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A staggered pressure correction numerical

scheme to compute a travelling reactive
interface in a partially premixed mixture

D. Grapsas, R. Herbin, J.-C. Latché and Y. Nasseri

Abstract We address a turbulent deflagration model with a flow governed by
the compositional Euler equations and the flame propagation represented by
the transport of the characteristic function. The numerical scheme works on
staggered unstructured, meshes with a time-marching algorithm solving first
the chemical species mass balances and then the mass, momentum and energy
balances. A pressure correction technique is used for this latter step, which
solves a balance equation for the sensible enthalpy with corrective terms to
ensure consistency of the total energy. The approximate solutions respect the
physical bounds and satisfy a conservative weakly-consistent discrete total
energy balance equation. Numerical evidence shows that they converge to
the solution of the infinitely fast chemistry continuous problem when the
chemical time scale tends to zero with the space and time steps.

1 Problem position

In this paper, we study a numerical scheme for the computation of large
scale turbulent deflagrations occurring in a partially premixed atmosphere.
In usual situations, such a physical phenomena is driven by the progress in the
atmosphere of a shell-shaped thin zone, where the chemical reaction occurs
and which thus separates the burnt area from fresh gases; this zone is called
the flame brush. The onset of the chemical reaction is due to the tempera-
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ture elevation, so the displacement of the flame brush is driven by the heat
transfers inside and in the vicinity of this zone. Modelling of deflagrations
still remains a challenge, since the flame brush has a very complex structure
(sometimes presented as fractal in the literature), due to thermo-convective
instabilities or turbulence [16, 14]. Whatever the modelling strategy, the prob-
lem thus needs a multiscale approach, since the local flame brush structure
is out of reach of the computations aimed at simulating the flow dynamics at
the observation scale, i.e. the whole reactive atmosphere scale. A possible
way to completely circumvent this problem is to perform an explicit com-
putation of the flame brush location, solving a transport-like equation for
a characteristic function of the burnt zone; such an approach transfers the
modelling difficulty to the evaluation of the flame brush velocity (or, more
precisely speaking, to the relative velocity of the flame brush with respect
to the fresh gases), by an adequate closure relation, and the resulting model
is generally referred to as a Turbulent Flame velocity Closure (TFC) model
[18]. The transport equation for the characteristic function of the burnt zone
is called in this context the G-equation, its unknown being denoted by G
[14]. Such a modelling is implemented in the in-house software P2REMICS
(for Partially PREMIxed Combustion Solver) developed, on the basis of the
software components library CALIF3S (for Components Adaptative Library
For Fluid Flow Simulations, see [2]) at the French Institut de Radioprotec-
tion et de Sûreté Nucléaire (IRSN) for safety evaluation purposes; this is the
context of the work presented in this paper.

Usually, TFC models apply to perfectly premixed flows (i.e. flows with
constant initial composition), and the chemical state of the flow is governed
by the value of G only: G ∈ [0, 1], for G ≥ 0.5, the mixture is supposed to be
in its fresh (initial) state and G < 0.5 is supposed to correspond to the burnt
state; in both cases, the composition of the gas is known (it is equal to the
initial value in the fresh zones, and to the state resulting from a complete
chemical reaction in the burnt zone).

However, for partially premixed turbulent flows (i.e. flows with non-
constant initial composition), the situation is more complex, since the com-
position of the mixture can no more be deduced from the value of G. An
extension for this situation, in the inviscid case, is proposed in [1]. The line
followed to formulate this model is to write transport equations for the chem-
ical species initially present in the flow, as if no chemical reaction occured,
and then to compute the actual composition in the burnt zone (i.e. the part
of the physical space where G < 0.5) as the chemical equilibrium composi-
tion, thus supposing an infinitely fast reaction. This model is referred to in
the following as the “asymptotic model”, and is recalled in the first part of
Section 2.

We propose here an alternate extension, which consists in keeping the
classical reactive formulation of the chemical species mass balance, but eval-
uating the reaction term as a function of G: it is set to zero in the fresh
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zone (G ≥ 0.5), and to a finite (but possibly large) value in the burnt zone
(G < 0.5). This model is referred to as the “relaxed model”; it is in fact more
general, as it may be readily extended to cope with diffusion terms, while the
“asymptotic model” cannot (to this purpose, a balance for the actual mass
fractions is necessary). We then build a numerical scheme, based on a stag-
gered discretization of the unknowns, for the solution of the relaxed model;
this algorithm is of fractional step type, and employs a pressure correction
technique for hydrodynamics. The balance energy solved by the scheme is
the so-called (non conservative) sensible enthalpy balance, with corrective
terms in order to ensure the weak consistency (in the Lax-Wendroff sense) of
the scheme. It enjoys the same stability properties as the continuous model:
positivity of the density and, thanks to the choice of the enthalpy balance,
the internal energy, conservation of the total energy, chemical species mass
fractions lying in the interval [0, 1]. In addition, it is shown to be in fact
conservative: indeed, its solutions satisfy a discrete conservative total energy
balance whose time and space discretization is non-standard, but weakly
consistent with its continuous counterpart. This algorithm is an extension
to the reactive case of the numerical scheme for compressible Navier-Stokes
equations described and tested in [8].

