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ABSTRACT. Considering two random variables with different laws to which we only have access through
finite size i.i.d samples, we address how to reweight the first sample so that its empirical distribution con-
verges towards the true law of the second sample as the size of both samples goes to infinity. We study
an optimal reweighting that minimizes the Wasserstein distance between the empirical measures of the
two samples, and leads to an expression of the weights in terms of Nearest Neighbors. The consistency
and some asymptotic convergence rates in terms of expected Wasserstein distance are derived, and do not
need the assumption of absolute continuity of one random variable with respect to the other. These re-
sults have some application in Uncertainty Quantification for decoupled estimation and in the bound of the
generalization error for the Nearest Neighbor regression under covariate shift.

1. Introduction

1.1. Regression under covariate shift. This article is dedicated to the study of a method aimed at

approximating the law of a random variable

(1) Y = f(X,Θ),

where X ∈ R
d, Θ ∈ Θ are independent random variables, with respective laws denoted by µX and µΘ,

and f : Rd ×Θ → R
e is a measurable function. The space Θ is only assumed to be measurable. The

specificity of the problem at stake is that we assume to be provided with:

• a training sample (X ′
j , Y

′
j )j∈J1,mK of i.i.d observations Y ′

j = f(X ′
j ,Θj) where Θj has law µΘ

and is independent from X ′
j , but the law µX′ of X ′

j may differ from µX ;

• an evaluation sample (Xi)i∈J1,nK with i.i.d observations distributed according to µX .

This situation is known as covariate shift in the statistical learning literature [8, 33].

This problem is motivated by the study of decomposition-based uncertainty quantification (UQ) meth-

ods in complex industrial systems, as is detailed in Subsection 5.2 below. In this context, the overall

objective is to approximate a quantity of interest of the form

(2) QI = E[φ(Y )]

for some function φ : Re → R. Following previous works in this direction [2, 3, 4], our estimator of QI

assumes the form

(3) Q̂Im,n =
1

m

m∑

j=1

wjφ(Y
′
j ),
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where the vector of weights wm = (w1, . . . , wm) is chosen so that the weighted empirical measure

µ̂wm
X′

m
:=

1

m

m∑

j=1

wjδX′
j

of the training sample X
′
m = (X ′

1, . . . ,X
′
m) be close, in a sense which will be made precise below, to

the empirical measure

µ̂Xn :=
1

n

n∑

i=1

δXi

of the evaluation sample Xn = (X1, . . . ,Xn). Such a reweighting procedure is a standard approach to

the problem of density ratio estimation in the statistical learning literature [35], the purpose of which

is to estimate the density dµX/dµX′ from the samples Xn and X
′
m, without estimating separately the

measures µX and µX′ . While the theoretical analysis of such methods almost always requires this density

to exist, in the UQ context which motivates the present study it is desirable not to assume that any of the

measures µX and µX′ be absolutely continuous with respect to the other, see in particular Remark 5.3.

The first step of our work is thus the computation of optimal weights wm for the problem

min
wm

Wq

(
µ̂Xn , µ̂

wm
X′

m

)
,(4)

∀j ∈ J1,mK, wj ≥ 0, and
m∑

j=1

wj = m,(5)

where Wq denotes the Wasserstein distance of order q ≥ 1 on R
d. The reason for the choice of this

distance is that unlike criteria already studied in the density ratio estimation literature, such as mo-

ment/kernel matching, L2 distance, Kullback–Leibler divergence (see [35] and the references therein), it

is not sensitive to absolute continuity conditions and therefore it is well suited to our UQ motivation. On

the other hand, this choice makes the problem closely related to the fields of optimal quantization [23]

and Nearest Neighbor (NN) estimation [5].

More precisely, for any k ∈ J1,mK, denote by ψ̂(k)
m (x) the k-NN estimator of the regression function

(6) ψ(x) := E [φ(Y )|X = x] = E [φ(f(x,Θ))] ,

defined from the observation of the training sample, and then consider the Monte Carlo estimator

Q̂I
(k)

m,n =
1

n

n∑

i=1

ψ̂(k)
m (Xi)

of QI. Then the vector of weights wm which are optimal for (4)–(5) turns out not to depend on the value

of q, and the associated estimator Q̂Im,n defined by (3) coincides with the 1-NN estimator Q̂I
(1)

m,n. For

this reason, we shall denote by w
(1)
m the vector of optimal weights for (4)–(5), and more generally by

w
(k)
m the vector of weights induced by the k-NN estimator of ψ.

The main results of this paper describe the asymptotic behavior, as the respective sizes m and n of

the training and evaluation samples grow to infinity, of both the Wasserstein distance Wq(µ̂Xn , µ̂
w

(k)
m

X′
m
)

and the estimator Q̂I
(k)

m,n of QI. While taking k = 1 is optimal for the convergence of µ̂w
(k)
m

X′
m

to µ̂Xn ,

one may expect from the theory of NN regression that the estimator Q̂I
(k)

m,n display better convergence

properties if k is chosen to grow to infinity with m. Therefore we shall study both regimes k = 1 and

k = km → +∞.
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1.2. Outline of the article. The derivation of the Wasserstein optimal weights wm is detailed in Sec-

tion 2, where we also highlight connections between our results and various topics in numerical proba-

bility and statistical learning. The asymptotic behavior of Wq(µ̂Xn , µ̂
w

(k)
m

X′
m
) and Q̂I

(k)

m,n are respectively

studied in Sections 3 and 4. Applications to decomposition-based UQ and the generalization error for

NN regression under covariate shift, as well as numerical illustrations, are presented in Section 5.

1.3. Notation. We denote by N the set of the natural integers including zero and by N
∗ = N \ {0} the

set of positive integers. Given two integers n1 ≤ n2, the set of the integers between n1 and n2 is written

Jn1, n2K = {n1, . . . , n2}. For x ∈ R, ⌈x⌉ (resp. ⌊x⌋) is the unique integer verifying x ≤ ⌈x⌉ < x + 1

(resp. x − 1 < ⌊x⌋ ≤ x). For (x, y) ∈ R
2, we use the join and meet notation x ∧ y = min(x, y) and

x ∨ y = max(x, y). Last, we denote by (x)+ := 0 ∨ x and (x)− := 0 ∨ (−x) the nonnegative and

nonpositive parts of x ∈ R.

We fix a norm | · | on R
d, which need not be the Euclidean norm. The supremum norm of φ : Rd → R

is denoted by ‖φ‖∞ = supx∈Rd |φ(x)|. The distance between a point x ∈ R
d and a subset A ⊂ R

d is

denoted by dist(x,A). Last, for all x ∈ R
d and r ≥ 0, we denote B(x, r) := {x′ ∈ R

d : |x− x′| ≤ r},

and recall that the support of a probability measure ν ∈ P(Rd) is defined by

supp(ν) :=
{
x ∈ R

d : ∀r > 0, ν(B(x, r)) > 0
}
.

2. Wasserstein distance minimization and NN regression

2.1. Optimal weights for Wasserstein distances. We begin by recalling the definition of the Wasser-

stein distance.

Definition 2.1 (Wasserstein distance). Let P(Rd) be the set of probability measures on R
d and, for any

q ∈ [1,+∞), let

Pq(R
d) =

{
ν ∈ P(Rd) :

∫

Rd

|x|qdν(x) < +∞
}
.

The Wasserstein distance of order q between µ and ν ∈ Pq(R
d) is defined as

Wq(µ, ν) = inf

{∫

Rd×Rd

|x− x′|qdγ(x, x′) : γ ∈ Π(µ, ν)

}1/q

,

where Π(µ, ν) is the set of probability measures on R
d × R

d with marginals µ and ν.

We refer to [38, Section 6] for a general introduction to Wasserstein distances.

This definition allows for an explicit resolution of the minimization problem (4)–(5), which relies on

the notion of Nearest Neighbor (NN). For x ∈ R
d and k ∈ J1,mK, we denote by NN

(k)
X′

m
(x) the k-th

Nearest Neighbor (k-NN) of x among the sample X
′
m, that is to say the k-th closest point to x among

X ′
1, . . . ,X

′
m for the norm | · |. If there are several such points, we define NN

(k)
X′

m
(x) to be the point X ′

j

with lowest index j. We omit the superscript notation (k) when referring to the 1-NN, i.e.

NNX′
m
(x) = NN

(1)
X′

m
(x).

In the next statement, for any i ∈ J1, nK and l ∈ J1,mK, we denote by j(l)i the (lowest) index j such that

X ′
j = NN

(l)
X′

m
(Xi).
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Proposition 2.2 (Optimal vector of weights). Let the k-NN vector of weights w
(k)
m = (w

(k)
1 , . . . , w

(k)
m )

be defined by, for all j, k ∈ J1,mK,

(7) w
(k)
j :=

m

kn

n∑

i=1

k∑

l=1

1
{j=j

(l)
i }
.

The vector w
(k)
m satisfies (5) and verifies, for all q ∈ [1,+∞),

(8) W q
q

(
µ̂Xn , µ̂

w
(k)
m

X′
m

)
≤ 1

kn

n∑

i=1

k∑

l=1

∣∣∣Xi −NN
(l)
X′

m
(Xi)

∣∣∣
q
.

For k = 1, the equality is reached

(9) W q
q

(
µ̂Xn , µ̂

w
(1)
m

X′
m

)
=

1

n

n∑

i=1

∣∣Xi −NNX′
m
(Xi)

∣∣q ,

and the vector is optimal for (4) in the sense that for any wm = (w1, . . . , wm) which also satisfies (5),

we have

(10) Wq

(
µ̂Xn , µ̂

w
(1)
m

X′
m

)
≤Wq

(
µ̂Xn , µ̂

wm
X′

m

)
.

