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Résumé

Dans ce papier, nous introduisons et résolvons le problème

de stéréophotométrie pour les caméras 360◦ accessibles

au grand public. Nous présentons une équation de l’irra-

diance pour les images sphériques, spécifiquement adap-

tée aux caméras twin-fisheye cameras ainsi qu’un algo-

rithme pour l’estimation de la direction des éclairages,

en s’appuyant sur la tache spéculaire qui apparait sur

des sphères miroir. Plusieurs expérimentations sont réa-

lisées à partir d’images de synthèse et d’images réelles

acquises avec une caméra Ricoh Theta V, afin de vérifier

le fonctionnement et la robustesse de l’approche propo-

sée. Pour permettre et faciliter la reproduction des résul-

tats, les jeux de données ainsi que les programmes dé-

veloppés sont publiquement disponibles à cette adresse :

home.mis.u-picardie.fr/∼fabio/PhotoSphere.html

Cet article a été accepté à l’International Conference on

Pattern Recognition (ICPR) 2020.

Mots Clef

Stéréophotométrie, reconstruction 3D, vision omnidirec-

tionnelle.

Abstract

In this paper, we introduce and solve for the first time,

the photometric stereo problem for low-cost 360-degree

cameras. In particular, we present a spherical image ir-

radiance equation which is adapted to twin-fisheye ca-

meras, and an original algorithm for the estimation of

light directions based on the specular highlights obser-

ved on mirror balls. Extensive experiments with synthetic

and real-world images captured by a Ricoh Theta V ca-

mera, demonstrate the effectiveness and robustness of the

proposed 3D reconstruction pipeline. To foster reprodu-

cible research, the image dataset and code developed for

this paper are made publicly available at the address :

home.mis.u-picardie.fr/∼fabio/PhotoSphere.html

This paper has been accepted at the International Confe-

rence on Pattern Recognition (ICPR) 2020.

Keywords

Photometric stereo, 3D reconstruction, omnidirectional vi-

sion.

1 Introduction

1.1 Motivation and related work

In recent years, 360-degree commodity cameras have be-

come increasingly popular and affordable. These systems

consist of multiple perspective cameras rigidly attached to

the same support, or they combine wide-angle (fisheye)

lenses and mirrors. Thanks to their ability to capture a

scene from all around, these low-cost sensors offer new

opportunities for image-based 3D reconstruction via multi-

view [1, 2] or photometric stereo [3].

Photometric stereo methods rely on the image-intensity va-

riations caused by illumination changes, to perform a per-

pixel estimation of the normal vectors of an observed sur-

face, from which the shape of the 3D object can be ulti-

mately recovered. The seminal work of Woodham [4] has

been extended in several directions in the last decades :

for example, in [5–8], the authors have relaxed the lighting

constraints, and used outdoor images under natural sun-

light illumination, to perform the 3D reconstruction. The

so-called “uncalibrated” photometric stereo problem arises

when no information about the illumination and/or geome-

try, and reflectance of the surface is available. This pro-

blem is well-known to be ill-posed and it has been the

subject of extensive research lately [9–13]. Other exten-

sions include near-field (i.e. local and non-strictly direc-

tional lighting) [14–16], more sophisticated surface reflec-

tance models (i.e. “Bidirectional Reflectance Distribution

Functions” or BRDF, other than the classical Lambertian

reflectance) [17–20], the relaxation of constraints on ca-

mera placement [21–23] and combinations thereof [24].

