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Abstract

Despite impressive results, deep learning-based technologies also raise severe
privacy and environmental concerns induced by the training procedure often con-
ducted in data centers. In response, alternatives to centralized training such as
Federated Learning (FL) have emerged. Perhaps unexpectedly, FL in particular is
starting to be deployed at a global scale by companies that must adhere to new legal
demands and policies originating from governments and the civil society for privacy
protection. However, the potential environmental impact related to FL remains
unclear and unexplored. This paper offers the first-ever systematic study of the
carbon footprint of FL. First, we propose a rigorous model to quantify the carbon
footprint, hence facilitating the investigation of the relationship between FL design
and carbon emissions. Then, we compare the carbon footprint of FL to traditional
centralized learning. Finally, we highlight and connect the reported results to the
future challenges and trends in FL to reduce its environmental impact, including
algorithms efficiency, hardware capabilities, and stronger industry transparency.

1 Introduction

Atmospheric concentrations of carbon dioxide, methane, and nitrous oxide are at unprecedented
levels not seen in the last 800, 000 years (1), and are extremely likely to have been the dominant
cause of the observed global warming since the mid-20th century (2; 3). Unfortunately, deep learning
(DL) algorithms keep growing in complexity, and numerous “state-of-the-art" models continue to
emerge, each requiring a substantial amount of computational energy, resulting in clear environmental
costs (4). However, such a trend is not going to end soon as (5) shows that the amount of compute
used by machine learning training has grown by more than 300, 000× from 2012 to 2018. This is an
observation that forces us to seriously consider the carbon footprint of deep learning methods.

The data centers that enable DL research and commercial operations are not often accompanied by
visual signs of pollution, but they are still responsible for significant carbon footprint. Each year they
use 200 TWh energy, which accounts for 0.3% of global CO2 emissions. In comparison, the entire
information and communications technology ecosystem accounts for only 2% (6).

Fortunately, alternatives to data center based DL (and other forms of machine learning) are emerging.
The most prominent of these to date is Federated Learning (FL) proposed by (7). Under FL, the
training of models primarily occurs across a large number of typically user owned and controlled
personal devices, such as smartphones. Devices collaboratively learn a shared prediction model but
do so without uploading to a data center any of the locally stored raw sensitive data. While FL is still
a maturing technology, it is already being used by millions of users on a daily basis; for example,
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Google uses FL to train models for: predictive keyboard, device setting recommendation, and hot
keyword personalization on phones (8).

Whilst the carbon footprint for centralized learning has been studied in many previous works (9; 10;
11; 12), the energy consumption and carbon footprint related to FL remain unexplored. To this extent,
this paper proposes to overcome this issue by giving a first look into the carbon analysis of FL. SOTA
results in deep learning are usually determined by standard accuracy metrics, such as the accuracy of
a given model, while energy efficiency or privacy concerns are often overlooked. Whilst accuracy
remains crucial, we hope to encourage researchers to also focus on other metrics that are in line with
the increasing interest of the civil society for global warming. By quantifying carbon emissions for
FL, we encourage the integration of the released CO2 as a crucial metric to the FL deployment.

In this paper, we firstly provide a first-of-its-kind quantitative CO2 emissions estimation method
for FL (Section 2). Then a carbon sensitivity analysis is conducted with this method on real FL
hardware with the CIFAR10 dataset (Section 3). Furthermore, we provide a comprehensive analysis
and discussion of the results to highlight the challenges and future research directions to develop an
environmentally-friendly federated learning.

2 Quantifying CO2 emissions
Two major steps can be followed to quantify the environmental cost of training deep learning models
either in data centers or on edge. First, we perform an analysis of the energy required by the method
(Section 2.1), mostly accounting for the total amount of energy consumed by the hardware. Then, the
latter amount is converted to CO2 emissions based on geographical locations (Section 2.2).