In other words, for a given j ∈ J1,mK, w(k)
j is proportional to the number of points Xi of which X ′

j

is one of the first k NN. We refer to [27] for a numerical illustration of the use of the vector of weights

w
(1)
m in the context of classification under covariate shift.

Proof. For a general vector of weights wm = (w1, . . . , wm) which satisfies (5), the Wasserstein distance

W q
q (µ̂Xn , µ̂

wm
X′

m
) is the solution of the following optimal transport problem

inf
(γi,j )(i,j)∈J1,nK×J1,mK

n∑

i=1

m∑

j=1

γi,j |Xi −X ′
j|q,

∀i ∈ J1, nK,

m∑

j=1

γi,j =
1

n
(marginal condition on µ̂Xn),

∀j ∈ J1,mK,

n∑

i=1

γi,j =
wj

m
(marginal condition on µ̂wm

X′
m

),

∀(i, j) ∈ J1, nK × J1,mK, γi,j ≥ 0,

(11)

where γi,j is the coefficient of the discrete transport plan between δXi and δX′
j
. For the k-NN vector of

weights w(k)
m defined by (7), the transport plan

γ
(k)
i,j =

1

kn

k∑

l=1

1
{j=j

(l)
i }

satisfies the two marginal conditions. Reordering the terms in the associated cost gives the upper bound

of Equation (8).

We now prove the equality (9) and optimality (10) of w(1)
m at the same time. On the one hand, it is

clear that for any vector of weights wm = (w1, . . . , wm) and any transport plan (γi,j)(i,j)∈J1,nK×J1,mK
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between µ̂Xn and µ̂wn
X′

m
, we have

n∑

i=1

m∑

j=1

γi,j|Xi −X ′
j |q ≥

n∑

i=1

m∑

j=1

γi,j |Xi −NNX′
m
(Xi)|q

=
1

n

n∑

i=1

|Xi −NNX′
m
(Xi)|q,

therefore taking the infimum over all transport plans yields

W q
q

(
µ̂Xn , µ̂

wm
X′

m

)
≥ 1

n

n∑

i=1

|Xi −NNX′
m
(Xi)|q.

On the other hand, taking wm = w
(1)
m in the left-hand side and combining this inequality with (8) for

k = 1, we obtain both the equality (9) and optimality (10). �

Remark 2.3. In order to alleviate notation, we now write µ̂
(k)
X′

m
= µ̂w

(k)
m

X′
m

.

2.2. Comments on Proposition 2.2. In this subsection, we discuss the relation between the result of

Proposition 2.2 and other fields in numerical probability and statistical learning, as well a generalization

of this result to a more general framework.

2.2.1. Link with optimal quantization. It is clear from Proposition 2.2 that µ̂(1)
X′

m
is the pushforward

of µ̂Xn by NNX′
m

, and that this transport map yields an optimal coupling between µ̂Xn and µ̂(1)
X′

m
in

Definition 2.1, for any q ≥ 1. The idea to associate each Xi with NNX′
m
(Xi) = X ′

j
(1)
i

is the basis of

the theory of optimal quantization [23, 24, 30]. In this context, the sample X
′
m plays the role of the

quantization grid, and NNX′
m

is known to be the optimal quantization function. The right-hand side

of (9) then corresponds to the Lq mean quantization error induced by the grid X
′
m for the measure µ̂Xn .

2.2.2. Link with geometric inference. When q = 2, the right-hand side of (8) rewrites
∫

x∈Rd

d2µ̂
X′

m
,k/m(x)µ̂Xn(dx),

where dµ,α(·) is the distance function to µ with parameter α introduced by Chazal, Cohen-Steiner and

Mérigot in [11, Definition 3.2] in order to perform geometric and topological inference for set estimation,

see also [12, 9] for robust inference. In particular, [11, Proposition 3.3] shows that for any x ∈ R
d,

(12)
d2µ̂

X′
m
,k/m(x) = inf

wm
W 2

2


 1

m

m∑

j=1

wjδX′
j
, δx


 ,

wm = (w1, . . . , wm) satisfies (5) and wj ≤ m/k for all j.

This result may be directly compared with the estimates (8) and (9), at least in the case where µX = δx.

In this case, if k = 1, then the supplementary constraint wj ≤ m/k is necessarily implied by (5) and

therefore, combining (12) with (9), we recover the optimality result (10). For arbitrary values of k, the

combination of (12) with (8) shows that the vector w(k)
m need not be optimal for (10), but yields a solution

which is lower than any solution with the supplementary constraint that wj ≤ m/k.
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2.2.3. A more general problem. Proposition 2.2 may appear as a specific instance, restricted to empirical

measures, of the following problem: given two probability measures µ and ν on R
d, and assuming that

µ ∈ Pq(R
d), compute the infimum of Wq(µ, ρdν) over all probability densities ρ with respect to ν.

Similar questions were recently addressed in [10]. First, it is clear that if µ is absolutely continuous

with respect to ν, then taking ρ = dµ/dν shows that this minimum is 0. Next, following the proof of

Proposition 2.2, it is easily seen that for any ρ,

W q
q (µ, ρdν) ≥ E [dist(X, supp(ν))q] , X ∼ µ.

To show that the right-hand side actually matches with the infimum of the left-hand side when ρ varies,

we keep following the proof of Proposition 2.2. Since supp(ν) is closed, for any x ∈ R
d the set Ψ(x) :=

{x′ ∈ supp(ν) : |x − x′| = dist(x, supp(ν))} is nonempty and closed. Besides, the multifunction Ψ

is weakly measurable1, therefore by the Kuratowski–Ryll-Nardzewski theorem it admits a measurable

selection which we denote by nnν . We denote by µ∗ the associated pushforward of µ by nnν . Then it is

clear that supp(µ∗) ⊂ supp(ν) on the one hand, and that

W q
q (µ, µ

∗) ≤ E [dist(X, supp(ν))q] , X ∼ µ,

on the other hand. We finally deduce from the approximation result stated in Lemma 2.4 below that

inf
ρ
W q

q (µ, ρdν) =W q
q (µ, µ

∗) = E [dist(X, supp(ν))q] , X ∼ µ,

which thereby generalizes the results of Proposition 2.2. Notice that there may not exist a minimizer ρ

for this problem as the measure µ∗ need not be absolutely continuous with respect to ν.

Lemma 2.4 (Wq approximation by absolutely continuous measures). Let µ∗ and ν be two probability

measures on R
q such that supp(µ∗) ⊂ supp(ν). For any ǫ > 0, there exists a probability density ρ with

respect to ν such that, for all q ≥ 1, Wq(µ
∗, ρdν) < ǫ.

Proof. Let ǫ > 0 and X ∈ R
d be a random variable with law µ∗. Almost surely, X ∈ supp(µ∗) ⊂

supp(ν) and therefore ν(B(X, ǫ)) > 0, which allows to draw Y with conditional distribution

dν(y|B(X, ǫ)) := 1{y∈B(X,ǫ)}
dν(y)

ν(B(X, ǫ))
.

On the one hand, the random variable Y has density

ρ(y) :=

∫

x∈Rd

1{y∈B(x,ǫ)}
dµ∗(x)

ν(B(x, ǫ))

with respect to ν, and on the other hand we have |X − Y | < ǫ, almost surely, which ensures that

Wq(µ
∗, ρdν) < ǫ for any q ≥ 1. �

1Let us denote S = supp(ν) and fix U ⊂ R
d an open set, which we write as the countable union of closed sets (Fn)n≥1.

Then {x ∈ R
d : Ψ(x)∩U 6= ∅} = ∪n≥1{x ∈ R

d : dist(x, (S ∩ Fn)) = dist(x, S)} and it is easily seen that each set in the
right-hand side is measurable.
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3. Analysis of the Wasserstein distance Wq(µ̂Xn , µ̂
(k)
X′

m
)

In this section, we study the asymptotic behavior of E[W q
q (µ̂Xn , µ̂

(k)
X′

m
)] when n,m → +∞. To this

aim, we first notice that by Proposition 2.2, we have

(13)
E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]
= E

[
1

n

n∑

i=1

∣∣Xi −NNX′
m
(Xi)

∣∣q
]

= E
[∣∣X −NNX′

m
(X)

∣∣q] ,
for k = 1, and

(14)

E

[
W q

q

(
µ̂Xn , µ̂

(k)
X′

m

)]
≤ E

[
1

kn

n∑

i=1

k∑

l=1

∣∣∣Xi −NN
(l)
X′

m
(Xi)

∣∣∣
q
]

=
1

k

k∑

l=1

E

[∣∣∣X −NN
(l)
X′

m
(X)

∣∣∣
q]
,

for k ≥ 2. Observe that the right-hand sides of both (13) and (14) no longer depend on n.

3.1. Consistency. Our first main result is a consistency result. Before stating it in Theorem 3.3, we

formulate two crucial assumptions.

Assumption 3.1 (Support condition). We have supp(µX) ⊂ supp(µX′).

Assumption 3.2 (Min-integrability). There exists an integer m0 ≥ 1 such that

E

[
min

j∈J1,m0K
|X ′

j |
]
< +∞.

Theorem 3.3 (Consistency). Let Assumptions 3.1 and 3.2 hold. For all q ∈ [1,+∞) such that E[|X|q] <
+∞, and any sequence of positive integers (km)m≥1 such that km/m→ 0 when m → +∞, we have

lim
m→+∞

E

[
W q

q

(
µ̂Xn , µ̂

(km)
X′

m

)]
= 0,

uniformly in n.

