M. Miyara, F. Tubach, V. Martinez, C. Panzini-morelot, J. Pernet et al., Low incidence of daily active smokers in patients with symptomatic COVID19, 2020.

S. A. Lauer, K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng et al., The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med, 2020.

L. Gattinoni, S. Coppola, M. Cressoni, M. Busana, and D. Chiumello, Covid-19 does not lead to a 'typical' acute respiratory distress syndrome, Am. J. Respir. Crit. Care Med, 2020.

M. Hoffmann, H. Kleine-weber, S. Schroeder, N. Kruger, T. Herrler et al., SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, 2020.

J. Lan, J. Ge, J. Yu, S. Shan, H. Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature, 2020.

R. Yan, Y. Zhang, Y. Li, L. Xia, Y. Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science, vol.367, pp.1444-1448, 2020.

F. Hikmet, L. Méar, M. Uhlén, and C. Lindskog, The protein expression profile of ACE2 in human tissues

H. Xia and E. Lazartigues, Angiotensin-converting enzyme 2: central regulator for cardiovascular function, Curr Hypertens Rep, vol.12, pp.170-175, 2010.

J. M. Oakes, R. M. Fuchs, J. D. Gardner, E. Lazartigues, and X. Yue, Nicotine and the renin-angiotensin system, Am J Physiol Regul Integr Comp Physiol, vol.315, pp.895-906, 2018.

L. Steardo, L. Steardo, R. Zorec, and A. Verkhratsky, Neuroinfection may potentially contribute to pathophysiology and clinical manifestations of COVID-19, Acta Physiol (Oxf ), 2020.

Y. C. Li, W. Z. Bai, and T. Hashikawa, The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients, J Med Virol, 2020.

A. M. Baig, A. Khaleeq, U. Ali, and H. Syeda, Evidence of the COVID-19 virus targeting the CNS: tissue distribution, hostvirus interaction, and proposed neurotropic mechanisms, ACS Chem Neurosci, vol.11, pp.995-998, 2020.

S. B. Gane, C. Kelly, and C. Hopkins, Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome?, Rhinology, 2020.

L. Mao, M. W. , S. Chen, Q. He, J. Chang et al., Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study, 2020.

D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu et al., Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in, 2020.

A. H. Mohammed, E. Norrby, and K. Kristensson, Viruses and behavioural changes: a review of clinical and experimental findings, Rev Neurosci, vol.4, pp.267-286, 1993.

C. Tesoriero, A. Codita, M. D. Zhang, A. Cherninsky, H. Karlsson et al., H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice, Proc Natl Acad Sci, pp.113-368, 2016.

K. Kristensson, Microbes' roadmap to neurons, Nat Rev Neurosci, vol.12, pp.345-357, 2011.

M. A. Macgibeny, O. O. Koyuncu, C. Wirblich, M. J. Schnell, and L. W. Enquist, Retrograde axonal transport of rabies virus is unaffected by interferon treatment but blocked by emetine locally in axons, PLoS Pathog, vol.14, 2018.

K. Hueffer, S. Khatri, S. Rideout, M. B. Harris, R. L. Papke et al., Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS, Sci Rep, vol.7, 2017.

T. L. Lentz, T. G. Burrage, A. L. Smith, J. Crick, and G. H. Tignor, Is the acetylcholine receptor a rabies virus receptor?, Science, vol.215, pp.182-184, 1982.

T. L. Lentz, E. Hawrot, and P. T. Wilson, Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor, Proteins, vol.2, pp.298-307, 1987.

J. P. Changeux, M. Kasai, and C. Y. Lee, Use of a snake venom toxin to characterize the cholinergic receptor protein, Proc Natl Acad Sci, vol.67, pp.1241-1247, 1970.

C. Y. Lee and C. C. Chang, Modes of actions of purified toxins from elapid venoms on neuromuscular transmission, Mem Inst Butantan, vol.33, pp.555-572, 1966.

P. J. Corringer, F. Poitevin, M. S. Prevost, L. Sauguet, M. Delarue et al., Structure and pharmacology of pentameric receptor channels: from bacteria to brain, Structure, vol.20, pp.941-956, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-01721985

M. Cecchini and J. P. Changeux, The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation, Neuropharmacology, vol.96, pp.137-149, 2015.

C. Gotti and F. Clementi, Neuronal nicotinic receptors: from structure to pathology, Prog Neurobiol, vol.74, pp.363-396, 2004.

H. Wang, M. Yu, M. Ochani, C. A. Amella, M. Tanovic et al., Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation, Nature, vol.421, pp.384-388, 2003.

V. A. Pavlov and K. J. Tracey, The vagus nerve and the inflammatory reflex-linking immunity and metabolism, Nat Rev Endocrinol, vol.8, pp.743-754, 2012.

G. Chen, D. Wu, W. Guo, Y. Cao, D. Huang et al., Clinical and immunologic features in severe and moderate Coronavirus Disease, J Clin Invest, 2019.