Alongside these recent developments, Woodham’s origi-

nal formulation has been also extended from orthographic

to perspective projection in [25]. However, efforts have

lagged behind research on consumer-grade vision sensors,

and, to the best of our knowledge, no results exist in the

literature for twin-fisheye cameras, such as the Samsung

Gear 360, the LG 360 CAM, and the Ricoh Theta and

Insta360 series. These cameras incorporate two fisheye

lenses mounted back-to-back on the same support, and an

array of prisms which direct the light beams towards two

imaging sensors (see Fig. 1). Spherical cameras such as the

Ricoh Theta V, are affordable and lightweight, they have a

compact form factor, and they offer distinctive advantages

over standard perspective cameras for the 3D reconstruc-

tion of large-scale environments. In fact, a single shot is
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sufficient to record the appearance of an entire complex

scene. This obviates the need for stitching up images co-

ming from multiple vantage points, a limiting factor for the

use of perspective cameras. Robotics and consumer elec-

tronics have also recently benefited from the attractive fea-

tures of twin-fisheye sensors, e.g. for image-based pose es-

timation [26, 27].

1.2 Original contributions, organization and
notation

In this paper, we adapt the general theory developed in our

previous work [28] for central panoramic cameras (i.e. vi-

sion systems which preserve the uniqueness of the projec-

tion viewpoint), to twin-fisheye cameras. We make stan-

dard assumptions on the lighting and reflectance models

(i.e. directional lighting and Lambertian surfaces), and we

leverage the unifying projection model [29, 30], tailored to

multi-fisheye cameras [31, 32], to define a spherical image

irradiance equation. Differently from [28], the two sub-

images corresponding to each fisheye lens of the camera,

are processed separately to estimate two per-pixel gradient

fields, which are subsequently merged into a single one.

A drift-free normal integration algorithm is designed to

process the joint gradient field and recover the radial dis-

tances, and thus the 3D shape of the scene observed by

the camera. To estimate the light directions in real images,

we took advantage of the specular highlights observed on

multiple mirror balls inside the scene, and modified the al-

gorithm in [33] to fit our spherical formulation. The overall

3D reconstruction pipeline has been validated with synthe-

tic images, and with real-world images captured by the Ri-

coh Theta V camera in a laboratory environment.

The rest of this paper is organized as follows. In Sect. 2,

we present the mathematical model of a twin-fisheye ca-

mera and the spherical image irradiance equation, and des-

cribe our 3D reconstruction pipeline. In Sect. 3, we present

the results of the simulation experiments. In Sect. 4, we

describe the algorithms developed for the calibration of the

Ricoh Theta V camera and for the estimation of the light di-

rections, and we discuss the results obtained with the real-

world images. Finally, in Sect. 5, the main contributions of

the paper are summarized and some possible directions for

future research are outlined.

Notation : Throughout this article, as generally accepted in

the literature, we shall use the term twin-fisheye to refer to

the camera, and dual-fisheye to refer to the images captured

by the twin-fisheye camera (see Fig. 1(a) and Fig. 1(c), res-

pectively). The symbol Rn denotes the n-dimensional Eu-

clidean space, Rm×n the space of m×n matrices, ‖x‖ the

Euclidean norm of vector x ∈ R
n, and Ry(θ) and Rz(ϕ),

the 3 × 3 elementary rotations of an angle θ and ϕ about

the y- and z-axis, respectively. Finally, 〈x, y〉 denotes the

scalar product of x, y ∈ R
n, x̂ indicates a normalized vec-

tor i.e. x̂ = x/‖x‖, x an estimate of vector x, and , the

equality by definition.

2 Estimation of radial distances

from photometric ratios

2.1 Modeling of a twin-fisheye camera

In this work, we deal with twin-fisheye cameras, i.e.

360-degree cameras equipped with two identical fisheye

lenses pointing in opposite directions (see Fig. 1), with spe-

cial attention to the Ricoh Theta V camera, which will be

used in our real-world experiments in Sect. 4.