Theorem 3.3 is proved in Subsection 3.3.

Remark 3.4 (On Assumption 3.2). Assumption 3.2 is obviously satisfied if X ′ has a finite first order

moment, but also for some heavy-tailed distributions. It writes under the equivalent form

∫ +∞

0
P(|X ′| > r)m0dr < +∞,

which may be easier to check. An example of a random variable which does not satisfy this assumption,

in dimension d = 1, is X ′ = exp(1/U) where U is a uniform random variable on [0, 1].

Remark 3.5 (Limit without support condition). If the support condition of Assumption 3.1 does not hold,

then the proof of Theorem 3.3 may be adapted to show that

lim
m,n→+∞

E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]
= E [dist(X, supp(µX′))q] .
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3.2. Rates of convergence. The next step of our study consists in complementing Theorem 3.3 with a

rate of convergence. We first discuss the case k = 1. Following (13), we start by writing

E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]
= E

[∣∣X −NNX′
m
(X)

∣∣q]

= E
[
E
[∣∣X −NNX′

m
(X)

∣∣q∣∣X
]]
,

(15)

and observe that for any x ∈ supp(µX), |x−NNX′
m
(x)| = minj∈J1,mK |x−X ′

j |. If there is an open set

U of Rd containing x and such that µX′(· ∩ U) has a density pX′ with respect to the Lebesgue measure

which is continuous at x, then an elementary computation shows that, for all r ≥ 0,

lim
m→+∞

P

(
m1/d min

j∈J1,mK
|x−X ′

j | > r

)
= exp

(
−rdvdpX′(x)

)
,

where vd denotes the volume of the unit sphere of R
d for the norm | · |. If pX′(x) > 0 then this

indicates that the correct order of convergence in Theorem 3.3 should be m−q/d. If pX′(x) = 0, or if

the measure µX′(· ∩ U) is not absolutely continuous with respect to the Lebesgue measure, it is easy

to construct elementary examples yielding different rates of convergence; see also [5, Chapter 2] for

the singular case. We leave these peculiarities apart and work under the following strengthening of the

support condition of Assumption 3.1.

Assumption 3.6 (Strong support condition). There exists an open set U ⊂ R
d which contains supp(µX)

and such that:

(i) the measure µX′(· ∩ U) has a density pX′ with respect to the Lebesgue measure;

(ii) the density pX′ is continuous and positive on U ;

(iii) there exist κ ∈ (0, 1] and rκ > 0 such that, for any x ∈ U , for any r ∈ [0, rκ],

P
(
X ′ ∈ B(x, r)

)
≥ κpX′(x)vdr

d.

Obviously, Assumption 3.6 implies Assumption 3.1 because then supp(µX) ⊂ U ⊂ supp(µX′).

Part (iii) of Assumption 3.6 was introduced in [20] in the context of Nearest Neighbor classification, and

called Strong minimal mass assumption there. Similar assumptions are commonly used in set estimation,

geometric inference and quantization, such as standardness [14] or Ahlfors regularity [24].

Under Assumption 3.6, for all x ∈ supp(µX), a positive random variable Z such that P(Z > r) =

exp(−rdvdpX′(x)) has moments

E [Zq] =
Γ(1 + q/d)

(vdpX′(x))q/d
,

where Γ denotes Euler’s Gamma function. Therefore, as soon as the sequence

mq/d min
j∈J1,mK

∣∣X −X ′
j

∣∣q

is uniformly integrable, the normalized quantity

mq/d
E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]

converges to
Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
,

whenm goes to infinity. This statement appears for example in the literature of stochastic optimal quanti-

zation [23, Theorem 9.1]. Here, we provide an explicit moment condition ensuring uniform integrability.
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Assumption 3.7 (Moments). In addition to Assumption 3.6, the condition

E

[
1 + |X|q
pX′(X)q/d

]
< +∞

holds.

Assumptions 3.6 and 3.7 are discussed in more detail below. We now state our second main result.

Theorem 3.8 (Convergence rates for k = 1). Let Assumptions 3.2 and 3.6 hold, and let q ∈ [1,+∞) be

such that Assumption 3.7 holds. Then we have

lim
m→+∞

mq/d
E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]
=

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
.

Theorem 3.8 is proved in Subsection 3.3.

We now discuss the estimation of µ̂Xn by the weighted empirical measure µ̂(k)
X′

m
for an arbitrary k ∈

J1,mK. By (10), we first observe that we always have

Wq

(
µ̂Xn , µ̂

(k)
X′

m

)
≥Wq

(
µ̂Xn , µ̂

(1)
X′

m

)
,

so that the estimation of µ̂Xn is deteriorated by increasing the number of neighbors. Still, in the asymp-

totic regime of Theorem 3.3, a bound of the same order of magnitude as Theorem 3.8 may be obtained.

Corollary 3.9 (Convergence rates for k-NN). Under the assumptions of Theorem 3.8, for any nonde-

creasing sequence of positive integers (km)m≥1 such that km/m → 0 when m→ +∞, we have

lim sup
m→+∞

(
m

km

)q/d

E

[
W q

q

(
µ̂Xn , µ̂

(km)
X′

m

)]
≤ cd,q

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
,

with some constant cd,q > 1.

Corollary 3.9 is proved in Subsection 3.3, where the expression of the constant cd,q is also given.

Remark 3.10 (Optimal choice of µX′). When X has a density pX with respect to the Lebesgue measure,

an interesting fact is that the minimum of the quantity E
[
1/pX′(X)q/d

]
over the probability measure

pX′ is not reached when pX′ = pX . Instead, according to [41], the minimum is attained when pX′(x) ∝
pX(x)d/(q+d).

Remark 3.11 (NN distance without covariate shift). In the case where µX = µX′ , the quantity

E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]
= E

[∣∣X −NNX′
m
(X)

∣∣q]

is called Nearest Neighbor distance. It naturally arises in the theoretical study of NN regression and

classification [5, Chapter 2]. Previous works on the topic focus mainly on the convergence when q = 2

and assume that X has a bounded support [5, 17, 26, 32]. Some works [13, 25] consider some random

variables X with unbounded support in the context of k-NN regression, but make the assumption of a

bounded regression function ψ.

In this perspective, a direct corollary from Theorem 3.8 is the following statement: let X have a

density pX for which the strong minimal mass assumption 3.6 (iii) holds with U = R
d and∫

Rd

(1 + |x|q)pX(x)1−q/ddx < +∞.
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Let Xn = (X1, . . . ,Xn) be an i.i.d sample from pX , independent from X, and let NNXn denote the NN

among Xn. We have

E [|X −NNXn(X)|q ] ∼
n→+∞

Γ(1 + q/d)

v
q/d
d nq/d

∫

Rd

pX(x)1−q/ddx.

This extends the results of the literature by ensuring the asymptotic equivalence for random variables

with unbounded support.

Let us conclude this subsection with some comments on Assumptions 3.6 and 3.7. When X has

a compact support, Assumptions 3.6 and 3.7 are verified as soon as µX′ has a continuous density

pX′ which is bounded from below and above on an open set U ′ containing the support of µX . In-

deed, in that case there exist ǫ > 0 and an open subset U of U ′ such that U contains supp(µX)

and U ′ contains the ǫ-neighborhood of U . Then, Assumption 3.6 (iii) is verified with rκ < ǫ and

κ = infx∈U ′ pX′(x)/ supx∈U ′ pX′(x).

Assumptions 3.6 and 3.7 also hold in some nontrivial noncompact cases. An example of a sufficient

condition for Assumption 3.6, which does not depend on µX , is given in the next statement and is proved

in Subsection 3.3.

Lemma 3.12 (Radial density - Sufficient condition for Assumption 3.6). Let ‖ · ‖ be a norm on R
d,

induced by an inner product and not necessarily identical to | · |. If µX′ has a density pX′ with respect to

the Lebesgue measure on R
d, which writes pX′(x) = h(‖x−x0‖) for some x0 ∈ R

d and h : [0,+∞) →
R continuous, positive and nonincreasing, then Assumption 3.6 holds with U = R

d.

We also refer to [20, Section 2.4] for a discussion of this assumption.

Assumption 3.7 gives a relationship between µX and pX′ to ensure the convergence. In essence, it

asserts that the tail of µX must be quite lightweight compared to the tail of pX′ . For instance, if X

and X ′ are centered Gaussian vectors with respective covariance σ2Id and σ′2Id, then by Lemma 3.12,

Assumption 3.6 is satisfied with U = R
d, and it is easy to check that for q ∈ [1,+∞), Assumption 3.7

holds if and only if σ′2 > σ2q/d.

3.3. Proofs. In this subsection, we present the proofs of Theorems 3.3 and 3.8, Corollary 3.9 and

Lemma 3.12.

Proof of Theorem 3.3. We begin our proof with the constant case km = 1 for all m and then extend it to

the general case. We recall that by (13),

E

[
W q

q

(
µ̂Xn , µ̂

(1)
X′

m

)]
= E

[∣∣X −NNX′
m
(X)

∣∣q] = E

[
min

j∈J1,mK
|X −X ′

j |q
]
.

By Assumption 3.1, X ∈ supp(µX′) almost surely, so that we deduce from Lemma 2.2 in [5, Chapter

2] that

min
j∈J1,mK

|X −X ′
j |q

a.s−→
m→+∞

0.