2.1 Total Energy Consumption
First, we need to consider the energy consumption coming from GPU and CPU, which can be
measured by sampling GPU and CPU power consumption at training time (13). Alternatively, we
can use the official hardware power specification or TDP, assuming a full GPU utilization. Such a
use case is not realistic as a GPU is rarely used at 100% of its capacity. In the context of FL, not all
clients are equipped with a GPU, and this part can thus be removed from the equation if necessary.
To this extent, we propose to consider eclients as the power of a single client combining both GPU
and CPU measurements. Then, we can connect these measurements to the total training time.

However, estimating the wall clock time of FL can be challenging. Unlike centralized distributed
training, FL runs following communication rounds. During each communication round, certain
devices (or clients) are chosen for training. In addition, FL might suffer from system heterogeneity as
different edge devices might not offer the same computational power (14). To simplify this highly
scenario dependent assumption, we propose to fix the time needed for each round, corresponding to
a common FL setup (14). As a matter of fact, such a distribution of clients is extremely difficult to
estimate as sales figures for these devices are not publicly released by the industry. Then, the total
time needed to train the model also depends on the communication efficiency between the clients and
the server. It is worth mentioning that such communications also have an impact on the final carbon
footprint. Therefore, let s be the size of model parameters in GB and 5s be the energy needed in
KWh to transfer the parameters from the clients to the server (15). The latter estimation is highly
dependent on the infrastructure efficiency and is only used as an indicator. Finally, the total energy
consumed for n clients chosen in each communication round with wall clock time t per round is:

n(teclients + 5s) (1)

It is important to note that other hardware components may also be responsible for energy con-
sumption, such as RAM or HDD. According to (16), one may expect a variation of around 10%
while considering these parameters. However, they are also highly dependent on the infrastructure
considered and the device distribution that is unfortunately unavailable.

The particular case of cooling in centralized training. Cooling in data centers accounts for up to
40% of the total energy consumed (17). While this parameter does not exist for FL as the heat is
distributed across the set of clients, it is crucial to consider it when estimating the cost of centralized
training. Such estimation is highly dependent on the data center efficiency, so we propose to use
the Power Usage Effectiveness (PUE) ratio. According to the 2019 Data Centre Industry Survey
Results (18), the world average PUE for the year 2019 is 1.67. As expected, observed PUE strongly
vary depending on the considered company. For instance, Google declares a PUE ratio of 1.06 (19)
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compared to 1.2 and 1.125 for Amazon (20) and Microsoft (21) respectively. Therefore, Eq. 1 is
extended to centralized training as:

PUE(teclients), (2)

with n = 1 and s = 0 in the context of centralized training, and t stands for the total training time. In
addition, the cost of transferring the model parameters from the RAM to the VRAM is negligible.

2.2 Converting to CO2 emissions
We assume that all data centers and edge devices are connected to their local grid directly linked
to their physical location, and we use the electricity-specific CO2 emission factors obtained from
(22) for estimation. The estimation methodology provided takes into accounts both transmission and
distribution emission factors (i.e. energy lost when transmitting and distributing electricity) and the
efficiency of heat plants. As expected, countries relying on carbon-efficient productions are able to
lower their corresponding emission factor (e.g. France, Canada). Therefore, the total amount of CO2

emitted in kg for FL and centralized training are obtained from Eq. 1 and Eq. 2 as:

rcraten(t ∗ eclients + 5s) and cratePUE(teclients), (3)

with crate the emission factor and r the total number of training rounds needed during the FL
procedure. Carbon emissions may be compensated by carbon offsetting or with the purchases of
Renewable Energy Credits (RECs). Even though a lot of companies are devoting to the carbon
offsetting scheme, this approach still contributes to a net increase in the absolute rate of global
emission growth in the atmosphere (23). Therefore, following preliminary works on data-centres
CO2 emission estimations (10; 11), we ignore this practice to only consider the real amount of CO2

emitted during the training of the DL models.

