSE is small enough, go to the next fidelity level, namely, Lk

“upgrades” to Lk+1, where k is the current fidelity level.

• Another indication is that the maximum RMSE is not significantly im-

proved compared with the previous iteration as described with Eq. (7).615

This means either the methods shall be “switched” or the fidelity shall be

improved.

This “smart” sampling algorithm needs now to be associated with a re-

scaling of the design domain in order to ensure that points are added throughout

the domain.620

5.2. Domain Validity Issues

The problem of fusing the aerodynamic characteristics, it relates the flight

envelope identification, or the identification of the domain validity of the surro-

gate models. Usually, the DOE techniques are designed to work on rectangular

(cubic for 3D) domains. Moreover, the inherent characteristics of the CPACS625

file definition only supports the uniform distribution of the samples. Therefore,

the initial samples, are computed with regular sampling. However, the physical

flight envelope is just part of the “CPACS envelope”[40]. For instance, the test

case which will be used in this paper, the AGILE reference aircraft, as a con-

ventional transport airliner, its physical flight envelope, will not cover, the high630

angles of attack at high Mach numbers. The parameter space should be chosen

as the physical flight envelope, otherwise the sampling rules will fail and the
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new suggested samples will always locate around the edges of the (rectangular)

domains since they are highly non-linear (but not realistic). This section will

spell out how to cope with the domain validity issues.635

In this paper, the physical domain is defined by the flight mechanics specialist

co-author, as the dashed line bounds shown in the Fig. 7a for a two-dimensional

parameter space. The sample points on the physical domain will be re-scaled

to fit the new domain within the interval [-1,1] in both dimensions, see Fig. 7b.

All samples which are left out of the physical domain will be excluded. During640

the surrogate modeling process, the design domain will firstly be re-scaled and

exclude the parameter space which are left out of the physical domain, before

building a surrogate model and iterate the sampling procedures. This will pro-

vide a better “coverage” of the area of the domains that are typically difficult

to model (extreme flight conditions).645

(a) The physical domain. (b) The scaled domain.

Figure 7: The initial samples of the domain for the Test Case and its transformation, at

altitude 10 km.

6. Application to the Collaborative Aerodynamic Surrogate Model-

ing

6.1. Aerodynamic Model and Handling Quality Tool Descriptions

The test case aircraft configuration is the AGILE reference aircraft, a re-

gional jet-liner, which was analyzed and simulated using the AGILE MDA sys-650

30



tem, without experimental data being available. This aircraft does not corre-

spond to an existing one, but it is in the range of an Airbus 320 or Boeing 737.

The reference aircraft is defined in CPACS [14] format.

Some previous numerical simulations have been performed for this aircraft

to test the data fusion tool [40], however the primary control surfaces were655

not modeled. In the test case of this paper, the aerodynamic coefficients and

derivatives for the longitudinal analysis are computed by L1 and L2 tools, in-

cluding the elevator deflections. Those computational results are fused as an

aerodynamic-database for the longitudinal flight simulation using the flight sim-

ulator PHALANX, which will be described in the last part of this section.660

The L1 aerodynamic tool used for the data fusion workflow is the Vortex

Lattice Method (VLM) code Tornado [45], which solves the linearized equations

and considers the flow compressibility by taking the Prandtl-Glaurent rule [? ].

The L2 aerodynamic tool used is the open-source code SU2 developed by the

Stanford University, which is a fluid dynamics solver for solving the incompress-665

ible/compressible and inviscid/viscous flows. In this paper the SU2 is used as L2

level, namely, as an Euler equation solver for solving the inviscid compressible

flows. Both of L1 and L2 tools have been fully adapted to the CPACS format,

integrated onto RCE and are callable using Brics. Details can be found in [19].

As stated in Section 5.2, the initial DOEs from the CPACS files are uni-670

formly distributed, then the valid domain is selected according to the physical

flight envelope. Figure 8 spells out the initial DOEs defined in the CPACS files

by regular sampling, which consist of two sets of data from both the low-fidelity

(L1) and the high-fidelity (L2) tools. The low-fidelity data are symmetrically

distributed in the range of angle of attack [-5, 5], and sparser at higher angle675

of attack. This is because the L1 solver is based on linearized equations and

its prediction is questionable at higher angles of attack where nonlinear aerody-

namic is dominant, so that the L1 sample locations at high angles of attack are

trivial. The parameter space is three-dimensional: the angle of attack α, Mach

number and the elevator deflection δ. The flight altitude is fixed at 10km and680

the sideslip angle is 0 degree. Again, the initial DOEs which are defined/stored
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in the CPACS files exceed the bounds of the design domain, which means some

of the computations (data) are “wasted” and will be ignored in the future fusion

process.