Let m0 be the integer given by Assumption 3.2, we have

min
j∈J1,mK

|X −X ′
j |q ≤ 2q−1

(
|X|q + min

j∈J1,mK
|X ′

j |q
)
.
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The random variable |X|q is integrable by assumption and for m ≥ ⌈q⌉m0, the inequality

E

[
min

j∈J1,mK

∣∣X ′
j

∣∣q
]
≤ E

[
min

j∈J1,mK

∣∣X ′
j

∣∣⌈q⌉
]q/⌈q⌉

≤ E

[
min

j∈J1,m0K

∣∣X ′
j

∣∣ min
j∈Jm0+1,2m0K

∣∣X ′
j

∣∣ · · · min
j∈J(⌈q⌉−1)m0+1,⌈q⌉m0K

∣∣X ′
j

∣∣
]q/⌈q⌉

≤ E

[
min

j∈J1,m0K

∣∣X ′
j

∣∣
]q
< +∞

holds. Then by the dominated convergence theorem,

E

[
min

j∈J1,mK
|X −X ′

j|q
]

−→
m→+∞

0.

For the general case km/m → 0, we adapt directly the proof of [5, Theorem 2.4] to the context

µX 6= µX′ . Let us fix l ∈ J1,m/2K and partition the set {X ′
1, . . . ,X

′
m} into 2l sets of size m1, . . . ,m2l

with, for all j ∈ J1, 2lK,

⌊m/2l⌋ ≤ mj ≤ ⌊m/2l⌋+ 1.

We denote by NN
(1,j)
X′

m
the 1-NN among the subset j. By the definition of NN(l)

X′
m

, there are at least l

subsets j for which

|X −NN
(l)
X′

m
(X)| ≤ |X −NN

(1,j)
X′

m
(X)|,

therefore

|X −NN
(l)
X′

m
(X)|q ≤ 1

l

2l∑

j=1

|X −NN
(1,j)
X′

m
(X)|q ,

and consequently

E

[∣∣∣X −NN
(l)
X′

m
(X)

∣∣∣
q]

≤ 2E
[∣∣∣X −NNX

′
⌊m/2l⌋

(X)
∣∣∣
q]
.

Finally, we deduce from (14) that, as soon as km ≤ m/2,

E

[
W q

q

(
µ̂Xn , µ̂

(km)
X′

m

)]
≤ 1

km

km∑

l=1

E

[∣∣∣X −NN
(l)
X′

m
(X)

∣∣∣
q]

≤ 2

km

km∑

l=1

E

[∣∣∣X −NNX
′
⌊m/2l⌋

(X)
∣∣∣
q]

≤ 2E
[∣∣∣X −NNX

′
⌊m/2km⌋

(X)
∣∣∣
q]
,

(16)

which goes to 0 as a consequence of the first part of the proof when m/2km goes to infinity. �

Proof of Theorem 3.8. By (13), we have

E

[
mq/dW q

q (µ̂Xn , µ̂
(1)
X′

m
)
]
= E

[
E

[
mq/d min

j∈J1,mK

∣∣X −X ′
j

∣∣q
∣∣∣∣X
]]

=

∫

Rd

∫ +∞

0
P

(
mq/d min

j∈J1,mK
|x−X ′

j|q > t

)
dtdµX(x)

=

∫

Rd

∫ +∞

0
P(mq/d|x−X ′|q > t)mdtdµX(x),

(17)

by independence of the X ′
j . The proof consists in computing the pointwise limit of P(mp/d|x − Y |p >

t)m for (x, t) ∈ supp(µX)×R
+ and then establishing the convergence of the integral via the dominated

convergence theorem.
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Pointwise convergence. We have

P(mq/d|x−X ′|q > t)m =
(
1− P(|x−X ′| ≤ t1/q/m1/d)

)m

= exp
(
m log

(
1− P(|x−X ′| ≤ t1/q/m1/d)

))
.

By Assumption 3.6, we have

P(|x−X ′| ≤ t1/q/m1/d) = pX′(x)vdt
d/q/m+ o(1/m),

with vd the volume of the unit sphere. Thus

m log
(
1− P(|x−X ′| ≤ t1/q/m1/d)

)
= −pX′(x)vdt

d/q + o(1),

and we conclude that

P(mq/d|x−X ′|q > t)m −→
m→+∞

exp
(
−pX′(x)vdt

d/q
)
.

Dominated convergence. Let rκ > 0 be given by Assumption 3.6. We split the integral in the right-

hand side of (17) and study each term separately
∫

Rd

∫ +∞

0
P(mq/d|x−X ′|q > t)mdtdµX(x) = I + II

with

I :=

∫

Rd

∫ rqκm
q/d

0
P(|x−X ′| > t1/q/m1/d)mdtdµX(x),

II :=

∫

Rd

∫ +∞

rqκmq/d

P(|x−X ′| > t1/q/m1/d)mdtdµX(x).

Convergence of I. For t ∈ [0, rqκmq/d], we have t1/q/m1/d ≤ rκ and thus

P(|x−X ′| > t1/q/m1/d)m =
(
1− P(|x−X ′| ≤ t1/q/m1/d)

)m

≤
(
1− pX′(x)vdκt

d/q

m

)m

by Assumption 3.6.

Using the elementary inequality (1− a/n)n ≤ exp(−a) for a ≤ n, we can write

P(|x−X ′| > t1/q/m1/d)m ≤ exp(−κvdpX′(x)td/q).

This bound does not depend on m and the integral
∫

Rd

∫ +∞

0
exp

(
−κvdpX′(x)td/q

)
dtdµX(x) =

∫

Rd

Γ(1 + q/d)

(κvdpX′(x))q/d
dµX(x)

=
Γ(1 + q/d)

(κvd)q/d
E

[
1

pX′(X)q/d

]

is finite by Assumption 3.7. We therefore deduce from the dominated convergence theorem that

lim
m→+∞

I =

∫

Rd

∫ +∞

0
exp

(
−pX′(x)vdt

d/q
)
dtdµX(x)

=
Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
.



Reweighting samples under covariate shift using a Wasserstein distance criterion 13

Convergence of II. Let m ≥ 2(q + 1)m0. Using the change of variable rq = t/mq/d, we have

II = q

∫

Rd

∫ +∞

rκ

mq/drq−1
P(|x−X ′| > r)mdrdµX(x)

≤ q

∫

Rd

∫ +∞

rκ

Vm(x, r)drdµX(x),

with

Vm(x, r) := mq/d
P(|x−X ′| > rκ)

m−(q+1)m0rq−1
P(|x−X ′| > r)(q+1)m0 .

As P(|x −X ′| > rκ) < 1 for all x in U , by Assumption 3.6, Vm(x, r) is pointwise convergent to 0 on

the support of µX . We check that Vm(x, r) is bounded from above by an integrable function which does

not depend on m. Let us denote m′ = m− (q + 1)m0 ≥ m/2 and rewrite

mq/d
P(|x−X ′| > rκ)

m−(q+1)m0 =
(m
m′

)q/d
m′q/d

P(|x−X ′| > rκ)
m′

≤ 2q/dm′q/d
(
1− P(|x−X ′| ≤ rκ)

)m′

≤ 2q/dm′q/d exp
(
−m′κpX′(x)vdr

d
κ

)
,

where we have used Assumption 3.6 and the elementary above inequality at the third line. We deduce

that

mq/d
P(|x−X ′| > rκ)

m−(q+1)m0 ≤ C1

pX′(x)q/d
, C1 :=

2q/d

(κvdrdκ)
q/d

sup
u≥0

(uq/de−u),

so that

(18) Vm(x, r) ≤ Ṽ (x, r) :=
C1

pX′(x)q/d
rq−1

P(|x−X ′| > r)(q+1)m0 .

To complete the proof, we verify that Ṽ (x, r) is integrable on U × [rκ,+∞). We first fix x ∈ R
d and

estimate the integral of Ṽ (x, r) in r. Using the fact that if |x − X ′| > r then |X ′| > r − |x|, we first

write
∫ +∞

rκ

rq−1
P(|x−X ′| > r)(q+1)m0dr ≤

∫ +∞

0
rq−1

P(|X ′| > r − |x|)(q+1)m0dr

=

∫ +∞

−|x|
(r + |x|)q−1

P(|X ′| > r)(q+1)m0dr.

On the interval [−|x|, 0], we have
∫ 0

−|x|
(r + |x|)q−1

P(|X ′| > r)(q+1)m0dr =

∫ 0

−|x|
(r + |x|)q−1dr =

|x|q
q
.

On the interval [0,+∞), we first rewrite
∫ +∞

0
(r + |x|)q−1

P(|X ′| > r)(q+1)m0dr =

∫ +∞

0
(r + |x|)q−1

P

(
min

j∈J1,m0K
|X ′

j | > r

)q+1

dr,

and recall from Assumption 3.2 that C2 := E[minj∈J1,m0K |X ′
j |] < +∞. As a consequence, we deduce

from Markov’s inequality that the right-hand side in the previous equality is bounded from above by
∫ |x|∨1

0
(r + |x|)q−1dr + Cq+1

2

∫ +∞

|x|∨1

(r + |x|)q−1

rq+1
dr.

If |x| ≤ 1 then this expression is bounded from above. If |x| > 1, then we have
∫ |x|

0
(r + |x|)q−1dr ≤ 2q−1|x|q
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on the one hand, and
∫ +∞

|x|

(r + |x|)q−1

rq+1
dr =

1

|x|

∫ +∞

1

(u+ 1)q−1

uq+1
du,

which is bounded from above, on the other hand. Overall, we conclude that there exists a constant C3

such that

(19)
∫ +∞

rκ

rq−1
P(|x−X ′| > r)(q+1)m0dr ≤ C3(1 + |x|q).