3 Experiments on FL carbon footprint

We provide an estimation of the carbon footprint of a realistic FL setup for the CIFAR10 classification
task, and provide analysis of these results. The entire FL pipeline is implemented within the Flower
toolkit1 (24), with FedAVG (25) and the PyTorch definition of ResNet-18. The exact hardware
configuration for our experiments can be found in (Appendix A.1). Also, more estimations are given
in Appendix with the FashionMNIST (Appendix A.3) and ImageNet (Appendix A.4) dataset.

We conduct our estimations based on the image classification tasks of CIFAR10. As we would like to
only estimate the carbon footprint, we are not interested in achieving the best performance possible.
The estimations are computed once 60% testing accuracy is reached. However, more details on the
performances and training time are given in Appendix A.2. Both FL and centralized training rely on
an identically implemented ResNet-18 architecture with plain SGD and momentum to alleviate any
variations. Also, the experiment are based on the standard training and test sets (26).

As CIFAR10 does not offer any natural partitioning, we propose to simulate both IID and non-IID
scenarios. In the former case, all the clients have the equal number of samples evenly distributed
across all the classes (e.g. with 10 total clients, each of them has 500 samples per class). For the
non-IID setup, we first distribute evenly 50% of the data across the clients, then we only distribute
samples from a subset of the classes (e.g 1− 5 and 6− 10) to half of the clients, while the remaining
half will get samples from the other subset. We also propose to vary the number of local epochs done
on each client to better highlight the contribution of the local computations to the total emissions.
The total number of clients is fixed to 10, while 5 of them are randomly selected in each FL round.

Before discussing the estimated emissions, it is worth noting that solely 2 epochs were required for
centralized training to reach 60% of testing accuracy with CIFAR10 corresponding to 48 and 84
seconds of training time for Tesla V100 and K80 respectively. Conversely, the fastest FL setup (i.e.
IID and 1 epoch per round) took 822 seconds to achieve the same level of performance with 16 FL
rounds. As expected, and due to the much lower compute capabilities of FL devices, the training time
is much longer than centralized training. More details on accuracies and training time can be found
in Appendix A.2.

1Code is not anonymized, but available.
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Country/CO2(g) V100 K80 V100 K80 FL (IID) FL (non-IID)
CIFAR10 PUE = 1.67 PUE = 1.11 1 epoch 5 epochs 1 epoch 5 epochs

USA 3.1 6.5 2.1 4.3 6.3 17.5 29.3 21.5
China 5.5 11.5 3.7 7.7 11.1 31.3 52.2 38.3
France 0.4 0.9 0.3 0.6 0.9 2.5 4.2 3.1

Table 1: CO2 emissions (expressed in grams, i.e. lower is better) for centralized training and FL on CIFAR10.
The number of epoch reported on the FL column relates to the number of local epoch done per client. “IID”
and “non-IID” terms are employed to distinguish between clients that have an evenly distributed set of samples
containing all the classes (IID) and clients that have more samples of certain classes (non-IID).

CO2 emissions reported on Table 1 are interesting in many aspects. First, it is clear that FL is more
polluting than V100-equipped centralized training (e.g up to three times more with a PUE = 1.11,
and 2.5 with a PUE = 1.67) on the CIFAR benchmark. Furthermore, this assumption does not hold
anymore once we consider less efficient GPUs such as Tesla K80. Indeed, in this scenario and with a
PUE = 1.67, FL becomes equivalently polluting or slightly less than centralized training. Second,
if we put in perspective both the training time and emissions reported, it is worth underlining that
despite being much slower to train, FL remains highly competitive in term of CO2 emissions. Indeed,
the latter finding demonstrates the potential of FL to become greener than centralized learning by
decreasing the training time.

Therefore, based on our FL CO2 footprint estimation method, we also propose a formalization that
integrates carbon emission into the common neural networks optimization process to lower the final
Carbon Cost as can be found in Appendix A.5.