Figure 8: Initial DOE defined in the CPACS files. Black dot: low-fidelity data; blue cross:

high-fidelity data.

The CPACS file of the AGILE reference aircraft is converted into another685

type of XML definition geometry to be opened with the mesh generator software

sumo [48]. A surface mesh is created automatically by sumo and it calls TetGen

[49] to create an unstructured Euler mesh. The mesh used for this study has

been chosen following a mesh sensitivity analysis performed in [50]. It is an

unstructured mesh with 5.9 million tetrahedrons, see Fig. 9a.690

In order to compute the elevator deflections, the SU2 built-in mesh deforma-

tion function SU2 DEF is used to deform the mesh around the elevator locations

on the horizontal tail. A Free-form deformation (FFD) [51] box is defined at the

elevator locations. With the hinge line location specified, the mesh in the FFD

box can be deformed around the hinge line within a certain angle. To avoid695
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high aspect ratio cells (or even negative volume) usually small deflection angle

is preferred. According to authors experience, with a deflection angle less than

8 degrees the deformed mesh can give well-converged solutions. In this paper

we limit the deflection angle within 4 degrees for high speed flight at the high

altitude.700

(a) The volume mesh of the test case. (b) The Cp contour from Euler solutions.

Figure 9: (a) The unstructured volume mesh with 5.9 million cells of the test case configu-

ration, created by sumo [48] and TetGen [49]; (b) the Cp contour of the horizontal tail of the

test case aircraft from Euler solutions computed by SU2, Mach=0.78, α = 0◦ with elevator

deflection δ = 4◦. The elevator deflection is modeled by deforming the mesh defining by FFD.

Tornado usually takes less than 1 minute to make one single VLM analysis

on a modern laptop, and the Euler solver takes around 4 minutes on a 32-

cores work station for the reference aircraft. The computational cost ratio is

at least 128 (provided that the SU2 parallel computing speed-up is linear). In

this test case, L1 solver is chosen as low-fidelity data source and L2 solver is705

chosen as high-fidelity data source, so that the low-fidelity samples are very

cheap to generate. Even the “expensive” samples are fast to obtain because of

the relatively coarse mesh. The reason why the cheap samples are not generated

at all locations before co-Kriging begins is, there are not always tools to provide

cheap samples as fast as the L1 tool (e.g. Tornado). For example, in the study710

of surrogate model generation for aero-data and aero-loads of X-31 aircraft [24],
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the cheap samples are provided by the Euler solver (L2) and the expensive

samples are provided by the RANS solver (L3) on the very fine grids, with

computational time substantially increased. Similar case was also found in [28].

In these situations, it is not possible to generate even the low-fidelity samples715

at all locations in the design domain, because the computation cost for the

low-fidelity samples is still not cheap. The generation of surrogate models also

includes to populate the aerodynamic database over the whole flight envelope

by the relatively “dense” low-fidelity data samples, as stated in Section 1. The

method and technology described in this paper show a generic way of data720

fusion including sampling strategies, with the goal of data fusion by surrogate

modeling with minimum computational efforts keeping in mind.

The Performance, Handling Qualities and Loads Analysis Toolbox (PHA-

LANX) is a selective fidelity flight mechanics modelling and analysis tool. It is

specifically designed to be used in a multidisciplinary design optimization frame-725

work [52] and to support the analysis of future novel aircraft designs [53, 54].

PHALANX has the capability to automatically construct and analyze aircraft

models within an MDO environment [55, 56]. This makes it possible to analyze

the flight mechanics of many different variants of novel aircraft and configura-

tions without a user in the loop. The aircraft models are nonlinear simulation730

models which serve as virtual flight test vehicles. An extensive analysis suite is

available to evaluate aircraft performance characteristics, to perform handling

assessments and to simulate loads resulting from both intentional manoeuvres

and atmospheric conditions.

6.2. Results735

The section shows the results obtained from the collaborative aerodynamic

data fusion framework, including the fused aerodynamic coefficients, and flying

qualities prediction from the fused data, and the application of SMR.
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6.2.1. Fused Aerodynamic Characteristics

Figure 10 shows the fused CL, CD and Cm aero-coefficient results of the AG-740

ILE reference aircraft model from the both fidelities with the elevator deflection

δ = 0◦ over the flight envelope. The dot sign (•) represents the lo-fi samples

and the cross sign (×) represents the hi-fi samples. Figures 10a, 10c and 10e

show the response surfaces from the surrogate models as well as the sampled

data over the flight envelope in the three-dimensional space. Figure 10b, 10d745

and 10f represent the two-dimensional cuts for Mach number 0.5 (black), 0.8

(blue) and 0.9 (red) from the response surfaces, and their corresponding sam-

pled data. Note that for M = 0.8 there are no hi-fi samples computed, instead

there are hi-fi samples computed at M = 0.78, which are shown and marked in

the figures.750

Figures 10a and 10b show the surrogate models (response surfaces) for CL.