It is well known that some classes of fisheye came-

ras are approximately equivalent to a central catadioptric

system [34, 35]. Therefore, the unified central projection

model can be used [29, 30]. We describe each fisheye lens

of the twin-fisheye camera by its own set of intrinsic para-

meters Pcj =
{
auj

, avj
, u0j

, v0j , ξj
}

, j ∈ {1, 2}, where

auj
and avj

are the focal lengths in pixels in the horizontal

and vertical directions, respectively, and (u0j
, v0j ) are the

coordinates of the principal point in pixels. The fifth para-

meter, ξj , is the distance between the unit sphere’s first pro-

jection center and the perspective second projection cen-

ter of fisheye lens j, as described in [30, Fig. 2]. Follo-

wing [26], we assume that the translation vector between

the frames Fc1 and Fc2 of the two fisheye lenses is zero,

to ensure the uniqueness of point of view. Moreover, we

assume that the camera frame Fc coincides with Fc1 (they

are shown separately in Fig. 1(b), for illustration purposes

only). The extrinsic parameters of the twin-fisheye camera

are then incorporated into the rotation matrix c2Rc1 , the

orientation of Fc1 relative to Fc2 .

The spherical image captured by a twin-fisheye camera can

be represented by using the spherical coordinate system

(ρ, θ, ϕ) [36, Sect. 2.5] :





x = ρ sin θ cosϕ,

y = ρ sin θ sinϕ,

z = ρ cos θ,

(1)

where ρ ∈ [0, ∞) is the radial distance, θ ∈ (0, π) the

polar angle and ϕ ∈ [0, 2π) the azimuthal angle.

Our ultimate goal in this paper, will be to estimate the radial

distance (or range) ρ from multiple images of a 3D scene

observed from the same viewpoint, but under different illu-

mination conditions.

2.2 Spherical image irradiance equation

To solve the photometric stereo problem for central panora-

mic cameras under a Lambertian reflectance model, in our

previous work [28, Th. 2], we have introduced the spherical

image irradiance equation,

I(θ, ϕ) =
α(θ, ϕ)LT

||L||
√

p2 +
( q

sin θ

)2
+ 1

Rz(ϕ)Ry(θ)




p

q

sin θ

−1


,

(2)

where I(θ, ϕ) and α(θ, ϕ) ∈ [0, 1], denote the inten-

sity and the albedo at point (θ, ϕ), respectively, L ,
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FIGURE 1 – (a) Front, side and top view of a twin-fisheye

camera, the Ricoh Theta V (image courtesy of Ricoh), and

schematic of the optical system with the two fisheye lenses,

prisms and CMOS sensors ; (b) Fc is the camera frame, and

Fc1 , Fc2 , the coordinate frames associated to the two fi-

sheye lenses (top view) ; (c) Example of dual-fisheye image

taken by the Ricoh Theta V : the left and right sub-images

correspond to the two fisheye lenses.

[pd, qd, −1]T is the illumination vector (the light source

without attenuation is set at infinity), and

p ,
1

ρ

∂ ρ

∂ θ
=

∂ ln ρ

∂ θ
, q ,

1

ρ

∂ ρ

∂ ϕ
=

∂ ln ρ

∂ ϕ
. (3)

Note that equation (2) only depends on the partial deri-

vatives of ln ρ(θ, ϕ) with respect to θ and ϕ, but not on

ln ρ(θ, ϕ) itself. As a consequence, the problem of recove-

ring the radial distance ρ(θ, ϕ) from the image irradiance

equation reduces to the problem of recovering ln ρ(θ, ϕ)
from (2). Since the natural logarithm is a bijective function

and ρ(θ, ϕ) > 0, estimating ln ρ(θ, ϕ) amounts to recove-

ring ρ(θ, ϕ) = exp(ln ρ(θ, ϕ)). Photometric stereo relies

on multiple images of the same scene observed from the

same point of view, under n different lighting conditions.

If we define the images and the corresponding illumination

vectors, Ii(θ, ϕ) and

Li , [pdi
, qdi

, −1]T , i ∈ {0, 1, . . . , n− 1},
respectively, then from equation (2), the ith-image irra-

diance equation is :

Ii(θ, ϕ) =
α(θ, ϕ)LT

i

||Li||
√

p2 +
( q

sin θ

)2
+ 1

Rz(ϕ)Ry(θ)




p

q

sin θ

−1


.

