D. J. Sheridan and D. G. Julian, Achievements and Limitations of Evidence-Based Medicine, J Am Coll Cardiol, vol.68, issue.2, pp.204-217, 2016.

R. Moynihan, Key opinion leaders: independent experts or drug representatives in disguise?, BMJ, vol.336, issue.7658, pp.1402-1405, 2008.

L. Cosgrove and E. E. Wheeler, Drug firms, the codification of diagnostic categories, and bias in clinical guidelines, The Journal of law, medicine & ethics : a journal of the American Society of Law, Medicine & Ethics, vol.41, issue.3, pp.644-53, 2013.

C. Elliott, . Ethics, . Business, and . Biomedicine, Industry-funded bioethics and the limits of disclosure, pp.150-168, 2009.

, Baker M, 1,500 scientists lift the lid on reproducibility, Nature, vol.533, issue.7604, pp.452-456, 2016.

A. Gelman and H. Stern, The difference between "significant" and "not significant" is not itself statistically significant, The American Statistician, vol.60, pp.328-331, 2006.

P. B. Cerrito, Data mining to determine risk in medical decision, 2011.

X. Wang, S. W. Narayan, J. Penm, and A. E. Patanwala, Efficacy and Safety of Tapentadol Immediate Release for Acute Pain: A Systematic Review and Meta-Analysis, The Clinical journal of pain, vol.36, issue.5, pp.399-409, 2020.

G. V. Valkenhoef, T. Tervonen, B. D. Brock, and H. Hillege, Deficiencies in the transfer and availability of clinical trials evidence: a review of existing systems and standards, BMC medical informatics and decision making, vol.12, p.95, 2012.

S. Zwolsman, E. Pas, L. Hooft, M. Wieringa-de-waard, and N. Van-dijk, Barriers to GPs' use of evidence-based medicine: a systematic review, The British journal of general practice, vol.62, issue.600, pp.511-532, 2012.

J. P. Daniel, Data science: supporting decision-making, Journal of decision systems, vol.25, issue.4, pp.345-356, 2016.

J. B. Lamy, H. Berthelot, M. Favre, A. Ugon, C. Duclos et al., Using visual analytics for presenting comparative information on new drugs, J Biomed Inform, vol.71, pp.58-69, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01527283

R. Tsopra, J. B. Lamy, and K. Sedki, Using preference learning for detecting inconsistencies in clinical practice guidelines: methods and application to antibiotherapy, Artif Intell Med, vol.89, pp.24-33, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849868

J. B. Lamy, K. Sedki, and R. Tsopra, Explainable decision support through the learning and visualization of preferences from a formal ontology of antibiotic treatments, J Biomed Inform, vol.104, p.103407, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02532851

R. Tsopra, F. Mechaï, K. Sedki, and J. B. Lamy, AntibioHelp R , an innovative clinical decision support system for improving antibiotic prescriptions in primary care, 2019.

H. Ltifi, E. Benmohamed, C. Kolski, and M. B. Ayed, Adapted Visual Analytics Process for Intelligent Decision-Making: Application in a Medical Context, International journal of information technology & decision making, vol.19, issue.01, pp.241-282, 2020.

D. A. Zarin, T. Tse, R. J. Williams, R. M. Califf, and N. C. Ide, The ClinicalTrials.gov results database-update and key issues, The New England journal of medicine, vol.364, issue.9, pp.852-60, 2011.

P. Honig, Systematic reviews and meta-analyses in the new age of transparency, Clin Pharmacol Ther, vol.88, issue.2, pp.155-163, 2010.

W. Zarin, A. A. Veroniki, V. Nincic, A. Vafaei, E. Reynen et al., Characteristics and knowledge synthesis approach for 456 network meta-analyses: a scoping review, BMC medicine, vol.15, issue.1, p.3, 2017.