As the reaction term gets stiffer, the relaxed model should boil down to the
asymptotic one, for which a closed form of the solution of Riemann problems
is available. Numerical tests are performed which show that this is indeed the
case. In addition, we observe that the accuracy of the scheme (for this kind of
application) is highly dependent on the numerical diffusion introduced by the
scheme in the mass balance equation for the chemical species, comparing the
results for three approximations of the convection operator in these equations:
the standard upwind scheme, a MUSCL-like scheme introduced in [15] and a
first order scheme designed to reduce diffusion proposed in [5].

The presentation is structured as follows. We first introduce the asymptotic
and the relaxed models in Section 2. Then we give an overview of the content
of this paper in Section 3, writing the scheme in the time semi-discrete setting
and stating its stability and consistency property. The fully discrete setting
is given in two steps, first describing the space discretization (Section 4) and
then the scheme itself (Section 5). The conservativity of the scheme is shown
in Section 6. Finally, numerical experiments are presented in Section 7.

2 The physical models

We begin with the description of the asymptotic model introduced in [1] and
then turn to the relaxed model proposed in the present work.

The asymptotic model - For the sake of simplicity, only four chemical
species are supposed to be present in the flow, namely the fuel (denoted by
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F ), the oxydant (O), the product (P ) of the reaction, and a neutral gas (N).
A one-step irreversible total chemical reaction is considered, which is written:

νFF + νOO +N → νPP +N,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction.
We denote by I the set of the subscripts used to refer to the chemical species
in the flow, so I = {F,O,N, P} and the set of mass fractions of the chemical
species in the flow reads {yi, i ∈ I} (i.e. {yF , yO, yN , yP }). We now define
the auxiliary unknowns {ỹi, i ∈ I} as the result of the (inert) transport by
the flow of the initial state, which means that the {ỹi, i ∈ I} are the solutions
to the following system of equation:

∂t(ρỹi) + div(ρỹiu) = 0, ỹi(x, 0) = yi,0(x), for i ∈ I, (1)

where ρ stands for the fluid density, u for the velocity, and yi,0(x) is the
initial mass fraction of the chemical species i in the flow. These equations
are supposed to be posed over a bounded domain Ω of R

d, d ∈ {1, 2, 3}
and a finite time interval (0, T ). The initial conditions are supposed to verify∑

i∈I yi,0 = 1 everywhere in Ω, and this property is assumed to be valid
for any t ∈ (0, T ), which is equivalent with the mixture mass balance, given
below. The characteristic function G is supposed to obey the following equa-
tion:

∂t(ρG) + div(ρGu) + ρuuf |∇G| = 0, (2)

associated to the initial conditions G = 0 at the location where the flame
starts and G = 1 elsewhere. The quantity ρu is a constant density, which,
from a physical point of view, stands for a characteristic value for the unburnt
gases density. The chemical mass fractions are now computed as:

∣∣∣∣∣∣∣∣

if G > 0.5, yi = ỹi for i ∈ I,

if G ≤ 0.5, yF = νFWF z̃
+, yO = νOWO z̃

−, yN = ỹN ,

with z̃ =
1

νFWF
ỹF −

1

νOWO
ỹO.

(3)

In these relation, z̃+ and z̃− stand for the positive and negative part of z̃,
respectively, i.e. z̃+ = max(z̃, 0) and z̃− = −min(z̃, 0), and, for i ∈ I, Wi is
the molar mass of the chemical species i. The physical meaning of Relation
(3) is that the chemical reaction is supposed to be infinitely fast, and thus
that the flow composition is stuck to the chemical equilibrium composition
in the so-called burnt zone, which explains why the model is qualified as
“asymptotic”. The product mass fraction is given by yP = 1−(yF +yO+yN).
The flow is governed by the Euler equations:
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∂tρ+ div(ρu) = 0, (4a)

∂t(ρui) + div(ρuiu) + ∂ip = 0, i = 1, d, (4b)

∂t(ρE) + div(ρEu) + div(pu) = 0, (4c)

p = (γ − 1) ρes, E =
1

2
|u|2 + e, e = es +

∑

i∈I

yi∆h
0
f,i, (4d)

where p stands for the pressure, E for the total energy, e for the internal
energy, es for the so-called sensible internal energy and, for i ∈ I, ∆h0f,i is
the formation enthalpy of the chemical species i. The equation of state (4d)
supposes that the fluid is a perfect mixture of ideal gases, with the same
iso-pressure to iso-volume specific heat ratio γ > 1. This set of equations is
complemented by homogeneous Neumann boundary conditions for the veloc-
ity:

u · n = 0 a.e. on ∂Ω, (5)

where ∂Ω stands for the boundary of Ω and n its outward normal vector.