3.1 Discussion

CO2 emissions induced by FL highly depends on different factors. First, we show that a basic FL
setup relying on FedAVG clearly emits more carbon compared to modern GPUs and centralized
training. The latter finding does not hold with older and cheaper GPUs such as Tesla K80. Hence
hardware efficiency is one of the most important factors when estimating the total carbon footprint.
More precisely, we considered NVIDIA Tegra X2 as our client hardware. While such chips could
realistically be embedded in numerous devices, including smartphones, tablets, game consoles, and
others, they are certainly not an exact estimate of what the industry uses for FL. Therefore, and to
facilitate environmental impact estimations of large scale FL deployment, the industry must increase
its transparency with respect to their devices distribution over the market.

Of course, both FL and centralized learning benefit from more efficient hardware. However, and
as explained in our estimation methodology, FL will always have an advantage due to the cooling
needs of data centers. In fact, even though GPUs or even TPUs are getting more efficient in terms
of computational power delivered by the amount of energy consumed, the need for a strong and
energy-consuming cooling remains – thus the FL advantage only grows. Unlike centralized learning,
FL always benefits from a net decrease in CO2 emission each time the hardware is improved.

Furthermore, our results show that realistic training conditions for FL (i.e. non-IID data) are largely
responsible for longer training times and high level of CO2 emissions. While it is well known that
the simpler form of FL (e.g.FedAVG) struggle with non-IID partitioned data in terms of accuracy
(14; 27), we presented another motivation to pursue the research trying to address this issue: this
could lead to a significant decrease in carbon emissions. Future algorithms on non-IID data could
easily replicate our estimation methodology to highlight their efficacy.

Finally, FL depends on hyper-parameters, such as the number of clients selected, the number of local
epochs, and others. These variables, when tuned, are usually decided to suit hardware resources
available or by grid search optimization. These parameters have potential to be included in the
optimization process at training time to lower the overall carbon emission. Novel algorithms should
carefully be designed to minimize the carbon emission by jointly maximizing the accuracy and
minimizing the released CO2.
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4 Conclusion

Climate change is real, and DL plays an increasing role in this tragedy. Fortunately, a number of
recent studies have begun to detail the environmental costs of their novel deep learning methods,
sometimes even integrating CO2 emissions as an objective to be minimized. Following this important
trend, this paper takes a first look into the carbon footprint of an increasingly deployed training
strategy known as federated learning. In particular, this work introduces a generalized methodology to
systematically compute the carbon footprint of any federated learning setups. Finally, novel research
directions are highlighted to make FL a greener alternative compared to centralized training.
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A Appendix

A.1 Hardware configuration for the experiments

In addition to the carbon model (Section 2), our results are influenced by the configuration of the
hardware and systems of data center and federated learning respectively.

Centralized training. NVIDIA Tesla V100 and K80 are used as reference graphics card in our
experiments. The former GPU proposes a competitive performance / TDP ratio, while the latter
GPU is often deployed in collaborative environments such as Google Colaboratory (28). It is worth
noting that V100s and K80 have theoretical maximum TDP of 250W and 300W respectively. We
also consider an AMD EPYC processor of 64 cores and a TDP of 200W (29). Hence, the estimated
CPU energy for one physical core and two threads per GPU is of 3W.

Federated learning. We propose to use a uniform set of NVIDIA Tegra X2 devices to compose our
FL devices (30). Indeed, such chips are embedded in various IoT devices including cars, smartphones,
video game consoles and others, and can be viewed as a realistic pool of FL clients. NVIDIA Tegra
X2 have a reported TDP comprised between 7.5W and 15W . Across our different runs, we observed
an average of 10W and we kept this measurement as a basis. Finally clients are assumed to be located
in the same geographical region.

A.2 Detailed results on CIFAR10 experiments

This section enriches the results described in Section 3 with the context on the training time and
number of rounds needed to compute the reported CO2 estimate. All the results are given in Table 2.