The co-kriging predicts the non-linear behaviors at higher angles of attack, as

the hi-fi samples indicate.

Figures 10c and 10d show the prediction for CD. The surrogate model

predicts higher drag than the lo-fi samples show, since they cannot predict wave755

drag. It is a promising sign that the surrogate model picks up the compressible

phenomena from the hi-fi samples.

The surrogate model for Cm is shown in Figs 10e and 10f. Note again that

the surrogate model predicts the non-linear trends at high AoA, as expected.

The coarse hi-fi samples correct the response surfaces significantly.760

The co-kriging predicts 238 × 2 cases in the physical domain which are se-

lected from a rectangular domain with 324× 2 cases with α from -5 degrees to

12.5 degrees, and Mach from 0.5 to 0.9 for elevator deflection δ = 0◦. The full

surrogate prediction has 238 × 3 cases with elevator deflection from -3 degrees

to +3 degrees. The computation time of the surrogate model is ≈ 0.05 seconds765

on a desktop computer with four CPUs. The surrogate model is reliable with

max(RMSE) = 0.048 < 5%. The final DOEs for building the surrogate models

have been shown in Fig. 11, with 22 × 3 hi-fi samples and 35 × 3 lo-fi samples
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for elevator deflection from -3 degrees to +3 degrees. It is viewed in a 2D space

since for each elevator deflection, the samples are at the same AoA and Mach770

locations.

The static coefficients are computed by L1 and L2 tools, and the database

is generated by co-kriging, as stated above. However, the dynamic stability

derivatives are only computed based on L1 tool Tornado in order to reduce the

computation efforts while demonstrating the benefits of the fused data.775
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(a) Lift coefficient CL surface and the sam-

pled data.

(b) Fused lift coefficient CL for Mach num-

ber 0.5, 0.8 and 0.9.

(c) Drag coefficient CD surface and the sam-

pled data.

(d) Fused drag coefficient CD for Mach num-

ber 0.5, 0.8 and 0.9.

(e) Pitch moment coefficient Cm surface and

the sampled data.

(f) Fused pitch moment coefficient Cm for

Mach number 0.5, 0.8 and 0.9.

Figure 10: The co-kriging surrogate model results of AGILE reference aircraft for CL, CD and

Cm, with elevator deflection δ = 0 deg. Notations: dot: lo-fi samples; cross: hi-fi samples;

line: the response surfaces. Figures (a), (c) and (e): the response surfaces and sampled data

over the flight envelope. Figure (b), (d) and (f): the cuts for Mach number 0.5 (black), 0.8

(blue) and 0.9 (red) from the response surfaces, and their corresponding sampled data.
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Figure 11: Final DOEs for building the surrogate models, viewed in a 2D space.

6.2.2. Example of Surrogate Model Deployment with SMR

Using the AGILE Data Fusion service a surrogate model has been derived

that predicts the aerodynamic lift coefficient CL as a function of angle of at-

tack (AoA) and Mach number. The meta-information of this surrogate model

has been stored at the SMR, see Figure 12. The meta-information includes a780

description of the purpose and the background of this surrogate model. Fur-

thermore, the input and output variables are specified. For the input variables

the allowable range is specified. For the output variables the verification result

is given, as such providing information on the accuracy of the surrogate model.

By setting the toggle in the bottom (see Figure 12) the surrogate model can785

be invoked. Input values for AoA and Mach are provided. Under the hood,

the SMR translates these values into a CPACS file, uploads the file to a shared

location and sends a notification (e.g. by email) to the specialist that provides

the surrogate model calculation service. The specialist downloads and reads the

CPACS file with input values, performs the calculation and writes and uploads790

the output in the same CPACS format to the shared location. From here the

SMR retrieves the output value and projects it in the output value field, see

Fig. 13.
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Figure 12: Meta information of an example surrogate model available through the SMR. In

the text, its is mentioned that this is a SM resulting from the test / experiments.