As a consequence, the combination of (18) and (19) yields
∫

Rd

∫ +∞

rκ

Ṽ (x, r)drdµX(x) ≤ C1C3E

[
1 + |X|q
pX′(X)q/d

]
,

which by Assumption 3.7 allows to apply the dominated convergence theorem to show that II goes to 0,

and thereby completes the proof. �

Proof of Corollary 3.9. We start from the second line of Equation (16) and estimate its right-hand side

E

[
W q

q (µ̂Xn , µ̂
(km)
X′

m
)
]
≤ 2

km

km∑

l=1

E

[∣∣∣X −NNX′
⌊m/2l⌋

(X)
∣∣∣
q]

=
2

km

km∑

l=1

(
2km
m

l

km

m

2l

)q/d

E

[∣∣∣X −NNX
′
⌊m/2l⌋

(X)
∣∣∣
q]

=

(
km
m

)q/d 2q/d+1

km

km∑

l=1

(
l

km

)q/d

F
(m
2l

)

with F (u) = uq/dE[|X −NNX
′
⌊u⌋

(X)|q ]. Let ǫ > 0. By Theorem 3.8, there exists uǫ ≥ 0 such that, for

all u ≥ uǫ, ∣∣∣∣∣F (u)−
Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]∣∣∣∣∣ ≤ ǫ.

We can remark that for m ∈ N
∗ and l ∈ J1, kmK,

m

2l
≥ m

2km
−−−−−→
m→+∞

+∞.

Thus, if we take mǫ such that for all m ≥ mǫ,
⌊

m
2km

⌋
≥ uǫ, we have

∣∣∣∣∣F
(m
2l

)
− Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]∣∣∣∣∣ ≤ ǫ

for any m ≥ mǫ and l ≤ km. Consequently,
∣∣∣∣∣
1

km

km∑

l=1

(
l

km

)q/d
(
F
(m
2l

)
− Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

])∣∣∣∣∣ ≤ ǫ

∣∣∣∣∣
1

km

km∑

l=1

(
l

km

)q/d
∣∣∣∣∣ ≤ ǫ,

so that

lim
m→+∞

2q/d+1

km

km∑

l=1

(
l

km

)q/d

F
(m
2l

)
= cd,q

Γ(1 + q/d)

v
q/d
d

E

[
1

pX′(X)q/d

]
,
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where

cd,q := lim
m→+∞

2q/d+1

km

km∑

l=1

(
l

km

)q/d

=





2q/d+1

k

k∑

l=1

(
l

k

)q/d

if supm≥1 km = k < +∞,

2q/d+1

∫ 1

0
uq/ddu =

2q/d+1

q/d+ 1
if supm≥1 km = +∞,

because km is nondecreasing. This concludes the proof. �

Proof of Lemma 3.12. Obviously, it suffices to check that pX′ satisfies (iii) in Assumption 3.6. Let us

denote by 〈·, ·〉 and B(x, r) respectively the inner product and the ball of center x and radius r associated

to ‖ · ‖. We set x0 = 0 without loss of generality. As h is positive and nonincreasing, we may fix r0 > 0

and define

κ :=
h(r0)

h(0)
∈ (0, 1].

If ‖x‖ ≤ r0/2, then for all y ∈ B(0, r0/2), the monotonicity of h ensures that pX′(x+y) ≥ κpX′(x).

By the equivalence of the norms, there exist C ≥ c > 0 such that for any x ∈ R
d and any r ≥ 0,

B(x, cr) ⊂ B(x, r) ⊂ B(x,Cr). Thus

∀r ≤ r0/2c, P
(
X ′ ∈ B(x, r)

)
≥ P

(
X ′ ∈ B(x, cr)

)
≥ (c/C)dvdκpX′(x)rd.

If ‖x‖ > r0/2, let us introduce the half-cone

Cx =

{
x′ ∈ R

d : 〈x′ − x,−x〉 ≥ ‖x′ − x‖‖x‖
2

}
,

and notice that for all r ≤ r0/2 and x′ ∈ Cx ∩ B(x, r),

‖x′‖2 = ‖x‖2 + ‖x′ − x‖2 + 2〈x′ − x, x〉
≤ ‖x‖2 + ‖x′ − x‖2 − ‖x′ − x‖‖x‖
≤ ‖x‖2 + ‖x′ − x‖2 − ‖x′ − x‖2 = ‖x‖2.

Thus, for all x′ ∈ Cx ∩ B(x, r), pX′(x′) ≥ pX′(x). For a given r, the sets Cx ∩ B(x, r) have the same

volume for all x, which we denote by αvdrd for some α ∈ (0, 1/Cd). Finally, we have

∀r ≤ r0/2c, P(X ′ ∈ B(x, r)) ≥ P(X ′ ∈ B(x, cr) ∩ Cx) ≥ αcdvdpX′(x)rd.

If we take κ = (c/C)d min(αCd, κ) and rκ = r0/2c, we obtain the point (iii) of Assumption 3.6. �

4. Convergence of Q̂I
(k)

m,n to QI

This section is dedicated to the study of the convergence of Q̂I
(k)

m,n to QI. As a preliminary step, we

complement the results from Section 3 by deriving rates of convergence for the Wasserstein distance

between µ̂
(k)
X′

m
and µX in Subsection 4.1. We then distinguish between the noiseless case in which

Y = f(X), addressed in Subsection 4.2, and the noisy case Y = f(X,Θ), addressed in Subsection 4.3.



16 Julien Reygner and Adrien Touboul

4.1. Convergence of µ̂
(k)
X′

m
to µX . Let us fix q ∈ [1,+∞) and use Jensen’s inequality to write, for

k = km ∈ J1,mK,

(20) E

[
W q

q

(
µX , µ̂

(km)
X′

m

)]
≤ 2q−1

(
E
[
W q

q (µX , µ̂Xn)
]
+ E

[
W q

q

(
µ̂Xn , µ̂

(km)
X′

m

)])
.

Under the assumptions of Corollary 3.9, the second term has order of magnitude at most (km/m)q/d.

The study of the first term, namely the rate of convergence of the expected Wq distance (taken to the

power q) between the empirical measure of iid realizations and their common distribution, has been the

subject of several works. Under the condition that there exists s > 2q such that E[|X|s] < +∞, we have

from [19, Theorem 1]

(21) E
[
W q

q (µX , µ̂Xn)
]
=





O
(
n−1/2

)
if q > d/2,

O
(
n−1/2 log(1 + n)

)
if q = d/2,

O
(
n−q/d

)
if q < d/2.

These estimates may be improved if more assumptions are made on µX . For example, if this measure

possesses a lower and upper bounded density on some bounded subset of Rd, then the rate is known to

be n−q/d even if q > d/2 [21]. This rate may even be improved if µX concentrates on a low-dimensional

submanifold of Rd [39, 16], which is particularly relevant in the UQ context which motivates this study,

see Remark 5.3. In order to make the use of our results as flexible as possible, from now on we shall

denote by (τq,d(n))n≥1 a sequence such that

E
[
W q

q (µX , µ̂Xn)
]
= O(τq,d(n)) ,

and thus

E

[
W q

q

(
µX , µ̂

(km)
X′

m

)]
= O(τq,d(n)) + O

((
km
m

)q/d
)
.

As is sketched in the discussion above, the precise order of τq,d(n) depends on properties of the measure

µX .

In the sequel, where we study the convergence of Q̂I
(k)

m,n to QI, the W1 distance plays a specific role,

due to the Kantorovitch duality formula [38, Remark 6.5]

(22) W1 (µ, ν) = sup
|ϕ|Lip≤1

{∫

Rd

ϕ(x)dµ(x) −
∫

Rd

ϕ(x)dν(x)

}
,

where |ϕ|Lip denotes the Lipschitz constant of ϕ.

We shall need the following estimate.

Lemma 4.1 (W q
1 estimate). If E[|X|q] < +∞ with q ≥ 2, then

E [W q
1 (µX , µ̂Xn)] = O

(
1

nq/2
+ τ1,d(n)

q

)
.

Proof. For any vector (x1, . . . , xn) ∈ (Rd)n, let us define

W (x1, . . . , xn) := W1

(
1

n

n∑

i=1

δxi , µX

)

= sup
|ϕ|Lip≤1

{
1

n

n∑

i=1

ϕ(xi)−
∫

Rd

ϕ(x)µX (dx)

}
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thanks to (22). Then for any i ∈ J1, nK and x♭i ∈ R
d, using the identity above and the fact that | sup f −

sup g| ≤ sup |f − g|, we get
∣∣∣W (x1, . . . , xn)−W (x1, . . . , xi−1, x

♭
i , xi+1, . . . , xn)

∣∣∣

≤ sup
|ϕ|Lip≤1

∣∣∣∣∣
ϕ(x1) + · · ·+ ϕ(xn)

n
− ϕ(x1) + · · ·+ ϕ(x♭i) + · · ·+ ϕ(xn)

n

∣∣∣∣∣

=
1

n
sup

|ϕ|Lip≤1

∣∣∣ϕ(xi)− ϕ(x♭i)
∣∣∣

=
1

n
|xi − x♭i |.

As a consequence, letting Xn = (X1, . . . ,Xn) and X
♭
n = (X♭

1, . . . ,X
♭
n) be two independent samples

from µX , we deduce that the random variables V + and V − defined by

V ± := E

[
n∑

i=1

(
W (X1, . . . ,Xn)−W (X1, . . . ,Xi−1,X

♭
i ,Xi+1, . . . ,Xn)

)2
±
|Xn

]

satisfy the bound

V ± ≤ 1

n2

n∑

i=1

E

[
|Xi −X♭

i |2|Xn

]
.