Setup Hardware Rounds or Epochs Time (s) Max Acc. (%)
CIFAR10 50% 60%

centralized Training V100 1 2 48 71.0
centralized Training K80 1 2 84 71.0
FL (IID, 1 epoch) Tegra X2 5 16 51.4 64.3
FL (IID, 5 epoch) Tegra X2 4 9 257 65.0
FL (non-IID, 1 epoch) Tegra X2 20 75 51.4 61.0
FL (non-IID, 5 epoch) Tegra X2 5 11 257 63.5

Table 2: Run time results for FL and centralized training on the CIFAR10. “IID” and “non-IID” terms are
employed to distinguish between clients that have an evenly distributed set of samples containing all the classes
(IID) and clients that have more samples of certain classes (non-IID). The “Time” column corresponds to the run
time per epoch for centralized training or run time per communication round for FL. The “Max Acc.” column
reports the maximum testing accuracy obtained. Finally, the “Rounds or Epochs” column gives the number of
rounds or epochs needed to reach the indicated level of testing accuracy.

It is worth noting that in this setup, FL is slower and offers worst performance compared to centralized
training on CIFAR10. Since each client has 1/10 of the total dataset, each local epoch can be seen as
1/10 of a global epoch. The accuracy difference could be explained by the simple FedAVG strategy
employed for FL that could lead to a loss of information through the weight averaging performed at
each communication round, or by a shift in the running statistics contained in the batch-normalisation
layers of the ResNet-18 model. Indeed, FedAVG averages the latter statistics certainly leading to a
small shift at every round. However, better performance may also be obtained with FL as shown in
Figure 1 by simply considering better setups (i.e number of clients, number of local epochs ...).

Carbon emission estimation example. Eq. 3 can be applied to Table 2 to compute the CO2 emitted
to reach 50% of accuracy with the FL (IID, 5 epoch) setup as:

16× 0.9746× 5× (
51.4

3600
× 10) = 11.13g, (4)

with 16 the number of rounds, 0.9746 the energy conversion rate of China, 5 the number of selected
clients, 51.4 the time in seconds needed to complete one round and 10 the power consumed by the
Nvidia TX2.
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A.3 Carbon footprint estimation with FashionMNIST

The CO2 estimation methodology detailed in Section 2 and applied to CIFAR10 in Section 3 is
extended in this section to the FashionMNIST dataset for further context.

FashionMNIST consists in 60, 000 training images of size 28× 28 distributed across 10 classes, and
10, 000 test samples. Since there is no natural user partitioning of this dataset, we follow the same
IID and non-IID protocol than for the CIFAR10 experiments. However, for the sake of diversity, the
model architecture considered for this experiment is reduced to a simple CNN with two convolutional
layers with a kernel size of 5, followed with 2 fully connected layer composed by 512 hidden neurons
and a final layer of size 10. In this setup, each client only performs 1 local epoch per round.

Setup Hardware Rounds or Epochs Time (s) Max Acc. (%)
FashionMNIST 85% 90%

centralized Training V100 2 5 5 92.0
centralized Training K80 2 5 13.5 92.0
FL (IID, 1 epoch) Tegra X2 8 26 5.6 92.0
FL (non-IID, 1 epoch) Tegra X2 30 50 5.6 91.0

Table 3: Run time results for FL and centralized training on the FashionMNIST dataset. “IID” and “non-IID”
terms are employed to distinguish between clients that have an evenly distributed set of samples containing all the
classes (IID) and clients that have more samples of certain classes (non-IID). The “Time” column corresponds to
the run time per epoch for centralized training or run time per communication round for FL. The “Max Acc.”
column reports the maximum testing accuracy obtained. Finally, the “Rounds or Epochs” column gives the
number of rounds or epochs needed to reach the indicated level of testing accuracy.

Table 3 reports the run time observed with the different setups. As expected, FL remains slower
compared to centralized training. However, certainly due to the simplicity of the task and the neural
network architecture, both FL and centralized learning achieve the same level of maximum accuracy
(92%).