By dividing the ith image by the kth (assuming that the

latter is non-zero everywhere), we obtain :

Ii(θ, ϕ)

Ik(θ, ϕ)
=

‖Lk‖LT
i Rz(ϕ)Ry(θ)

[
p,

q

sin θ
, −1

]T

‖Li‖LT
k Rz(ϕ)Ry(θ)

[
p,

q

sin θ
, −1

]T .

(4)

By expanding the numerator and the denominator, and by

collecting the terms containing p and q, the photometric

ratio (4) can be rewritten as,

Ai,k p + Bi,k q + Ci,k = 0, i, k ∈ {0, 1, . . . , n− 1},
(5)

where

Ai,k = Ii(θ, ϕ) ‖Li‖〈Lk, eθ〉 − Ik(θ, ϕ) ‖Lk‖〈Li, eθ〉,

Bi,k =
1

sin θ

(
Ii(θ, ϕ)‖Li‖〈Lk, eϕ〉 − Ik(θ, ϕ)‖Lk‖〈Li, eϕ〉

)
,

Ci,k = −Ii(θ, ϕ) ‖Li‖〈Lk, eρ〉+ Ik(θ, ϕ) ‖Lk‖〈Li, eρ〉,

where {eρ, eθ, eϕ} is the basis set of unit vectors for the

spherical coordinates [36, Sect. 2.3]. We can notice that

system (5) is linear in p and q. Since two images are ne-

cessary to construct each of its equations, then three images

are sufficient to recover the two unknowns p and q under

ideal conditions. However, in the presence of image noise,

the least-squares solution to system (5) is clearly prefe-

rable.

2.3 3D reconstruction pipeline

In the proposed 3D reconstruction pipeline (see the flow-

chart in Fig. 2), the processing steps from the inverse pers-

pective projection to the estimation of the gradient field,

are performed separately for each sub-image. This yields a

per-pixel estimation of (p, q) in Fc1 and Fc2 . In the inverse

perspective projection step, each pixel of the spherical

image Ii(θ, ϕ) is mapped into a pixel in the image plane

Ii(u, v), and into a corresponding 3D point on the unit

sphere Ii(xs, ys, zs), i ∈ {0, 1, . . . , n− 1}. The estimated

gradient field on the image plane and unit sphere is denoted

by (p(u, v), q(u, v)) and (p(xs, ys, zs), q(xs, ys, zs)),
respectively. In the fusion and resampling step, the two gra-

dient fields are merged into a single one on unit the sphere,

each hemisphere corresponding to a fisheye lens of the ca-

mera. In particular, along the equator, we set,

p(π/2, ϕ) = 1

2

[
p(π − π/λ, ϕ) + p(π + π/λ, ϕ)

]
,

q(π/2, ϕ) = 1

2

[
q(π − π/λ, ϕ) + q(π + π/λ, ϕ)

]
,

where ϕ ∈ [0, 2π), and 1/λ is the sampling interval (we

set λ = 512 in our tests in Sect. 3 and Sect. 4).
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FIGURE 2 – Flowchart of the proposed photometric stereo

algorithm, which takes n dual-fisheye images as input.

Next, as shown in Fig. 2, the unknown radial map ρ(θ, ϕ)
is recovered by integration of the joint gradient field. Nu-

merous methods exist in the literature to solve the integra-

tion problem [37]. The popular variational approach consi-

ders a least-squares cost function and solves the corres-

ponding 2D Poisson-equation [38]. Iterative methods [39],

path integrals and grid-based basis functions [3], have also

been proposed for the numerical integration.