As a consequence, for any q ≥ 2 we have by Jensen’s inequality

E

[
(V ±)q/2

]
≤ 1

nq/2
E



(
1

n

n∑

i=1

E

[
|Xi −X♭

i |2|X
])q/2




≤ 1

nq/2
E

[
|X −X♭|q

]
≤ 2q−1

nq/2
E [|X|q] .

We therefore deduce from the higher-order Efron–Stein inequality [7, Theorem 2] that there exists a

universal constant Cq such that

E [|W (Xn)− E [W (Xn)]|q] ≤ CqE

[
(V −)q/2 + (V +)q/2

]
≤ 2qCq

nq/2
E [|X|q] .

We conclude the proof by writing, using Jensen’s inequality again,

E [W (Xn)
q] = E [|W (Xn)− E [W (Xn)] + E [W (Xn)]|q]
≤ 2q−1 (E [|W (Xn)− E [W (Xn)]|q] + E [W (Xn)]

q) ,

which yields the claimed estimate. �

Remark 4.2. With the estimates given by (21), τ1,d(n) is of order n−1/d as soon as d ≥ 3. Thus, in this

case, we get from Lemma 4.1 that E[W q
1 (µX , µ̂Xn)] is of order n−q/d. When q > d/2, this is a faster

rate of decay to 0 than what one would have obtained bounding W1 by Wq.

4.2. Rate of convergence of Q̂I
(km)

m,n in the noiseless case. We assume that Y = f(X) and study the

rate of convergence of Q̂I
(km)

m,n to QI. When φ ◦ f is L-Lipschitz continuous, we deduce from (22) that
∣∣∣∣QI− Q̂I

(km)

m,n

∣∣∣∣
q

=

∣∣∣∣
∫

Rd

φ ◦ f(x)dµX(x)−
∫

Rd

φ ◦ f(x)dµ̂(km)
X′

m
(x)

∣∣∣∣
q

≤ LqW q
1

(
µX , µ̂

(km)
X′

m

)
.

We therefore obtain the following result.
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Proposition 4.3 (Rates of convergence in the noiseless case). Assume that:

(i) the function f does not depend on Θ,

(ii) the function φ ◦ f is globally Lipschitz continuous,

and let the assumptions of Corollary 3.9 hold for some q ≥ 2. Then

(23) E

[∣∣∣∣QI− Q̂I
(km)

m,n

∣∣∣∣
q]1/q

= O

(
1√
n
+ τ1,d(n)

)
+O

((
km
m

)1/d
)
.

There is no need for km to go to infinity and thus km = 1 is optimal.

These computations can be adapted to cases other than φ ◦ f Lipschitz continuous. For instance,

if A ⊂ R
e, φ(y) = 1{y∈A} and f is globally Lipschitz continuous, it is possible to use the margin

assumption of [37] to deduce theoretical rates of convergence in the estimation of QI = P(Y ∈ A).

4.3. Rate of convergence of Q̂I
(km)

m,n in the noisy case. We now study the convergence of Q̂I
(km)

m,n to QI

when Y = f(X,Θ). A first striking result is then that even under the assumptions of Theorem 3.3, the

estimator Q̂I
(1)

m,n need not be consistent. Indeed, consider the case where X is actually deterministic and

always equal to some x0 ∈ R
d. Then we have

Q̂I
(1)

m,n =
1

n

n∑

i=1

φ(Y ′

j
(1)
i

),

where j(1)i is the index of the closest X ′
j to Xi. But since Xi = x0 for all i, all indices j(1)i are equal to

some j(1) and the estimator rewrites

Q̂I
(1)

m,n = φ(Y ′
j(1)

) = φ(f(X ′
j(1)

,Θj(1))).

While Assumption 3.1 ensures that X ′
j(1)

converges to x0 when m→ +∞, in general the corresponding

sequence of Θj(1) does not converge.

As is evidenced on this example, the presence of an atom in the law of X makes the estimator Q̂I
(1)

m,n

depend on a single realization of Θ and therefore prevents this estimator from displaying an averaging

behavior with respect to the law of Θ. In Proposition 4.4, we clarify this point by exhibiting a necessary

and sufficient condition for the estimator Q̂I
(1)

m,n to be consistent, while in Proposition 4.5, we show

that replacing Q̂I
(1)

m,n with Q̂I
(km)

m,n with km → +∞ allows to recover such an averaging behavior and

makes the estimator consistent, even when µX has atoms. In the latter case, we also provide rates of

convergence in Proposition 4.6.

We recall that ψ(x) = E[φ(f(x,Θ))] is defined in Equation (6). In the next statement, we denote by

AX the set of atoms of µX , that is to say the set of x ∈ R
d such that P(X = x) > 0, and introduce the

notation

ϑ(x) := Var(φ(f(x,Θ))).

Proposition 4.4 (Consistency of the 1-NN in the noisy case). Assume that:

(i) the function φ is bounded,

(ii) the function ψ is globally Lipschitz continuous,

(iii) the function ϑ is continuous,
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and let the assumptions of Theorem 3.3 hold. We have

E

[∣∣∣∣Q̂I
(1)

m,n −QI

∣∣∣∣
]
−−−−−−→
m,n→+∞

0

if and only if

∀x ∈ AX , ϑ(x) = 0.

In particular, under the above assumptions, if the law of X has no atom, i.e. AX = ∅, then Q̂I
(1)

m,n

converges to QI.

Proof. Let us write

Q̂I
(1)

m,n −QI =

(
Q̂I

(1)

m,n − Q̃I
(1)

m,n

)
+

(
Q̃I

(1)

m,n −QI

)
,

with

Q̃I
(1)

m,n =
1

m

m∑

j=1

w
(1)
j ψ(X ′

j).

Using the Lipschitz continuity of ψ, the duality formula (22) and Theorem 3.3, we get that Q̃I
(1)

m,n − QI

converges to 0 when m,n → +∞, in L1. Therefore, Q̂I
(1)

m,n −QI converges to 0 if and only if Q̂I
(1)

m,n −
Q̃I

(1)

m,n converges to 0.

Let us rewrite

Q̂I
(1)

m,n − Q̃I
(1)

m,n =
1

m

m∑

j=1

w
(1)
j

(
φ
(
f
(
X ′

j ,Θj

))
− ψ

(
X ′

j

))

=
1

n

n∑

i=1

(
φ

(
f

(
X ′

j
(1)
i

,Θ
j
(1)
i

))
− ψ

(
X ′

j
(1)
i

))
,

introduce the notation

A+
X := {x ∈ AX : ϑ(x) > 0},

and denote

e1 :=
1

n

n∑

i=1

(
φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′

j
(1)
i

)

)
1{Xi 6∈A

+
X},

e2 :=
1

n

n∑

i=1

(
φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′

j
(1)
i

)

)
1{Xi∈A

+
X}.

In Step 1 below, we prove that

E [|e1|] −−−−−−→
n,m→+∞

0,

demonstrating at the same time the direct implication of the convergence when A+
X = ∅. In Step 2, we

show that if A+
X 6= ∅ then E[|e2|] does not converge to 0, which implies that in this case, Q̂I

(1)

m,n− Q̃I
(1)

m,n

does not converge to 0 in L1.

In both steps, we shall use the following preliminary remark: given a measurable subset A of Rd,

taking the conditional expectation with respect to (Xn,X
′
m) it is easy to see that for i ∈ J1, nK,

E

[
(φ(f(X ′

j
(1)
i

,Θ
j
(1)
i

))− ψ(X ′

j
(1)
i

))1{Xi∈A}

]
= 0,
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and for (i1, i2) ∈ J1, nK2,

E

[
(φ(f(X ′

j
(1)
i1

,Θ
j
(1)
i1

))− ψ(X ′

j
(1)
i 1

))1{Xi1
∈A}(φ(f(X

′

j
(1)
i2

,Θ
j
(1)
i2

))− ψ(X ′

j
(1)
i2

))1{Xi2
∈A}

]

= E

[
1
{j

(1)
i1

=j
(1)
i2

}
ϑ(X ′

j
(1)
i1

)1{Xi1
∈A,Xi2

∈A}

]
.

Therefore,

E[|e1|2] =
1

n2




n∑

i=1

E

[
ϑ(X ′

j
(1)
i

)1{Xi 6∈A
+
X}

]
+
∑

i1 6=i2

E

[
1
{j

(1)
i1

=j
(1)
i2

}
ϑ(X ′

j
(1)
i1

)1{Xi1
6∈A+

X ,Xi2
6∈A+

X}

]


=
1

n
E

[
ϑ(X ′

j
(1)
1

)1{X1 6∈A
+
X}

]
+
n− 1

n
E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1 6∈A
+
X ,X2 6∈A

+
X}

]
,

and a similar expression holds for E[|e2|2].
Step 1. Thanks to the boundedness of φ, and thus of ϑ, it is immediate that

1

n
E[ϑ(X ′

j
(1)
1

)1{X1 6∈A
+
X}] −−−−−→n→+∞

0,

uniformly in m. Therefore, to show that E[|e1|2] converges to 0, it suffices to prove that

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1 6∈A
+
X ,X2 6∈A

+
X}

]
−−−−−→
m→+∞

0.