Country/CO2(g) V100 K80 V100 K80 FL FL
PUE = 1.67 PUE = 1.11 IID non-IID

USA 1.6 5.2 1.1 3.5 1.1 2.1
China 2.9 9.2 1.9 6.2 2.0 3.8
France 0.2 0.8 0.2 0.5 0.2 0.3

Table 4: CO2 emissions (expressed in grams, i.e. lower is better) for centralized training and FL on Fashion-
MNIST. Emissions are calculated once the top-1 accuracy on the test set reaches 90%. The number of epoch
reported on the FL column relates to the number of local epoch done per client. “IID” and “non-IID” terms are
employed to distinguish between clients that have an evenly distributed set of samples containing all the classes
(IID) and clients that have more samples of certain classes (non-IID).

Interestingly, with such a simple task, FL is almost as efficient as centralized training while consid-
ering Tesla V100. Hence, FL is even greener than a data center solution relying on Tesla K80. In
summary, and has already shown in Section 3, the comparison between FL and centralized training
highly depends on: 1. the efficiency of the considered data center (i.e. PUE and GPU efficiency). 2.
The partitioning of the FL dataset (i.e. IID vs non-IID). 3. The FL setup.

A.4 Carbon footprint estimation with ImageNet

The CO2 estimation methodology is also extended to the ImageNet dataset. To the best of our
knowledge, this is the fist time that ImageNet-scale experiments are performed using FL. ImageNet
benchmarks follow the ILSVRC-2012 partitioning with 1.2M pictures for training and 50K images
for testing (31). The model is trained with plain SGD and momentum as well.

Benchmarks conducted with ImageNet solely rely on the IID partitioning, with total of 40 clients.
Therefore, each of the 40 clients has an even number of samples per class. Then, 10 clients are
randomly picked in every FL round to perform 3 epochs of local training.

Table 5 reports the run time observed with both centralized learning and FL, and Table 6 reports the
CO2 emission observed. Centralized training reached 50% of top-1 accuracy in 5 epochs and 5.5
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Setup Hardware Rounds or Epochs Time (s)
ImageNet 50%

centralized Training V100 5 3,840
FL (IID, 3 epochs) Tegra X2 25 3,840

Table 5: Run time results for FL and centralized learning on ImageNet dataset. “IID” terms means that clients
have an evenly distributed set of samples containing all the classes. The “Time” column corresponds to the run
time per epoch for centralized training or run time per communication round for FL, and the “Rounds or Epochs”
column gives the number of rounds or epochs needed to reach the indicated level of testing accuracy.

Country/CO2(g) V100 V100 FL (IID)
ImageNet PUE = 1.67 PUE = 1.11 3 epochs

USA 1,230 820 1,460
China 2,290 1,500 2,600
France 180 120 210

Table 6: CO2 emissions (expressed in grams, i.e. lower is better) for centralized training and FL ImageNet.
Emissions are calculated once the top-1 accuracy on the test set reaches 50%. The number of epoch reported
on the FL column relates to the number of local epoch done per client. “IID” terms means that clients have an
evenly distributed set of samples containing all the classes.

hours compared to 25 rounds and 26.7 hours for FL. As expected, and due to much lower compute
capabilities of FL devices, the training time is much longer than centralized training.

We can see from Table 5 that the same as for CIFAR10 dataset, FL is more polluting than V100-
equipped centralized training, but the gap is much smaller. It is only 1.1 and 1.7 times more with
PUE equals to 1.67 and 1.11 respectively.

A.5 Joint optimization to reduce FL carbon footprint

Based on our FL CO2 footprint method, we propose a formalization that integrates carbon emissions
into the common neural network optimization process to lower the final Carbon Cost.

As demonstrated in the Section 3, the outcome of the comparison between FL and centralized training
highly depends on: 1. the efficiency of the considered data center (i.e. PUE and GPU efficiency). 2.
The partitioning of the FL dataset (i.e. IID vs non-IID). 3. An optimal FL setup (i.e. number of local
epochs, clients ...).

Unfortunately, the first two points can not be easily tweaked in realistic scenarios as they depend on
the physical environment related to a specific task. Therefore, this section proposes to formalize the
third identified lever as a joint optimization problem and validate empirically the interest of different
FL setup to reduce the total amount of released CO2.