In this work, we use a drift-free method which takes the

gradient field directly as input (cf. [28]). Two geometric

constraints were enforced to improve the quality of the re-

constructed surface. As a result of the fusion and resam-

pling step, the joint gradient field (p(θ, ϕ), q(θ, ϕ)) is de-

fined over the full sphere (the two poles excluded). The

first constraint is a periodic boundary condition, and it is

referred to as the “Circularity Constraint”. Since the ra-

dial distance must take the same values along opposite azi-

muth boundaries, we enforced ρ(θ, ϕ+∆ϕ) = ρ(θ, 0) for

ϕ = 2π with θ ∈ (0, π), where ∆ϕ denotes the step-size

along the ϕ-direction used in the finite-difference approxi-

mation of ∂ ln ρ/∂ ϕ in (3). The second constraint, referred

to as “Polar Constraint”, is imposed on the contiguous grid

points lying on the annuli around the North or South poles

(i.e. the points with θ = 0 or θ = π, which are the sin-

gularities of the spherical coordinate representation (1)).

As such, all the points on the North and South annulus are

considered as neighbors.

3 Simulation experiments
In this section, we present the results of our experiments

with synthetic images, which allowed us to easily verify

how critical our assumptions on the geometry of the scene

and on the lighting conditions are.

To test the effectiveness of the proposed approach, we used

Blender 1 to create a 3D virtual scene that we conside-

red as our ground truth. We generated synthetic grayscale

dual-fisheye images using the estimated calibration para-

meters of the Ricoh Theta V camera (see Sect. 4.1 for

more details), under 14 different lighting conditions. The

illumination vectors Li, i ∈ {0, 1, . . . , 13}, were positio-

ned so as to light up each 3D point of the scene at least

three times. To simplify the simulation process and reduce

the number of input images to the 3D reconstruction pi-

peline, the self-occlusions were neglected. The quantiza-

tion effect on 8-bit gray images was simulated by mapping

Ii(θ, ϕ) ∈ [0, 1] ⊂ R≥0, i ∈ {0, 1, . . . , 13}, onto the

discrete set {0, 1, . . . , 255}.

To assess the 3D reconstruction quality, we considered the

angular deviation between the ground-truth and estimated

normal vectors,

ε(θ, ϕ) = arccos(〈N(θ, ϕ), N(θ, ϕ)〉),
being N(θ, ϕ) the actual normal at (θ, ϕ), and N(θ, ϕ)
the normal estimated by our method.

To validate the overall image-processing pipeline, in our

first test we considered a Geodesic Polyhedron with 80

faces and circumradius r (a 2-frequency subdivided icosa-

hedron). Fig. 3(a) shows one of the 14 input dual-fisheye

images, and Fig. 3(b) the estimated normal map (in false

colors) computed with the formula (cf. equation (2)) :

N(θ, ϕ) =
1√

p2 +
( q

sin θ

)2
+ 1

Rz(ϕ)Ry(θ)




p

q

sin θ

−1


.

Note that the Mean Angle Error (MAE) is 0.35◦ and not

zero, because of the quantization error. Finally, Fig. 3(c)

shows the external surface of the Geodesic Polyhedron

reconstructed with the direct geometry-informed method

described in Sect. 2.3.

In our second and third test, we focused on two phenomena

which occur when an image is recorded by a real camera.

In fact, we studied the effect of gamma correction and of

non-directional lighting on the quality of surface recons-

truction. The second row of Table 1 reports the MAE for

an increasing value of γ, and with (shaded columns) or wi-

thout correction. Instead, the fourth row of the table reports

the MAE for an increasing distance between a virtual point

light source and the center of the Geodesic Polyhedron. To

define such a distance, we considered integer multiples of

the circumradius r of the polyhedron

In our last test with synthetic images, we considered a more

challenging 3D scene, called Room, which contains seve-

ral depth discontinuities. The images for this scene were

1. Blender 2.79b : 3D Computer Graphics Software,

www.blender.org
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FIGURE 3 – Synthetic images : 1st row, Geodesic Polyhedron, 2nd row, Room. (a),(d) Sample input dual-fisheye images

(grayscale) ; (b),(e) Estimated normal maps in false colors ; (c),(f) 3D reconstructions : for the sake of clarity, the external

surface of the reconstructed Geodesic Polyhedron is shown in (c), and only one side of the reconstructed Room is shown in (f)

(the sofa is visible on the left and the chest of drawers on the right).

generated using the same procedure described above for

the Geodesic Polyhedron. Fig. 3(d) shows one of the 14

grayscale dual-fisheye images, while the estimated normal

map and final 3D reconstruction of one side of the scene

are reported in Fig. 3(e) and Fig. 3(f), respectively.