The “relaxed” model – This model retains the original form of the gov-
erning equations for reactive flows: a transport/reaction equation is written
for each of the chemical species mass fractions; the value of G controls the
reaction rate ω̇, which is set to zero when G ≥ 0.5, and takes non-zero (and
possibly large) values otherwise. The unknowns {yi, i ∈ I} are thus now
solution to the following balance equations:

∂t(ρyi) + div(ρyiu) = ω̇i, ỹi(x, 0) = yi,0(x) for i ∈ I, (6)

where the reactive term ω̇i is given by:

ω̇i =
1

ε
ζi νiWi ω̇, with ω̇ = η(yF , yO) (G− 0.5)−

and η(yF , yO) = min(
yF

νFWF
,

yO
νOWO

), (7)

with ζF = ζO = −1, ζP = 1 and ζN = 0. Note that, since νFWF + νOW0 =
νPWP , we have

∑
i∈I ω̇i = 0, which, summing on i ∈ I the species mass

balances, allows to recover the equivalence between the mass balance and
the fact that

∑
i∈I yi = 1. The factor η(yF , yO) is a cut-off function, which

prevents the chemical species mass fractions from taking negative values (and,
consequently, values greater than 1, since their sum is equal to 1).

The rest of the model is left unchanged.
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3 General description of the scheme and main results

Time semi-discrete algorithm

Instead of the total energy balance equation, the scheme solves a balance
equation for the sensible enthalpy hs = es + p/ρ, which is formally derived
as follows. The first step is to establish the kinetic energy balance formally
and subtract from (4c) to obtain a balance equation for the internal energy.
Thanks to the mass balance equation, for any regular function ψ

∂t(ρψ) + div(ρψu) = ρ∂tψ + ρu ·∇ψ.

Using twice this identity and then the momentum balance equation, we have
for 1 ≤ i ≤ d:

1

2
∂t(ρu

2
i ) +

1

2
div(ρu2i u) = ρ ui∂tui + ρuiu ·∇ui

= ui
[
∂t(ρui) + div(ρuiu)

]
= −ui∂ip,

and, summing for i = 1 to d, we obtain the kinetic energy balance:

1

2
∂t(ρ|u|

2) +
1

2
div(ρ|u|2u) = u ·

[
∂t(ρu) + div(ρu ⊗ u)

]
= −u ·∇p.

Substituting the expression of the total energy in (4c), yields

∂t(ρe) + div(ρeu) +
1

2
∂t(ρ|u|

2) +
1

2
div(ρ|u|2) + u ·∇p+ pdiv(u) = 0,

which, using the kinetic energy balance, gives the total internal energy bal-
ance:

∂t(ρe) + div(ρeu) + pdiv(u) = 0. (8)

Using the linearity of the mass balance of the chemical species i, for any
i ∈ I, we derive the reactive energy balance:

∂t
[
ρ
(∑

i∈I

∆h0f,iyi
)]

+ div
[
ρ
(∑

i∈I

∆h0f,iyi
)
u

]
=

∑

i∈I

∆h0f,iω̇i = −ω̇θ. (9)

Subtracting (9) from (8) yields the sensible internal energy balance:

∂t(ρes) + div(ρesu) + pdiv(u) = ω̇θ. (10)

Finally, using the relation between the sensible energy and the sensible en-
thalpy, we obtain the sensible enthalpy balance:

∂t(ρhs) + div(ρhsu)− ∂tp− u ·∇p = ω̇θ. (11)
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The numerical resolution of the mathematical model is realized by a frac-
tional step algorithm, which implements a pressure correction technique for
hydrodynamics in order to separate the resolution of the momentum balance
from the other equations of the Euler system. Supposing that the time in-
terval (0, T ) is split in N sub-intervals, of constant length δt = T/N , the
semi-discrete algorithm is given by:

Reactive step:

Gn+1 :
1

δt
(ρnGn+1 − ρn−1Gn) + div(ρnGk

u
n) + ρuuf |∇Gk| = 0, (12a)

Y n+1
N :

1

δt
(ρnyn+1

N − ρn−1ynN) + div(ρnykNu
n) = 0. (12b)

zn+1 :
1

δt
(ρnzn+1 − ρn−1zn) + div(ρnzkun) = 0. (12c)

Y n+1
F :

1

δt
(ρnyn+1

F − ρn−1ynF ) + div(ρnykFu
n) =

−
1

ε
νFWF ω̇(y

n+1
F , zn+1),

(12d)

Y n+1
P : yn+1

F + yn+1
O + yn+1

N + yn+1
P = 1. (12e)

(12f)

Euler step:

ũ
n+1 :

1

δt
(ρnũn+1

i − ρn−1uni ) + div(ρnũn+1
i u

n)

+
( ρn

ρn−1

)1/2

∂ip
n = 0, i = 1, . . . , d,

(12g)

u
n+1

ρn+1

hn+1
s

pn+1

:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

δt
ρn(un+1

i − ũn+1
i ) + ∂ip

n+1

−
( ρn

ρn−1

)1/2

∂ip
n = 0, i = 1, . . . , d,

1

δt
(ρn+1 − ρn) + div(ρn+1

u
n+1) = 0,

1

δt
(ρn+1hn+1

s − ρnhns ) + div(ρn+1hn+1
s u

n+1)

−
1

δt
(pn+1 − pn)− un+1 ·∇pn+1 = ω̇n+1

θ + Sn+1,

pn+1 =
γ − 1

γ
ρn+1 hn+1

s .