S. Kooijman, I. Meurs, M. Stoep, K. L. Habets, B. Lammers et al., Hematopoietic alpha7 nicotinic acetylcholine receptor deficiency increases inflammation and platelet activation status, but does not aggravate atherosclerosis, J Thromb Haemost, vol.13, pp.126-135, 2015.

D. J. Van-westerloo, I. A. Giebelen, S. Florquin, M. J. Bruno, G. J. Larosa et al., The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice, Gastroenterology, vol.130, pp.1822-1830, 2006.

D. J. Van-westerloo, I. A. Giebelen, S. Florquin, J. Daalhuisen, M. J. Bruno et al., The cholinergic antiinflammatory pathway regulates the host response during septic peritonitis, J Infect Dis, vol.191, pp.2138-2148, 2005.

S. Zia, A. Ndoye, V. T. Nguyen, and S. A. Grando, Nicotine enhances expression of the alpha 3, alpha 4, alpha 5, and alpha 7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells, Res Commun Mol Pathol Pharmacol, vol.97, pp.243-262, 1997.

A. D. Maus, E. F. Pereira, P. I. Karachunski, R. M. Horton, D. Navaneetham et al., Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors, Mol Pharmacol, vol.54, pp.779-788, 1998.

D. L. Carlisle, T. M. Hopkins, A. Gaither-davis, M. J. Silhanek, J. D. Luketich et al., Nicotine signals through muscle-type and neuronal nicotinic acetylcholine receptors in both human bronchial epithelial cells and airway fibroblasts, Respir Res, vol.5, issue.27, 2004.

K. Maouche, M. Polette, T. Jolly, K. Medjber, I. Cloez-tayarani et al., {alpha}7 nicotinic acetylcholine receptor regulates airway epithelium differentiation by controlling basal cell proliferation, Am J Pathol, vol.175, pp.1868-1882, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00426515

W. L. Cheng, K. Y. Chen, K. Y. Lee, P. H. Feng, and S. M. Wu, Nicotinic-nAChR signaling mediates drug resistance in lung cancer, J Cancer, vol.11, pp.1125-1140, 2020.

G. Lippi and B. M. Henry, Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19), Eur J Intern Med, 2020.

W. J. Guan, Z. Y. Ni, Y. Hu, W. H. Liang, C. Q. Ou et al., N Engl J Med, 2020.

C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao et al., Clinical features of patients infected with 2019 novel coronavirus in, vol.395, pp.497-506, 2020.

J. Liu, L. Ouyang, P. Guo, H. S. Wu, P. Fu et al., Epidemiological, clinical characteristics and outcome of medical staff infected with Covid-19 in Wuhan, China: A retrospective case series analysis, 2020.

W. Liu, Z. W. Tao, W. Lei, Y. Ming-li, L. Kui et al., Analysis of factors associated with disease outcomes in hospitalized patients with 2019 novel coronavirus disease, Chin Med J (Engl, 2020.

P. Mo, Y. Xing, Y. Xiao, L. Deng, Q. Zhao et al., Clinical characteristics of refractory COVID-19 pneumonia in, 2020.

S. Wan, Y. Xiang, W. Fang, Y. Zheng, B. Li et al., Clinical features and treatment of COVID-19 patients in northeast Chongqing, J Med Virol, 2020.

X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study, Lancet Respir Med, 2020.

J. J. Zhang, X. Dong, Y. Y. Cao, Y. D. Yuan, Y. B. Yang et al., Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China, Allergy, 2020.

F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu et al., Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet, vol.395, pp.1054-1062, 2020.

F. Yang, S. Lin, F. Ye, J. Yang, J. Qi et al., Structural analysis of rabies virus glycoprotein reveals pH-dependent conformational changes and interactions with a neutralizing antibody, Cell Host Microbe, vol.27, p.7, 2020.

A. B. Bakker, W. E. Marissen, R. A. Kramer, A. B. Rice, W. C. Weldon et al., Novel human monoclonal antibody combination effectively neutralizing natural rabies virus variants and individual in vitro escape mutants, J Virol, vol.79, pp.9062-9068, 2005.

D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science, vol.367, pp.1260-1263, 2020.

A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. Mcguire et al., Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell, 2020.
URL : https://hal.archives-ouvertes.fr/pasteur-02546518

L. Caly, J. D. Druce, M. G. Catton, D. A. Jans, and K. M. Wagstaff, The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res, 2020.

R. M. Krause, B. Buisson, S. Bertrand, P. J. Corringer, J. L. Galzi et al., Ivermectin: a positive allosteric effector of the alpha7 neuronal nicotinic acetylcholine receptor, MolPharmacol, vol.53, pp.283-294, 1998.
URL : https://hal.archives-ouvertes.fr/pasteur-01718414

J. P. Changeux, Nicotine addiction and nicotinic receptors: lessons from genetically modified mice, Nat Rev Neurosci, vol.11, pp.389-401, 2010.