4 Real-world experiments

In this section, we describe the calibration method used to

estimate the intrinsic and extrinsic parameters of the Ricoh

Theta V camera, and present the algorithm for the estima-

tion of the light directions in real images. We conclude the

section with a discussion of the results obtained with real-

world images, and of some possible future improvements.

TABLE 1 – Geodesic Polyhedron : (1st and 2nd row) Mean

angular error (MAE) in degrees for an increasing value of

γ : the shaded columns report the values obtained with the

gamma correction. (3rd and 4th row) MAE for an increa-

sing distance between the point light source and the ca-

mera.

γ 1.2 1.2 1.5 1.5 2.2 2.2

MAE [deg.] 0.75 0.36 2.02 0.37 4.22 0.41

Distance 2 r 5 r 10 r 15 r 20 r 25 r

MAE [deg.] 21.53 3.67 1.54 1.14 0.89 0.70

4.1 Calibration of the twin-fisheye camera

The Ricoh Theta V is an omnidirectional camera consisting

of a twin-lens folded optical system coupled with two pho-

tosensitive sensors (1/2.3” 12 MP CMOS). The two fisheye

lenses point in opposite directions and provide a spherical

field of view (see Fig. 1(a)).

The quality and resolution of the dual-fisheye images re-

corded by the Ricoh Theta V in the default live and vi-

deo modes is relatively poor. To overcome this limita-

tion, we developed a dedicated plug-in module to capture

dual-fisheye images with the maximum possible resolution

(5792 pixels × 2896 pixels) in still mode. Thanks to the

plug-in, we can also manually change the camera settings,

such as the exposure time, the aperture, the ISO sensitivity,

and the quality (Q factor) of the output image.

To calibrate the Ricoh Theta V with HySCaS [40], we

modeled it as a stereo system with two fisheye ca-

FIGURE 4 – One of the dual-fisheye imagex used for the

calibration of the Ricoh Theta V camera. The calibration

rig comprises six orthogonal circle patterns and it is visible

in the two sub-images (the image is rotated by 180◦ to im-

prove readability).
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and center Om (top right). The unit sphere of the unified
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meras sharing the same projection center (the transla-

tion vector between Fc1 and Fc2 was then set to zero).

As in [26], we used a custom-made calibration rig consis-

ting of six circles patterns glued inside two half cubes.

Three images of the rig, one of which is reported in

Fig. 4, were taken by the hand-held camera. This yielded,

Pc1 = {2492.8, 2496.0, 4311.0, 1464.1, 1.866}, Pc2 =
{2484.1, 2505.5, 1457.2, 1466.3, 1.848}, and

c2Rc1 =



−1.000 −0.001 0.025

0.000 1.000 0.031

−0.025 0.031 −0.999


 ≃ Ry(π).

4.2 Estimation of light directions from mir-
ror balls

To estimate the illumination vectors L0, . . . ,Ln−1 using

real dual-fisheye images, we adapted the light calibration

method proposed in [33] for perspective cameras, to the

spherical formulation considered in this paper. The method

consists in observing the specular highlight generated by

a light source on a mirror ball of known radius rm loca-

ted at a distance D from the center O of the unit sphere

of the unified central projection model (see Fig. 5). Algo-

rithm 1 summarizes the main steps of our method for the

estimation of the generic illumination vector L. The circle

C corresponds to the intersection between the unit sphere

and the cone with apex at O and tangent to the mirror ball.