(12h)

Equations (12a)-(12h) are solved successively, and the unknown for each equa-
tion is specified before each equation. In the convection term of the equations
of the reactive step, the index k may take the value n (so the scheme is
explicit) or n + 1 (so the scheme is implicit). The unknown z is an affine
combination of yF and yO, defined so that the reactive term cancels:
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z =
1

νFWF
yF −

1

νOWO
yO. (13)

Thus the value of yn+1
O is deduced from yn+1

F and zn+1, which allows to
express ω̇ in (12d) as a function of yn+1

F and zn+1, instead of yn+1
F and yn+1

O

as suggested by Relation (7). In addition, we have:

η(yn+1
F , yn+1

O ) = min(
yn+1
F

νFWF
,
yn+1
O

νOWO
)

=

∣∣∣∣∣∣∣∣∣

1

νFWF
yn+1
F if zn+1 ≤ 0,

1

νOWO
yn+1
O =

1

νFWF
yn+1
F − zn+1 otherwise.

Hence, because of the specific form of the function η, the right hand side of
(12d) boils down to an affine term, even if η vanishes when yF or yO vanishes,
and the scheme is fully implicit in time with respect to the reaction term.
This is the motivation for the choice of the form of η. It is fundamental to
remark that Equations (12b)-(12e) are equivalent to the following system:

1

δt
(ρnyn+1

i − ρn−1yni ) + div(ρnyki u
n) =

1

ε
ζiνiWi ω̇(y

n+1
F , yn+1

O ), i ∈ I, (14)

where we recall that ζF = ζO = −1, ζP = 1 and ζN = 0. Indeed, dividing
the fuel mass balance equation (12d) by νFWF , substracting Equation (12c)
and finally multiplying by νOWO yields the desired mass balance equation
for the oxydant chemical species. Finally, we suppose that the product mass
balance holds:

1

δt
(ρnyn+1

P − ρn−1ynP ) + div(ρnykPu
n) =

1

ε
νPWP ω̇(y

n+1
F , yn+1

O ). (15)

Since the sum of the chemical reaction terms vanishes, we have for Σ =
yF + yO + yP + yN , summing all the chemical species mass balances,

1

δt
(ρnΣn+1 − ρn−1Σn) + div(ρnΣk

u
n) = 0, (16)

and this equation may equivalently replace the product mass balance equa-
tion (15). Thanks to the mixture balance, we see that, provided that Σn

satisfies Σn = 1 everywhere in Ω, the solution to Equation (16) is Σn+1 = 1
everywhere in Ω. Since the initialization yields Σ0 = 1, this last equality
is indeed true, and (15) is equivalent to (12e). Finally, note that, when the
chemical step is performed, the mass balance at step n+ 1 is not yet solved;
hence the (unusual) backward time shift for the densities and for the mass
fluxes in the equations of this step.
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Equations (12g)-(12h) implement a pressure correction technique, where
the correction step couples the velocity correction equation, the mass balance
and the sensible enthalpy balance. This coupling ensures that the pressure
and velocity are kept constant through the contact discontinuity associated
to compositional non-reactive Euler equations (precisely speaking, the usual
contact discontinuity, already present in 1D equations, but not slip lines);
for this property to hold, it is necessary that all chemical species share the
same heat capacity ratio γ. The term Sn+1

K in the sensible enthalpy balance
equation is a corrective term which is necessary for consistency; schemati-
cally speaking, it compensates the numerical dissipation which appears in a
discrete kinetic energy balance that is obtained from the discrete momentum
balance. Its expression is given in Section 5, and its derivation is explained
in Section 6, where the conservativity of the scheme is discussed.

Space discretization

The space dicretization is performed by a finite volume technique, using a
staggered arrangement of the unknowns (the scalar variables are approxi-
mated at the cell centers and the velocity components at the face centers),
using either a MAC scheme (for structured discretizations) or the degrees
of freedom of low-order non-conforming finite elements: Crouzeix-Raviart [4]
for simplicial cells and Rannacher-Turek [17] for quadrangles (d = 2) or hex-
ahedra (d = 3). For the Euler equations (i.e. Steps (12g)- (12h)), upwinding
is performed by building positivity-preserving convection operators, in the
spirit of the so-called Flux-Splitting methods, and only first-order upwinding
is implemented. The pressure gradient is built as the transpose (with respect
to the L2 inner product) of the natural velocity divergence operator. For
the balance equations for the other scalar unknowns, the time discretization
is implicit when first-order upwinding is used in the convection operator (in
other words, k = n+1 in (12a)-(12d)) or explicit (k = n in (12a)-(12d)) when
a higher order (of MUSCL type, cf. Appendix 8) flux or an anti-diffusive
flux (cf. Appendix 9) is used.