6.2.3. Prediction of Flying Qualities from Fused Data

The flight performance and flight dynamics are analyzed by PHALANX and795

compared between the fused data (by co-kriging from L1 and L2 tools) and the
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Figure 13: SMR user interface for the ”as a service” calculations with the surrogate model

L1 data alone. PHALANX is written in Matlab and makes extensive use of the

Simulink c©platform, its toolboxes and the Simscape c©environment for modeling

and simulating physical systems. For the current test case, the equations of

motion are modelled using multi-body dynamics. Thereby, the mass and inertia800

of the empty aircraft can be modelled separately from the payload and fuel.

The aerodynamics are modelled using a database in the form of look-up tables.

These tables are a function of angle of attack, pitch rate and elevator deflection.

The propulsion system (thrust and fuel consumption) is modelled based on

engine performance maps which are a function of Mach number, altitude and805

throttle setting. The resulting nonlinear simulation model is used to assess the

trim condition (e.g. the prediction of flight envelope limits and power required

as function of Mach number) and a handling qualities assessment. The analysis

results for various flight conditions and aircraft configurations are written in the

CPACS file.810

Figure 14a shows the angle of attack and elevator deflection in trimmed flight

for the whole range of Mach numbers at 10 km altitude. One can clearly see that

the elevator deflection results start to deviate at higher Mach numbers. This
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is caused by the differences in the static moment coefficient between the two

databases. The required lift coefficient is relatively small and for the this range815

of lift coefficients, the fused database and L1 database give similar predictions

for the angle of attack. As a consequence, the control authority of the elevator

at high speed flight is better predicted by the fused database.

Figure 14b shows the throttle setting in trimmed flight as a function of Mach

number. The fused data shows a shape which is to be expected. The L1 results820

are completely wrong at high Mach numbers since it is rather obvious that

Tornado cannot predict CD properly at high Mach numbers due to the presence

of the wave drag.

(a) Angle of Attack and elevator deflection. (b) The throttle setting.

Figure 14: Angle of attack, elevator deflection and the throttle setting between the L1 data

and the fused data in the horizontal trimmed flight at 10 km altitude, as a function of Mach

number.

For a single Mach number M = 0.70, a step input of 3 degrees on the elevator

is performed. Actuator dynamics are included in the simulation, see Fig. 15. As825

a result one can see the dynamic motion. Again there are differences between

the L1 and fused model. The first observation that can be made is a difference

in control power. The results based on fused data show a larger attitude change

for the same elevator change. This is caused by the combination of a lower static

moment coefficient and a slightly different control derivative.830

Table 2 shows the characteristics of the Short Period mode and Phugoid
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Figure 15: A step input on the elevator and its dynamic motion for a single Mach number

M=0.7.

mode comparison between L1 and the fused data. The Phugoid mode is largely

determined by the lift over drag ratio for conventional aircraft. The main reason

that the Phugoid frequency is reduced and the damping is increased is because

the fused database with L2 correction taking the compressiblity/nonlinearity835

into account, thus it has a decreased L/D compared to the L1-Tornado results.

The short period depends to a large extent on the dynamic derivative Mq,

which is identical for both databases since they are produced by L1 tools for

both. The small differences of the results are due to the differences between the

static lift coefficient and the static moment coefficient.840

42



- L1 Fused

ωsp [rad/s] 2.7063 2.3476

zsp [-] 0.2319 0.2656

ωph [rad/s] 0.0766 0.0632

zph [-] 0.0084 0.0591

Table 2: The characteristics of short period and phugoid modes comparison between L1 and

the fused data for Mach =0.7 at altitude 10 km.

7. Conclusion and Perspectives

The paper has presented a collaborative and surrogate-based data fusion

technology for generating the aerodynamic database for the handling qualities

analysis. This data fusion technology is implemented in a collaborative MDA

worflow, utilizing the existing tools within AGILE, establishing an iterative and845

collaborative, distributed process. The surrogate models which are built from

the data fusion service can be stored and deployed for reuse with the Surrogate

Model Repository (SMR). An example was given for running a surrogate model

“as-a-service” through the SMR. A regional jet defined within AGILE project

as a reference aircraft is used as the test case for the data fusion tool. A850

full spreadsheet of aerodynamic data computed either with different levels of

fidelity or with only a low-fidelity tool has been derived using the data fusion

package. It has been shown that the quality of the flight performance simulation

was significantly improved especially for the transonic region in which the low

fidelity aerodynamic method is not reliable. The test case shows that by using855

a surrogate model based data fusion technique, the fidelity of the analysis data

can be significantly improved with minimal computation effort.

The data fusion process, integrated in the AGILE collaborative MDA chain

with different tools or modules interconnected via Brics and RCE, can be used

as a well-established and ready-to-use service to be applied to any other aircraft860

for generation of aerodynamic databases and flying qualities analyses, in order

to reduce the computational time and increase the overall prediction accuracy.
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