The light direction L, the viewing direction to the specular

highlight, and the normal nh to the mirror at the point of

incidence h, lie on the same plane. For the sake of simpli-

city, we approximated the specular highlight as a point, by

considering its centroid.

4.3 Experimental results

To study the performance of our 3D reconstruction pipeline

in a real setting, we built a 2 × 1.25 × 1.12 m3 booth made

of an aluminum frame covered by a black curtain, to sup-

press the parasitic ambient light (see Fig. 6(a)). Two expan-

ded polystyrene foam objects, Cat (23 cm tall and 14 cm at

the widest point) and Teddy Bear (19 cm tall and 12 cm

at the widest point), were placed inside the booth. The

two objects, whose white matte surface complies with the

Lambertian model, were illuminated with a 220 V, 5.3 W

OSRAM 5-LED lamp with the following optical specifica-

tions : luminous flux 350 lm, CIE Ra 80, temperature 4000

K (cool white), and beam angle 36◦.

A binary mask was applied to the dual-fisheye images of

Cat and Teddy Bear, to subtract the background. We consi-

dered the three RGB channels separately, and normalized

the corresponding pixel intensities using the formula,

Î(θ, ϕ) =
I(θ, ϕ) − min I(θ, ϕ)

max I(θ, ϕ) − min I(θ, ϕ)
,

where the min and max are evaluated over θ ∈ (0, π) and

ϕ ∈ [0, 2π). Overall, 11 images of Teddy Bear and 12

images of Cat were processed.

The experimental setup and one of the images captured by

the Ricoh Theta V are shown in Fig. 6(a) and Fig. 6(b),

respectively. The estimated normal and albedo maps of

Cat and Teddy Bear are reported in Fig. 7(a) (the albedo

map was computed with the method described in [41,

Sect. 4.1]). Finally, Fig. 7(b) and Fig. 7(c), which show

the 3D reconstruction of the test objects, demonstrate the

effectiveness of the Circularity and Polar Constraints in the

normal integration step. Note that a deformation can be ob-

served on the top of Cat’s head, which is due to an incor-

rect estimation of the gradient field (p(θ, ϕ), q(θ, ϕ)) in

this area.

4.4 Discussion

In this section, we provide some remarks on the obtained

results, and discuss some possible improvements of our

3D reconstruction pipeline.

The inaccuracies observed in our 3D reconstructions of

Cat and Teddy Bear, can be attributed to several factors :

uncertainty in the estimation of light directions, cast sha-

dows, etc. However, the main sources of error appear to be

the non-ideal illumination conditions, the photometric res-

ponse of the Ricoh Theta V, and the spatial resampling of

the gradient field. The results reported in Table 1 provide

evidence for these errors, and support this conclusion.

In our tests with the synthetic images, the camera response

curve was known and the assumption of directional lighting

was strictly satisfied, as opposed to the experiments with

real-world images. In the second test in Sect. 3, we studied

the effect of gamma correction, in an effort to reproduce

the nonlinear behavior of the Ricoh Theta V in the virtual

camera. In the third test of Sect. 3, we moved a point light

source progressively away from a known scene, to quantify

its impact on the estimation of (p(θ, ϕ), q(θ, ϕ)). As is

evident from Table 1, the farther the point light source, the

smaller the MAE. In the real setup of Fig. 6(a), the distance

between the LED lamp and the 3D scene ranges from 6.1

r to 8.7r, where r = 23 cm is half the minimum distance

between Cat and Teddy Bear.



Algorithm 1: Estimation of the light direction L from the specular highlight on a mirror ball (see Fig. 5).

Input : a) The apparent contour of the mirror ball, visible in one of the dual-fisheye sub-images,

b) The coordinates of the specular highlight in the dual-fisheye sub-image considered in a),

c) The radius rm of the mirror ball.

Output : The estimated light direction L.