Minimising CO2. To achieve a proper reduction in carbon emissions, the latter goal must be defined
as an objective:

min
r,n,t

rcraten(t ∗ eclients + 5s) = min
r,n,t

F (r, n, t). (5)

Then, we must define the second objective relating to the performance of the trained model:

max
w∈Rd

1

| N |
∑

i∈dataset

ti1{f(xi) = ti} = min
w∈Rd

| N |∑
i∈dataset ti1{f(xi) = ti}

, (6)

= min
w∈Rd

1

G(w)
, (7)

with w corresponding to the model trainable parameters, | N | the size of the dataset, ti the ground
truth for the sample i, and f(xi) the posterior probabilities obtained for this sample. Note that Eq.
6 is turned into a minimisation problem to avoid a more complex min-max optimization problem.
Finally, both objectives are combined into a single problem as:

min
r,n,t

F (r, n, t)

G(w)
= min

r,n,t
Carbon Cost. (8)
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Figure 1: Scatter plot illustrating the relation between the best observed test accuracy on the CIFAR10 dataset
(y-axis) and the amount of emitted CO2 in grams (x-axis) with respect to the number of randomly selected
clients. “IID” and “non-IID” correspond to the corpus partitioning strategy that is employed as described in
Section 3. It is nearly impossible to pick the right FL setup to maximise the performance and minimise the CO2

emissions without an appropriate algorithm. However, the latter solution allows important CO2 savings. Please
note that the x-axis scale of the top-right plot is different due to a key increase in CO2 emissions.

It is worth noting that Eq. 8 is optimized with respect to r, n, t but not w, because G(w) and F (r, n, t)
are dynamically dependent on each other (i.e. it tends to emits more when the performance improves).
Indeed, the former is a function of neural parameters trained via gradient descent while the latter is a
function of hyper-parameters often manually tuned. However, building a bridge between both would
ensure a nice blend between the accuracy of the model and the environmental impact of the training
procedure.

Empirical validation. To motivate further research on novel FL algorithms that could dynamically
change the design of an experiment, we propose to visualize the value of Eq. 8 by varying three
parameters on the CIFAR10 image classification task. In the definition of F (r, n, t), r (number of
rounds) mostly depends on n (number of selected clients) and t. Moreover, t is a variable depending
on multiple factors including the computation and networking capabilities of the client, the number
of local epoch, and the size of the local dataset. To properly analyse the variation of the Carbon
Cost, we propose to variate n from 1 to 10, the number of local epoch between 1 and 5 and the type
of partitioning of the local dataset (i.e. IID or non-IID). Indeed, all the other variables are directly
related to physical or task-specific constraints that are commonly fixed for a certain experimental
protocol. All the FL models are then trained for 500 rounds and the carbon emission estimations are
computed on the best test accuracy observed (the detailed results are reported in Table 7). Finally,
the CarbonCost is plotted on Figure 1 with the amount of emitted CO2 (i.e. Eq. 5) and the best
accuracy (i.e. Eq. 6) on the x and y axes respectively.
Interestingly, it is nearly impossible to find any clear winning FL setup from Figure 1. As an example,
a single client obtains the best Carbon Cost (25.8/0.70 = 36.7) with one local epoch, but also
becomes the worst possible solution with 5 local epochs (97.6/0.68 = 142.3). As expected, certain
tendencies are clearly visible with this graph. First, on the specific case of CIFAR10, an increasing
number of local epoch leads to an average increase of the produced CO2. Then, a non-IID partitioning
is responsible for stronger variations in the observed Carbon Cost compared to IID. The latter
finding suggest that further efforts should be put into developing FL methods robust to heterogeneous
datasets.
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Figure 1 clearly demonstrates the importance of optimizing the Carbon Cost (Eq. 8) rather than
solely training our models with respect to the training accuracy. Indeed, estimating precisely the CO2

emissions of a specific FL setup without a prior training of the model is impossible. Therefore, the
development of novel FL algorithms able to dynamically change the number of selected clients or
local epochs is of crucial interest to lower the final environmental cost of our deep learning models.