N. Rudroju, D. Bansal, S. T. Talakokkula, K. Gudala, D. Hota et al., Comparative efficacy and safety of six antidepressants and anticonvulsants in painful diabetic neuropathy: a network meta-analysis, Pain physician, vol.16, issue.6, pp.705-719, 2013.

P. Natsiavas, A. Malousi, C. Bousquet, M. C. Jaulent, and V. Koutkias, Computational advances in drug safety: Systematic and mapping review of knowledge engineering based approaches, Frontiers in Pharmacology, vol.10, p.415, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02481004

C. Zhan, E. Roughead, L. Liu, N. Pratt, and J. Li, Detecting potential signals of adverse drug events from prescription data, Artif Intell Med, vol.104, p.101839, 2020.

I. Atal, L. Trinquart, P. Ravaud, and R. Porcher, A mapping of 115,000 randomized trials revealed a mismatch between research effort and health needs in non-high-income regions, J Clin Epidemiol, vol.98, pp.123-132, 2018.

J. Warner, P. Yang, and G. Alterovitz, Automated synthesis and visualization of a chemotherapy treatment regimen network, Stud Health Technol Inform, vol.192, pp.62-68, 2013.

Z. He, S. Carini, I. Sim, and C. Weng, Visual aggregate analysis of eligibility features of clinical trials, J Biomed Inform, vol.54, pp.241-55, 2015.

J. Sjöbergh, M. Kuwahara, and Y. Tanaka, Visualizing clinical trial data using pluggable components, 16th International Conference on Information Visualisation, pp.291-296, 2012.

S. Schulz and L. Jansen, Formal ontologies in biomedical knowledge representation, Yearb Med Inform, vol.8, pp.132-178, 2013.

I. Sim, S. W. Tu, S. Carini, H. P. Lehmann, B. H. Pollock et al., The Ontology of Clinical Research (OCRe): An Informatics Foundation for the Science of Clinical Research, J Biomed Inform, vol.52, pp.78-91, 2013.

I. Borg, P. J. Groenen, and P. Mair, Applied multidimensional scaling, 2013.

T. Kohonen, Self-organizing maps, 1995.

L. J. Van-der-maaten and G. E. Hinton, Visualizing high-dimensional data using t-SNE, Journal of Machine Learning Research, vol.9, pp.2579-2605, 2008.

M. C. Cieslak, A. M. Castelfranco, V. Roncalli, P. H. Lenz, and D. K. , Hartline, t-Distributed Stochastic Neighbor Embedding (t-SNE): A tool for eco-physiological transcriptomic analysis, Marine genomics, vol.51, p.100723, 2020.

F. H. Oliveira, A. R. Machado, and A. O. , Andrade, t-Distributed Stochastic Neighbor Embedding for Data Visualization and Classification of Individuals with Parkinson's Disease, Computational and mathematical methods in medicine, p.8019232, 2018.

, Inselberg A, Parallel coordinates, 2009.

A. A. Mitku, T. Zewotir, D. North, and R. N. Naidoo, Exploratory Data Analysis of Adverse Birth Outcomes and Exposure to Oxides of Nitrogen Using Interactive Parallel Coordinates Plot Technique, Scientific reports, vol.10, issue.1, p.7363, 2020.

M. Kanai, Y. Maeda, and Y. Okada, Grimon: graphical interface to visualize multi-omics networks, Bioinformatics, vol.34, issue.22, pp.3934-3936, 2018.

M. O. Ward, Multivariate data glyphs: Principles and practice, pp.179-198, 2008.

H. Chernoff, Using faces to represent points in k-dimensional space graphically, Journal of the American Statistical Association, vol.68, issue.342, pp.361-368, 1973.

M. Lanzenberger, Proceeding of Human-Computer Interaction (INTERACT'03), pp.688-693, 2003.

J. Fuchs, P. Isenberg, A. Bezerianos, F. Fischer, and E. Bertini, The Influence of Contour on Similarity Perception of Star Glyphs, IEEE transactions on visualization and computer graphics, vol.20, issue.12, pp.2251-2260, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01023867

M. Chau, Visualizing web search results using glyphs: Design and evaluation of a flower metaphor, Acm transactions on management information systems (tmis), vol.2, pp.1-27, 2011.