Properties of the scheme

First, the positivity of the density is ensured by construction of the discrete
mass balance equation, i.e. by the use of a first order upwind scheme. In ad-
dition, the physical bounds of the mass fractions are preserved thanks to the
following (rather standard) arguments: first, building a discrete convection
operator which vanishes when the convected unknown is constant thanks to
the discrete mass balance equation ensures a positivity-preservation property
[13], under a CFL condition if an explicit time approximation is used; second,
the discretization of the chemical reaction rate ensures either that it vanishes
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when the unknown of the equation vanishes (for yF and yO), or that it is
non-negative (for yP ). Consequently, mass fractions are non-negative and,
since their sum is equal to 1 (see above), they are also bounded by 1.

The positivity of the sensible energy stems from two essential arguments:
first, a discrete analog of the internal energy equation (8) may be obtained
from the discrete sensible enthalpy balance, by mimicking the continuous
computation; second, this discrete relation may be shown to have only pos-
itive solutions, once again thanks to the consistency of the discrete convec-
tion operator and the mass balance. This holds provided that the equation is
exothermic (ω̇θ ≥ 0) and thanks to the non-negativity of Sn+1 (see below).

In order to calculate correct shocks, it is crucial for the scheme to be
consistent with the following weak formulation of the problem:

∀φ ∈ C∞
c (Ω × [0, T )

)
,∫ T

0

∫

Ω

[
ρ∂tφ+ ρu ·∇φ

]
dxdt+

∫

Ω

ρ0(x)φ(x, 0)dx = 0,
∫ T

0

∫

Ω

[
ρui∂tφ+ (ρuui) ·∇φ+ p∂iφ

]
dx dt

+

∫

Ω

ρ0(x)(ui)0(x)φ(x, 0)dx = 0, 1 ≤ i ≤ d,
∫ T

0

∫

Ω

[
ρE∂tφ+ (ρE + p)u ·∇φ

]
dx dt+

∫

Ω

ρ0(x)E0(x)φ(x, 0)dx = 0,
∫ T

0

∫

Ω

[
ρyi∂tφ+ ρyiu ·∇φ

]
dx dt+

∫ T

0

∫

Ω

ρ0(x)yi,0(x)φ(x, 0)dx =

−

∫ T

0

∫

Ω

ω̇iφdx dt, 1 ≤ i ≤ d,

p = (γ − 1)ρes.

(17)

Remark that this system features the total energy balance equation and
not the sensible enthalpy balance equation, which is actually solved here.
However, we show in Section 6 that the solutions of the scheme satisfy a
discrete total energy balance, with a time and space dicretization which is
unusual but allows however to prove the consistency in the Lax-Wendroff
sense. Finally, the integral of the total energy over the domain is conserved,
which yields a stability result for the scheme (irrespectively of the time and
space step, for this relation; recall however that the overall stability of the
scheme needs a CFL condition if an explicit version of the convection operator
for chemical species is used).
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4 Meshes and unknowns

Let the computational domain Ω be an open polygonal subset of Rd, 1 ≤ d ≤
3, with boundary ∂Ω and let M be a decomposition of Ω, supposed to be
regular in the usual sense of the finite element literature (e.g. [3]). The cells
may be:

- for a general domain Ω, either convex quadrilaterals (d = 2) or hexa-
hedra (d = 3) or simplices, both type of cells being possibly combined
in a same mesh for two-dimensional problems,

- for a domain the boundaries of which are hyperplanes normal to a
coordinate axis, rectangles (d = 2) or rectangular parallelepipeds (d =
3) (the faces of which, of course, are then also necessarily normal to a
coordinate axis).

By E and E(K) we denote the set of all (d−1)-faces σ of the mesh and of the
element K ∈ M respectively. The set of faces included in the boundary of Ω
is denoted by Eext and the set of internal edges (i.e. E \ Eext) is denoted by
Eint; a face σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The
outward normal vector to a face σ of K is denoted by nK,σ. For K ∈ M and
σ ∈ E , we denote by |K| the measure of K and by |σ| the (d− 1)-measure of
the face σ. The size of the mesh is denoted by h:

h = max
{
diam(K), K ∈ M

}
.

For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E
(i)
ext ⊂ Eext the subset of the faces

of E and Eext respectively which are perpendicular to the ith unit vector of
the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell
(MAC) scheme [10, 9], or nonconforming low-order finite element approxima-
tions, namely the Rannacher and Turek (RT) element [17] for quadrilateral
or hexahedric meshes, or the lowest degree Crouzeix-Raviart (CR) element
[4] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure,
the density, the enthalpy, the mixture, fuel and neutral gas mass fractions
and the flame indicator are associated to the cells of the mesh M and are
denoted by:

{
pK , ρK , hK , yF,K , yN,K, zK , GK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete
velocity unknowns).