In this purpose, let us first write

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1 6∈A
+
X ,X2 6∈A

+
X}

]
≤ E

[
1{NN

X′
m
(X1)=NN

X′
m
(X2)}ϑ(NNX′

m
(X1))1{X1 6∈A

+
X}

]
,

and recall that, by Assumption 3.1 and Lemma 2.2 in [5, Chapter 2], NNX′
m
(X1) converges to X1 and

NNX′
m
(X2) converges to X2, almost surely. As a consequence, if X1 ∈ AX \ A+

X then ϑ(X1) = 0 and

by the continuity of ϑ and the boundedness of φ, the dominated convergence theorem shows that

E

[
1{X1∈AX\A+

X}1{NN
X′

m
(X1)=NN

X′
m
(X2)}ϑ(NNX′

m
(X1))

]
−−−−−→
m→+∞

0.

On the other hand, if X1 6∈ AX , then almost surely X1 6= X2, and therefore 1{NN
X′

m
(X1)=NN

X′
m
(X2)}

converges to 0 almost surely. Using the boundedness of φ and the dominated convergence theorem again,

we deduce that

E

[
1{X1 6∈AX}1{NN

X′
m
(X1)=NN

X′
m
(X2)}ϑ(NNX′

m
(X1))

]
−−−−−→
m→+∞

0,

which shows that E[|e1|2], and thus E[|e1|], converge to 0.

Step 2. Let us now assume that A+
X is nonempty and show that e2 does not converge to 0 in L1. We

shall actually prove that e2 does not converge to 0 in L2: since e2 is bounded then this prevents the

convergence from occuring in L1. From the preliminary remark, we write

E[|e2|2] =
1

n
E

[
ϑ(X ′

j
(1)
1

)1{X1∈A
+
X}

]
+
n− 1

n
E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1∈A
+
X ,X2∈A

+
X}

]
,

and we prove that

lim inf
m→+∞

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1∈A
+
X ,X2∈A

+
X}

]
> 0.

Let x ∈ A+
X . Obviously,

E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1∈A
+
X ,X2∈A

+
X}

]
≥ E

[
1
{j

(1)
1 =j

(1)
2 }

ϑ(X ′

j
(1)
1

)1{X1=X2=x}

]

= E
[
ϑ(NNX′

m
(x))1{X1=X2=x}

]
.
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By Assumption 3.1 and Lemma 2.2 in [5, Chapter 2] again, NNX′
m
(x) converges to x almost surely,

therefore using the continuity and boundedness assumptions on ϑ, the dominated convergence theorem

shows that

E
[
ϑ(NNX′

m
(x))1{X1=X2=x}

]
−−−−−→
m→+∞

ϑ(x)µX({x})2 > 0,

which completes the proof. �

We now study the estimator Q̂I
(km)

m,n and show that it is unconditionnally consistent as soon as km →
+∞. We provide L2 convergence rates in Proposition 4.6.

Proposition 4.5 (Consistency in the noisy case). Assume that

(i) the function φ is bounded,

(ii) the function ψ is globally Lipschitz continuous,

and let the assumptions of Theorem 3.3 hold with q = 2. As soon as km goes to infinity with m and

km/m → 0, we have

E

[∣∣∣∣Q̂I
(km)

m,n −QI

∣∣∣∣
2
]1/2

−−−−−−→
n,m→+∞

0.

Proof. We decompose the error as

(24) Q̂I
(km)

m,n −QI =

(
Q̂I

(km)

m,n − Q̃I
(km)

m,n

)
+

(
Q̃I

(km)

m,n −QI

)
,

with

Q̃I
(km)

m,n =
1

m

m∑

j=1

w
(km)
j ψ(X ′

j).

As ψ is globally Lipschitz continuous and does not depend on Θ, we have

E

[(
Q̃I

(km)

m,n −QI

)2
]1/2

≤ LE
[
W 2

1

(
µX , µ̂

(km)
X′

m

)]1/2

≤ 2L
(
E
[
W 2

1 (µX , µ̂Xn)
]
+ E

[
W 2

1 (µ̂Xn , µ̂
(km)
X′

m
)
])1/2

by Jensen’s inequality, with L the Lipschitz constant of ψ. The second term is bounded from above by

E[W 2
2 (µ̂Xn , µ̂

(km)
X′

m
)], which goes to 0 by Theorem 3.3. For the first term, the same arguments as in the

proof of Lemma 4.1 show that

E
[
W 2

1 (µX , µ̂Xn)
]
= O

(
1

n
+ E [W1 (µX , µ̂Xn)]

2

)
.

Since W1(µX , µ̂Xn) converges to 0 in probability [31] and the assumption that E[|X|2] < +∞ ensures

that this sequence is uniformly integrable, we deduce that its expectation converges to 0 [6, Section 5].

Thus, the second part of the right-hand side of (24) converges to 0 in L2.



22 Julien Reygner and Adrien Touboul

Let us consider the first part in the right-hand side of (24). We write the quadratic error

E

[∣∣∣∣Q̂I
(km)

m,n − Q̃I
(km)

m,n

∣∣∣∣
2
]

= E




 1

m

m∑

j=1

w
(km)
j (ψ(X ′

j)− φ(f(X ′
j ,Θj)))




2


= E


 1

m2

m∑

j=1

w
(km)2
j

(
ψ(X ′

j)− φ(f(X ′
j ,Θj))

)2



+ E


m− 1

m2

∑

j 6=l

w
(km)
j w

(km)
l

(
ψ(X ′

j)− φ(f(X ′
j ,Θj))

) (
ψ(X ′

l)− φ(f(X ′
l ,Θl))

)

 .

Using the fact that E[w(km)
j f(X ′

j ,Θj)|Xn,X
′
m] = w

(km)
j ψ(X ′

j) by definition and the independence of

the Θj , the cross terms vanish. The remaining quadratic term is

E


 1

m2

m∑

j=1

w
(km)2
j

(
ψ(X ′

j)− φ(f(X ′
j ,Θj))

)2



=
1

m2

m∑

j=1

E

[
w

(km)2
j (ψ(X ′

j)− φ(f(X ′
j ,Θ)))2

]

≤ 4

m2

m∑

j=1

E

[(
w

(km)
j

)2]
‖φ‖2∞.

(25)

We remark that
m∑

j=1

(
w

(km)
j

)2
=

m2

n2k2m

n∑

i1,i2=1

km∑

l1,l2=1

1
{j

(l1)
i1

=j
(l2)
i2

}

and that for some fixed i1,i2 and l1, there exists exactly one l2 ∈ J1,mK such that j(l1)i1
= j

(l2)
i2

as

(j
(l)
i2
)1≤l≤m is a permutation of J1,mK. Therefore, there exists at most one l2 ∈ J1, kmK verifying this

property and, consequently,

m∑

j=1

(
w

(km)
j

)2
≤ m2

n2k2m

n∑

i1,i2=1

km∑

l1=1

1 =
m2

km
.

We can then bound the second term by

E




 1

m

m∑

j=1

w
(km)
j (ψ(X ′

j)− φ(f(X ′
j ,Θj)))




2

1/2

≤ 2

k
1/2
m

‖φ‖∞,

which converges to 0 when km goes to infinity. �

In order to complement Proposition 4.5 with a rate of convergence, we restart from the decomposi-

tion (24). Under the additional assumptions of Corollary 3.9 with q = 2, the same arguments as in the

proof of Proposition 4.3 yield

E

[(
Q̃I

(km)

m,n −QI

)2
]1/2

= O

(
1√
n
+ τ1,d(n)

)
+O

((
km
m

)1/d
)
,
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while we still have

E

[∣∣∣∣Q̂I
(km)

m,n − Q̃I
(km)

m,n

∣∣∣∣
2
]1/2

= O

(
1√
km

)

from the proof of Proposition 4.5. As a consequence,

E

[∣∣∣∣QI− Q̂I
(km)

m,n

∣∣∣∣
2
]1/2

= O

(
1√
n
+ τ1,d(n)

)
+O

((
km
m

)1/d

+
1√
km

)
.

Optimizing in km, we get the following statement.

Proposition 4.6 (Rates of convergence in the noisy case). Under the assumptions of Proposition 4.5 and

Corollary 3.9 with q = 2, we have

E

[∣∣∣∣QI− Q̂I
(km)

m,n

∣∣∣∣
2
]1/2

= O

(
1√
n
+ τ1,d(n)

)
+O

(
1

m1/(d+2)

)

for km ∼ m2/(d+2).

The loss of convergence order with respect to Proposition 4.3 is similar to the NNR context, in which

it deteriorates from the rate 1/d in the noiseless case to the rate of 1/(d+2) in the noisy case [5, Section

14.6 and Section 15.3].

5. Applications and numerical illustration

We present a reformulation of our results in a standard framework for k-NN regression in Subsec-

tion 5.1, and then provide a detailed account of the original motivation of this work by decomposition-

based UQ in Subsection 5.2. Last, numerical illustrations of our main results in a simple setting are

reported in Subsection 5.3; we refer to [36, Chapter 11] for an application in an industrial context.

5.1. Generalization error of k-NN regression under covariate shift. In this subsection, we address

the k-NN regression problem under covariate shift from the following more standard point of view: the

quantity of interest is directly the regression function

r(x) := E [Y |X = x] = E [f(x,Θ)] ,

and the k-NN estimator of r(x) is defined from the training set by

r̂(k)m (x) =
1

k

k∑

l=1

Y ′
j(l)(x)

,

where j(l)(x) denotes the (smallest) index j such that X ′
j = NN

(l)
X′

m
(x). We are no longer interested in

some quantity E[φ(Y )] but rather in the (L2) generalization error under covariate shift

E

[∣∣∣r(X)− r̂(k)m (X)
∣∣∣
2
]
, X ∼ µX .

For the sake of simplicity we assume that Y , r(X), etc. take scalar values.