Clients/round Test Acc 60% Stable Acc
IID, 5 local epochs Rounds CO2 (g) Carbon Cost Acc Rounds CO2 (g) Carbon Cost
1 14 5.47 9.11 68.6% 250 97.64 142.33
2 14 10.94 18.23 66.0% 82 64.05 97.05
3 9 10.55 17.58 65.3% 50 58.58 89.72
4 9 14.06 23.43 66.0% 40 62.49 94.68
5 9 17.58 29.29 65.0% 35 68.35 105.15
6 8 18.75 31.25 64.5% 18 42.18 65.40
7 8 21.87 36.45 64.5% 15 41.01 63.58
8 7 21.87 36.45 64.5% 16 49.99 77.51
9 8 28.12 46.87 64.5% 16 56.24 87.20
10 8 31.25 52.08 64.5% 16 70.30 109.00

Clients/round Test Acc 60% Stable Acc
IID, 1 local epochs Rounds CO2 (g) Carbon Cost Acc Rounds CO2 (g) Carbon Cost
1 28 2.19 3.65 70.2% 330 25.78 36.72
2 24 3.75 6.25 67.0% 200 31.25 46.63
3 19 4.45 7.42 66.2% 100 23.43 35.40
4 16 5.00 8.33 64.0% 70 21.87 34.17
5 16 6.25 10.42 64.3% 73 28.51 44.34
6 16 7.50 12.50 63.7% 68 31.87 50.03
7 17 9.30 15.49 62.7% 61 33.35 53.20
8 16 10.00 16.66 63.0% 55 34.37 54.56
9 14 9.84 16.40 63.0% 40 28.12 44.64
10 17 13.28 22.13 62.5% 45 35.15 56.24

Clients/round Test Acc 60% Stable Acc
non-IID, 5 local epochs Rounds CO2 (g) Carbon Cost Acc Rounds CO2 (g) Carbon Cost
1 43 16.79 27.99 65.5% 250 97.64 149.07
2 16 12.50 20.83 65.3% 190 148.41 227.28
3 15 17.58 29.29 64.7% 90 105.45 162.99
4 12 18.75 31.25 63.7% 50 78.11 122.63
5 11 21.48 35.80 63.5% 40 78.11 123.01
6 12 28.12 46.87 63.5% 40 93.74 147.62
7 10 27.34 45.57 63.5% 40 109.36 172.22
8 11 34.37 57.28 62.0% 19 59.37 95.75
9 10 35.15 58.58 62.0% 17 59.76 96.38
10 9 35.15 58.58 62.3% 14 54.68 87.77

Clients/round Test Acc 60% Stable Acc
non-IID, 1 local epochs Rounds CO2 (g) Carbon Cost Acc Rounds CO2 (g) Carbon Cost
1 250 19.53 32.55 66.8% 450 35.15 52.62
2 135 21.09 35.15 64.5% 330 51.55 79.93
3 90 21.09 35.15 62.8% 300 70.30 111.95
4 75 23.43 39.06 62.8% 160 49.99 79.61
5 75 29.29 48.82 61.0% 140 54.68 89.64
6 75 35.15 58.58 61.5% 130 60.93 99.07
7 60 32.81 54.68 60.0% 60 32.81 54.68
8 NA NA NA 59.0% 60 37.49 63.55
9 NA NA NA 58.0% 50 35.15 60.61
10 NA NA NA 58.8% 60 46.87 79.70

Table 7: Details of the results obtained on CIFAR10 with multiple FL setups. “IID” and “non-IID” terms are
employed to distinguish between clients that have an evenly distributed set of samples containing all the classes
(IID) and clients that have more samples of certain classes (non-IID). The “Max Acc.” column reports the
maximum testing accuracy obtained. The “Rounds” column gives the number of rounds needed to reach the
indicated level of testing accuracy. Finally, “Carbon Cost” numbers are obtained by applying Eq. 8 (lower is
better).
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