- Rannacher-Turek or Crouzeix-Raviart discretizations – The de-
grees of freedom for the velocity components are located at the center
of the faces of the mesh, and we choose the version of the element
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where they represent the average of the velocity through a face. The
set of degrees of freedom reads:

{uσ, σ ∈ E}, of components {uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the ith component of
the velocity are defined at the centre of the faces of E(i), so the whole
set of discrete velocity unknowns reads:

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

For the definition of the schemes, we need a dual mesh which is defined as
follows.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the
RT or CR discretizations, the dual mesh is the same for all the velocity
components. When K ∈ M is a simplex, a rectangle or a rectangular
cuboid, for σ ∈ E(K), we define DK,σ as the cone with basis σ and
with vertex the mass center of K (see Figure 1). We thus obtain a
partition of K in m sub-volumes, where m is the number of faces of
the mesh, each sub-volume having the same measure |DK,σ| = |K|/m.
We extend this definition to general quadrangles and hexahedra, by
supposing that we have built a partition still of equal-volume sub-
cells, and with the same connectivities; note that this is of course
always possible, but that such a volume DK,σ may be no longer a
cone; indeed, if K is far from a parallelogram, it may not be possible
to build a cone having σ as basis, the opposite vertex lying in K and
a volume equal to |K|/m (note that these dual cells do not need to be
constructed in the implementation of the scheme, only their volume
is needed). The volume DK,σ is referred to as the half-diamond cell
associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated
to σ by Dσ = DK,σ ∪DL,σ; for an external face σ ∈ Eext ∩ E(K), Dσ

is just the same volume as DK,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends
on the component of the velocity. For each component, the MAC
dual mesh only differs from the RT or CR dual mesh by the choice
of the half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now
the rectangle or rectangular parallelepiped of basis σ and of measure
|DK,σ| = |K|/2.

We denote by |Dσ| the measure of the dual cell Dσ, and by ε = Dσ|Dσ′

the dual face separating two diamond cells Dσ and Dσ′ .

In order to be able to write a unique expression of the discrete equations for

both MAC and CR/RT schemes, we introduce the set of faces E
(i)
S associated

with the degrees of freedom of each component of the velocity (S stands for
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Dσ

Dσ′

σ′ = K|M

K

L

M

|σ|

σ
=

K
|Lε = D

σ |D
σ ′

Fig. 1: Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart ele-
ments.

“scheme”):

E
(i)
S =

∣∣∣∣∣
E(i) \ E

(i)
ext for the MAC scheme,

E \ E
(i)
ext for the CR or RT schemes.

Similarly, we unify the notation for the set of dual faces for both schemes by
defining:

Ẽ
(i)
S =

∣∣∣∣∣
Ẽ(i) \ Ẽ

(i)
ext for the MAC scheme,

Ẽ \ Ẽ
(i)
ext for the CR or RT schemes,

where the symbol ˜ refers to the dual mesh; for instance, Ẽ(i) is thus the set
of faces of the dual mesh associated with the ith component of the velocity,

and Ẽ
(i)
ext stands for the subset of these dual faces included in the boundary.

Note that, for the MAC scheme, the faces of Ẽ(i) are perpendicular to a unit
vector of the canonical basis of Rd, but not necessarily to the ith one.

5 The scheme

In this section, we give the fully discrete form of the scheme. Even if it cor-
responds to the reverse order with respect to the semi-discrete scheme given
in (12), we begin with the hydrodynamics (Section 5.1) and then turn to the
mass balance step for chemical species and the transport of the characteristic
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function for the burnt zone (Section 5.2). This choice is due to the fact that
the definition of the convection operators for scalar variables necessitates to
introduce the discretization of the mixture mass balance equation first.

5.1 Euler step

For 0 ≤ n < N , the step n+1 of the algorithm for the resolution of the Euler
equations reads:

Pressure gradient scaling step – Solve for (∇̃p)n+1:

∀σ ∈ E , (∇̃p)n+1
σ =

( ρnDσ

ρn−1
Dσ

)1/2

(∇p)nσ. (18a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

1

δt
(ρnDσ

ũn+1
σ,i − ρn−1

Dσ
unσ,i) + divσ(ρ

nũn+1
i u

n) + (∇̃p)n+1
σ,i = 0. (18b)

Correction step – Solve for ρn+1, pn+1 and u
n+1:

For 1 ≤ i ≤ d, ∀σ ∈ E
(i)
S ,

1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + (∇p)n+1
σ,i − (∇̃p)n+1

σ,i = 0, (18c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + divK(ρu)n+1 = 0, (18d)

∀K ∈ M,
1

δt

[
ρn+1
K (hs)

n+1
K − ρnK (hs)

n
K

]
+ divK(ρhsu)

n+1

−
1

δt
(pn+1

K − pnK)−
(
u ·∇p

)n+1

K
= (ω̇θ)

n+1
K + Sn+1

K ,
(18e)

∀K ∈ M, pn+1
K =

γ − 1

γ
(hs)

n+1
K ρn+1

K . (18f)

The initial approximations for ρ−1, h0s and u
0 are given by the mean values

of the initial conditions over the primal and dual cells:

∀K ∈ M, ρ−1
K =

1

|K|

∫

K

ρ0(x) dx and (hs)
0
K =

1

|K|

∫

K

(hs)0(x) dx,

∀σ ∈ E
(i)
S , 1 ≤ i ≤ d, u0σ,i =

1

|Dσ|

∫

Dσ

(u0(x))i dx.