Theorem 5.1 (L2 generalization error of the k-NN regression under covariate shift). Let µX and µX′

verify the assumptions of Theorem 3.8 for q = 2. Assume in addition that f is Lipschitz continuous in x,

uniformly in Θ, and that Var(f(x,Θ)) ≤ σ2 < +∞ for all x ∈ supp(µX′).
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When the sequence (km)m≥1 satisfies the assumptions of Corollary 3.9, with km ∼ m2/(d+2), there

exists C ≥ 0 such that

lim sup
m→+∞

m1/(2+d)
E

[(
r(X)− r̂(km)

m (X)
)2]1/2

≤ σ + CE

[
1

pX′(X)2/d

]1/2
.

We retrieve essentially the same orders of convergence as in the case without covariate shift. The

quantity E[1/pX′(X)2/d]1/2 seems to be the relevant bound of the loss due to the use of µX′ instead of

µX and we expect that the greater this quantity is, the slower the convergence will be.

Proof. The proof is an adaptation of [5, Theorem 14.5], using elements of the proofs of Theorem 3.8 and

Corollary 3.9. We can decompose the L2 error

E

[(
r(X)− r̂(km)

m (X)
)2]1/2

≤ E

[(
r(X)− r̃(km)

m (X)
)2]1/2

+ E

[(
r̃(km)
m (X)− r̂(km)

m (X)
)2]1/2

with

r̃(km)
m (x) =

1

km

km∑

l=1

E

[
f(NN

(l)
X′

m
(x),Θ)

]
.

By Jensen’s inequality, the first term can be bounded by

E

[(
r(X)− r̃(km)

m (X)
)2]

≤ L2

(
1

km

km∑

l=1

E

[(
X −NN

(l)
X′

m
(X)

)2]
)
,

where L is the Lipschitz constant of f , and then following the proof of Corollary 3.9, we get

lim sup
m→+∞

(
m

km

)1/d

E

[(
r(X)− r̃(km)

m (X)
)2]1/2

≤ CE

[
1

pX′(X)2/d

]1/2
,

with C := L(cd,2Γ(1 + 2/d)/v
2/d
d )1/2. The second term is bounded by

E

[(
r̃(km)
m (X)− r̂(km)

m (X)
)2]1/2

=
1

km
E

[
km∑

l=1

(
f(NN

(l)
X′

m
(X),Θj(l)(X))− E[f(NN

(l)
X′

m
(X),Θ)|X]

)2
]1/2

≤ 1

k
1/2
m

σ.

The optimal rate is km ∼ m2/(2+d), leading to

lim sup
m→+∞

m1/(2+d)
E

[(
r(X)− r̂(km)

m (X)
)2]1/2

≤ σ + CE

[
1

pX′(X)2/d

]1/2
,

which completes the proof. �

5.2. Application to decomposition-based UQ. In the UQ context, the relation (1) represents a com-

puter simulation [18, 15]: the random variable X is the input of the simulation, the random variable Θ

describes the set of its parameters, the function f is the numerical model and the random variable Y is

the output of the simulation. The function φ involved in the definition (2) of the quantity of interest QI

is the observable.

The fact that we assume that both X and Θ may be random, but with distinct sources of uncertainty

(which is modeled by their statistical independence), comes from the study of uncertainty propagation

in complex networks of numerical models [1, 3, 28, 34, 29]. In this context, several computer codes,
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representing various disciplines, are connected with each other by the fact that the outputs of certain

codes are taken as inputs of other codes. Then f represents one discipline, with ‘internal’ uncertain

parameters Θ whose law is known by the agent in charge of the simulation, and ‘external’ uncertain

parameters X which are the output of possibly several upstream numerical simulations. Independently

from our complex system context, assuming that the internal parameter Θ may be random is a standard

practice to take aleatoric or epistemic uncertainty into account [15, 22].

If X is deterministic then the computation of a global quantity of interest can be treated by the

so-called Collaborative Optimization methods [8, 40] in Multidisciplinary Analysis and Optimization.

However, if X is random, a direct Monte Carlo evaluation of QI is often impossible to implement in

practice. Indeed, if the number of interacting disciplines is large and each code evaluation is costly, then

one cannot wait for a sample X1, . . . ,Xn to be generated by the upstream simulations before starting

running one’s own simulation. Therefore, decomposition-based UQ methods have been introduced in

the literature in order to allow disciplines to run their numerical simulations independently. Basically,

these methods work in two phases. In an offline phase, each discipline generates it own synthetic sample

X ′
1, . . . ,X

′
m according to some user-chosen probability measure µX′ on R

d (or possibly other designs of

experiment). The numerical model f is then evaluated on the sample (X ′
1,Θ1), . . . , (X

′
m,Θm) to obtain

a corresponding set of realizations Y ′
1 , . . . , Y

′
m. Once actual realizations X1, . . . ,Xn become available

in a subsequent online phase, they have to be used in combination with the synthetic sample to construct

an estimator of QI, but evaluations of the numerical model f are no longer allowed.

We refer to [2, 3, 4] for examples and background on these methods. The k-NN reweighting scheme

introduced in the present article is yet another possible approach to this problem. More general non-

parametric regression methods, such as Nadaraya–Watson estimators, may also be considered. A more

systematic study of such approaches, based on linear reweighting, as well as their generalization to the

estimation of quantities of interest defined on a graph of numerical models, may be found in [36, Chapter

11] and will be the object of a future publication.

Remark 5.2 (Stochastic simulators). Our framework is also suited to the situation where Θ does not

represent well-identified parameters, but must rather be interpreted as the inherent randomness of the

numerical model. In the UQ literature, such models are called stochastic simulator (see for instance [42]

and the references therein) and their emulation is closely related with the regression problem addressed

in this article, interpreting Θ as a noise term.

Remark 5.3 (A simple example with low-dimensionally supported data). In the multidisciplinary context

introduced above, consider the simple setting in which a random variable X1 is taken as an input by two

distinct disciplines, represented by two numerical models f1 and f2. Assume in addition that the output

Y 1 = f1(X1) of the former is taken as an input by the latter, so that Y 2 = f2(X1, Y 1). In the

decomposition-based approach, the second discipline has to design a synthetic sample (X ′1
j , Y

′1
j )j∈J1,mK

without the actual knowledge of f1. Therefore it is unlikely that this sample be absolutely continuous

with respect to the true law of (X1, Y 1), the support of which lies in the manifold {(x, f1(x))}.
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5.3. Numerical illustrations. This subsection investigates numerically the influence of the choice of

the synthetic distribution µX′ on the quality of the respective approximations of µX by µ̂(1)
X′

m
, and of QI

by Q̂I
(km)

m,n .

5.3.1. Influence of µX′ on the convergence of µ̂
(1)
X′

m
. We investigate how the relationship between µX

and µX′ impacts the convergence of µ̂(1)
X′

m
presented in Subsection 4.1. In this numerical experiment, we

set the dimension d = 2, choose

X = (U,U), U ∼ U ([0, 1]) ,

and

X ′ ∼ N
((

µ
µ

)
, σ2

(
1 scorr

scorr 1

))
,

with µ = 0.5, σ = 0.3 and various scorr in (−1, 1). Intuitively, the closer scorr is to 1, the closer µX′ is

to µX , as illustrated in Figure 1.
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FIGURE 1. Plot of the support ofX and 1500 i.i.d realizations ofX ′ for different values
of scorr.

As a first ‘purely visual’ indication of the quality of the approximation of µX by µ̂(1)
X′

m
, we plot on

Figure 2 the trace of a kernel smoothing of µ̂(1)
X′

m
on the segment {(u, u), u ∈ [0, 1]}. We can see that

the greater scorr is, the better the reconstruction looks like. From a more quantitative point of view, this

observation is confirmed in Figure 3, where we plot the evolution of E[W 2
2 (µ̂Xn , µ̂

(1)
X′

m
)] as a function

of m. We can see that although this quantity converges at the theoretical rate m−1, the multiplicative

constant decreases with scorr.

5.3.2. Influence of µX′ on the convergence of Q̂I
(km)

m,n . We now concentrate on the impact on the effi-

ciency of Q̂I
(km)

m,n . We keep the framework of the previous paragraph, and we try to estimate the quantity

of interest

QI = E[φ(f(X,Θ))], f((x1, x2), θ) = sin(2πx1) sin(2πx2)(1 + θ)

with Θ ∼ U([−1, 1]) and φ(y) = y. The L2 error

E

[∣∣∣∣Q̂I
(km)

m,n −QI

∣∣∣∣
2
]1/2

= E

[∣∣∣∣Q̂I
(km)

m,n − 0.5

∣∣∣∣
2
]1/2

is computed by Monte Carlo estimation. As highlighted in Figure 4, the closeness of µX to µX′ is an

important factor for the efficiency of the estimator.



Reweighting samples under covariate shift using a Wasserstein distance criterion 27

FIGURE 2. Trace of a kernel smoothing of µ̂(1)
X′

m
on the segment {(u, u), u ∈ [0, 1]} for

different values of scorr.

FIGURE 3. Evolution of E[W 2
2 (µ̂Xn , µ̂

(1)
X′

m
)] with respect to m, for various values of

scorr. For each value of m and scorr, the quantity W 2
2 (µ̂Xn , µ̂

(1)
X′

m
) is computed (with

n = 100) thanks to the formula (9), and its expectation is estimated through Monte
Carlo average over 700 replications. The theoretical rate of m−q/d = m−1 is attained
for each experiment.
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FIGURE 4. Estimation of the L2 error with respect to scorr for n = m = 900 and
km = 4, averaged on 2000 replications.
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