1 The pixels of the apparent contour are projected to the unit sphere at a circle C, using the inverse projection model.

Let xCj
∈ R

3 be the coordinates of point j on C, and xcnt ∈ R
3 the coordinates of the centroid of points xCj

,

j ∈ {1, . . . , P};

2 To avoid poor numerical conditioning, the points xCj
are centered at the origin by subtracting their mean and scaled in

the [−1, 1] interval. The transformed points are denoted by x∗
Cj

;

3 Let M = UΣVT be the Singular Value Decomposition of M = [x∗
C1
, . . . ,x∗

CP
] ∈ R

3×P where Σ contains the

singular values of M on the main diagonal, in descending order. The 3rd column of U corresponds to the normal

n = [nx, ny, nz]
T to the plane Π containing C (the direction of least surface variance). If nz < 0, replace n

with −n;

4 The distance d between the plane Π and the center of the unit sphere is computed as d = |〈n̂, xcnt〉|;
5 The coordinates of the center of C are given by oc = −d n̂ and the radius of C is rc =

√
1− d2;

6 The coordinates of the center Om of the mirror ball are computed as om = oc rm/rc;

7 The unit surface normal at h is obtained as n̂h = (h− om)/rm;

8 The light direction L is recovered as L = 2〈ĥ, n̂h〉n̂h − ĥ.

LED lamp

Ricoh Theta V

(a) (b)

FIGURE 6 – (a) Experimental setup : LED lamp, Ricoh Theta V camera, and test objects (Cat and Teddy Bear). The four

mirror balls used to estimate the light directions via Algorithm 1, are visible on both sides of the test objects ; (b) One of the

dual-fisheye images captured by the Ricoh Theta V.

In the reconstruction pipeline adapted to the dual-fisheye

images, the interpolation phase occurs at a later stage

than in [28], i.e. during the fusion and resampling step

(cf. Fig. 2). This yields a per-pixel estimation of the gra-

dient field (p(θ, ϕ), q(θ, ϕ)), which more accurately re-

flects the input data. In future works, we plan to take advan-

tage of the free tangent directions introduced in [28, Th. 2],

to mitigate the effect of spatial resampling or to remove this

processing step altogether.

As detailed in Sect. 2.3, the gradient fields estimated from

the dual-fisheye sub-images processed separately, are mer-

ged together (by considering a pure rotation c2Rc1 bet-

ween Fc1 and Fc2). The same procedure could be applied,

in principle, to other generic multi-camera arrangements

complying with the central projection model, as long as

the intrinsic and extrinsic parameters are known.

Our experiments corroborated the proposed theory and suc-

cessfully validated the overall 3D reconstruction pipeline.

The results obtained with relatively few real-world input

images, provided further evidence in support of our me-

thod.

To reproduce the results of Sect. 3 and Sect. 4, our image

dataset, plug-in for the Ricoh Theta V, and Matlab/Blender

code, can be freely downloaded at the following address :

home.mis.u-picardie.fr/∼fabio/PhotoSphere.html

5 Conclusion and future works

In this paper, we have studied the photometric stereo pro-

blem for consumer-grade twin-fisheye cameras, which pro-

vide 360-degree images of a given scene. Building upon

https://home.mis.u-picardie.fr/~fabio/PhotoSphere.html


(a)

(b) (c)

FIGURE 7 – Real-world images : (a) Estimated normal map in false colors (top), and estimated albedo map (bottom) ; results

in dual-fisheye format (left), and close-up views (right). (b),(c) 3D reconstruction of Cat and Teddy Bear (clockwise from top

left : three-quarter, full face, and profile view).

our previous work and a novel spherical image irradiance

equation, we have proposed a full 3D reconstruction pipe-

line, whose effectiveness has been demonstrated via expe-

riments with synthetic and real images taken by a Ricoh

Theta V camera.

This project is currently underway, and in future works

we would like to validate our photometric stereo algorithm

using dual-fisheye images of an outdoor scene under na-

tural illumination conditions. The preliminary results pre-

sented in this paper being promising, our ultimate aim is

to apply our 3D reconstruction pipeline to digital cultural

heritage [42].
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