Then, ρ0 is computed by the mass balance equation (18d) and p0 is computed
by the equation of state (18f).
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We now define each of the discrete operators featured in System (18).

Mass balance equation

Equation (18d) is a finite volume discretisation of the mass balance (4a) over
the primal mesh. For a discrete density field ρ and a discrete velocity field u,
the discrete divergence is defined by:

divK(ρu) =
1

|K|

∑

σ∈E(K)

FK,σ, FK,σ = |σ| ρσuK,σ,

where uK,σ is an approximation of the normal velocity to the face σ outward
K. The definition of this latter quantity depends on the discretization: in the
MAC case, uK,σ = uσ,i e

(i) · nK,σ for a face σ of K perpendicular to e
(i),

with e
(i) the i-th vector of the orthonormal basis of Rd, and, in the CR and

RT cases, uK,σ = uσ · nK,σ for any face σ of K. The density at the face
σ = K|L is approximated by the upwind technique, so ρσ = ρK if uK,σ ≥ 0
and ρσ = ρL otherwise. Since we assume that the normal velocity vanishes
on the boundary faces, the definition is complete.

Convection operators associated to the primal mesh

We may now give the general form of the discrete convection operator of any
discrete field z defined on the primal cell:

divK(ρzu) =
1

|K|

∑

σ∈E(K)

FK,σ zσ, (19)

where zσ is an approximation of the unknown z at the face σ.

Momentum balance equation and pressure gradient scaling

We now turn to the discrete momentum balance (18b). For the MAC dis-
cretization, but also for the RT and CR discretizations, the time derivative
and convection terms are approximated in (18b) by a finite volume technique
over the dual cells, so the convection term reads:

divσ(ρũiu) = divσ
(
ũi(ρu)

)
=

1

|Dσ|

∑

ε∈Ẽ(Dσ)

Fσ,εũε,i,

where Fσ,ε stands for a mass flux through the dual face ε, and ũε,i is a centered
approximation of the ith component of the velocity ũ on ε. The density in the
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dual cell ρDσ
is obtained by a weighted average of the density in the neighbour

cells: |Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL for σ = K|L ∈ Eint, and ρDσ

= ρK for
an external face of a cell K. The mass fluxes (Fσ,ε)ε∈E(Dσ) are evaluated as
linear combinations, with constant coefficients, of the primal mass fluxes at
the neighbouring faces, in such a way that the following discrete mass balance
over the dual cells is implied by the discrete mass balance (18d):

∀σ ∈ E and n ∈ N,
|Dσ|

δt
(ρn+1

Dσ
− ρnDσ

) +
∑

ε∈E(Dσ)

Fn+1
σ,ε = 0. (20)

This relation is critical to derive a discrete kinetic energy balance (see Sec-
tion 6 below). The computation of the dual mass fluxes is such that the flux
through a dual face lying on the boundary, which is then also a primal face,
is the same as the primal flux, that is zero. For the expression of these fluxes,
we refer to [6, 11, 12]. Since the mass balance is not yet solved at the ve-
locity prediction stage, they have to be built from the mass balance at the
previous time step: hence the backward time shift for the densities in the
time-derivative term.

The term (∇p)σ,i stands for the i-th component of the discrete pressure
gradient at the face σ. This gradient operator is built as the transpose of the
discrete operator for the divergence of the velocity, i.e. in such a way that
the following duality relation with respect to the L2 inner product holds:

∑

K∈M

|K|pKdivK(u) +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ|uσ,i(∇p)σ,i = 0.

This leads to the following expression:

∀σ = K|L ∈ Eint, (∇p)σ,i =
|σ|

|Dσ|
(pL − pK) nK,σ · e(i).

The scaling of the pressure gradient (18a) is necessary for the solution to the
scheme to satisfy a local discrete (finite volume) kinetic energy balance [8,
Lemma 4.1].

Sensible enthalpy equation

The convection term for the sensible enthalpy takes the form (19), with an
implicit and upwind (with respect to the mass flux FK,σ) approximation of
the unknown at the face. In addition, this equation is discretized in such a
way that the present enthalpy formulation is strictly equivalent to the internal
energy formulation of the energy balance equation used in [8]. Consequently,
the term −

(
u ·∇p

)
K

reads:
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−
(
u ·∇p

)
K

=
1

|K|

∑

σ∈E(K)

|σ|uK,σ (pK − pσ),

where pσ is the upwind approximation of p at the face σ with respect to uK,σ.
The reaction heat, (ω̇θ)K , is written in the following way:

(ω̇θ)K=−

Ns∑

i=1

∆h0f,i(ω̇i)K =
(
νFWF∆h

0
f,F+νOWO∆h

0
f,O−νPWP∆h

0
f,P

)
ω̇K .