G. Pilato and U. Maniscalco, A framework based on semantic spaces and glyphs for social sensing on twitter, Procedia computer science, vol.88, pp.107-114, 2016.

M. Keck, D. Kammer, T. Gründer, T. Thom, M. Kleinsteuber et al., Towards glyph-based visualizations for big data clustering, Proceedings of the 10th international symposium on visual information communication and interaction, pp.129-136, 2017.

M. Keck, D. Kammer, and R. Groh, Visual Version Comparison of Multidimensional Data Sets Using Glyphs, 2018.

J. Yang, D. Hubball, M. O. Ward, E. A. Rundensteiner, and W. Ribarsky, Value and relation display: interactive visual exploration of large data sets with hundreds of dimensions, IEEE transactions on visualization and computer graphics, vol.13, issue.3, pp.494-507, 2007.

B. Duffy, J. Thiyagalingam, S. Walton, D. J. Smith, A. Trefethen et al., Glyph-Based Video Visualization for Semen Analysis, IEEE transactions on visualization and computer graphics, vol.21, issue.8, pp.980-93, 2015.

J. B. Lamy and . Owlready, Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies, Artif Intell Med, vol.80, pp.11-28, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01592746

J. B. Lamy and -. Ontology, Oriented Programming for Biomedical Informatics, pp.64-68, 2016.

C. Ware, Visual thinking for design, 2008.

C. A. Pierce and B. Voss, Efficacy and safety of ibuprofen and acetaminophen in children and adults: a meta-analysis and qualitative review, The Annals of pharmacotherapy, vol.44, issue.3, pp.489-506, 2010.

Y. N. Lamb, Correction to: Elagolix: First Global Approval, Drugs, vol.78, issue.17, p.1855, 2018.

P. Vercellini, P. Viganò, G. Barbara, L. Buggio, and E. Somigliana, Elagolix for endometriosis: all that glitters is not gold, Human reproduction, vol.34, issue.2, pp.193-199, 2019.

B. D. Beakley, A. M. Kaye, and A. D. Kaye, Tramadol, Pharmacology, Side Effects, and Serotonin Syndrome: A Review, Pain physician, vol.18, issue.4, pp.395-400, 2015.

M. M. Bassiony, M. Abdelghani, G. M. El-deen, M. S. Hassan, H. El-gohari et al., Opioid Use Disorders Attributed to Tramadol Among Egyptian University Students, Journal of addiction medicine, vol.12, issue.2, pp.150-155, 2018.

C. A. Thiels, E. B. Habermann, W. M. Hooten, and M. M. Jeffery, Chronic use of tramadol after acute pain episode: cohort study, Clinical research ed.), vol.365, p.1849, 2019.

N. Attal, G. Cruccu, R. Baron, M. Haanpää, P. Hansson et al., EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision, Eur J Neurol, vol.17, issue.9, pp.1113-88, 2010.

N. B. Finnerup, N. Attal, S. Haroutounian, E. Mcnicol, R. Baron et al., Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis, The Lancet. Neurology, vol.14, issue.2, pp.70251-70251, 2015.

C. P. Taylor and E. W. Harris, Analgesia with Gabapentin and Pregabalin May Involve NMDA Receptors, Neurexins and Thrombospondins

F. A. Goodyear-smith, M. L. Van-driel, B. Arroll, and C. D. Mar, Analysis of decisions made in meta-analyses of depression screening and the risk of confirmation bias: a case study, BMC medical research methodology, vol.12, p.76, 2012.

T. Mikolov, M. Karafiát, L. Burget, J. ?ernocký, and S. Khudanpur, Recurrent neural network based language model, Conference of the international, 2010.