The definition of ω̇K is given in Section 5.2, and the definition of the corrective
term Sn+1

K is given in Section 6 (see Equation (31) and Remark 3 below).

5.2 Chemistry step

For 0 ≤ n < N , the step n+ 1 for the solution of the transport of the char-
acteristic function of the burnt zone and the chemical species mass balance
equations reads:

Computation of the burnt zone characteristic function – Solve for Gn+1:

∀K ∈ M,
1

δt
(ρnKG

n+1
K − ρn−1

K Gn
K) + divK(ρnGk

u
n)

+ (ρuuf |∇Gk|)K = 0. (21a)

Computation of the variable z – Solve for zn+1:

∀K ∈ M,
1

δt
(ρnKz

n+1
K − ρn−1

K znK) + divK(ρnzkun) = 0. (21b)

Neutral gas mass fraction computation – Solve for yn+1
N :

∀K ∈ M,
1

δt

[
ρnK(yN )n+1

K − ρn−1
K (yN )nK

]
+ divK(ρnykNu

n) = 0. (21c)

Fuel mass fraction computation – Solve for yn+1
F :

∀K ∈ M,
1

δt

[
ρnK(yF )

n+1
K − ρn−1

K (yF )
n
K

]

+ divK(ρnykFu
n) = −

1

ε
νFWF ω̇

n+1
K . (21d)

Product mass fraction computation – Compute yn+1
P given by:

∀K ∈ M, (yP )
n+1
K = 1− (yF )

n+1
K − (yO)

n+1
K − (yN )n+1

K . (21e)

The initial value of the chemical variables is the mean value of the initial
condition over the primal cells:
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∀K ∈ M, G0
K =

1

|K|

∫

K

G0(x) dx, z0K =
1

|K|

∫

K

z0(x) dx,

(yi)
0
K =

1

|K|

∫

K

(yi)0(x) dx, i = N,F,

where the reduced variable z is the linear combination of yF and yO given by
Equation (13).

In Equations (21a)-(21d), the discretization of the convection terms is
performed by a discrete operator of the form (19). Several choices are possible
(and compared in numerical tests) for the evaluation of the value at the face:
either an implicit scheme (i.e. k = n + 1) with a first-order upwind space
discretization, either an explicit scheme (i.e. k = n) with a MUSCL or an
anti-diffusive space approximation. These latter discretizations are described
in Section 8 and Section 9 of the appendix, respectively.

According to the developments of Section 3, the chemical reaction term
reads ω̇n+1

K = η((yF )
n+1
K , zn+1

K ) (Gn+1
K − 0.5)− with

η((yF )
n+1
K , zn+1

K ) =

∣∣∣∣∣∣∣∣

1

νFWF
(yF )

n+1
K if zn+1 ≤ 0,

1

νFWF
(yF )

n+1
K − zn+1

K otherwise,

and the chemical species mass fractions satisfy the following system, which
is equivalent to (21b)-(21e):

1

δt

(
ρnK(yi)

n+1
K − ρn−1

K (yi)
n
K

)
+ divK(ρnyki u

n) =
1

ε
ζi νiWi ω̇

n+1,

for i ∈ I and K ∈ M. (22)

At the continuous level, the last term of equation (21a) may be written

ρu uf |∇G| = a ·∇G = div(Ga)−Gdiv(a), with a = ρu uf
∇G

|∇G|
,

and we use the same decomposition at the discrete level:

|K| (ρu uf |∇G|)K =
∑

σ∈E(K)

|σ| (Gk
σ −Gk

K)an
σ · nK,σ,

where Gk
σ may be given by one of the three above-mentioned schemes, namely

an implicit upwind (with respect to a
n · nK,σ) scheme, an explicit MUSCL

or an explicit anti-diffusive scheme. The flame velocity on σ, an
σ, is evaluated

as

a
n
σ = ρu uf

(∇G)nσ
|(∇G)nσ |

,
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where the gradient of G on σ = K|L is computed as:

(∇G)σ =
1

|K ∪ L|

[ ∑

τ∈E(K)

|τ | Ĝτ nK,τ +
∑

τ∈E(L)

|τ | Ĝτ nL,τ

]
,

where Ĝτ is a second order approximation of G at the center of the face τ .

6 Scheme conservativity

Let the discrete sensible internal energy be defined by pnK = (γ − 1) ρnK(es)
n
K

for K ∈ M and 0 ≤ n ≤ N . In view of the equation of state (18f), this
definition implies ρnK(hs)

n
K = ρnK(es)

n
K + pnK , for K ∈ M and 0 ≤ n ≤ N .

The following lemma states that the discrete solutions satisfy a local internal
energy balance.

Lemma 1 (Discrete internal energy balance).
A solution to (18)-(21) satisfies the following equality, for any K ∈ M and
0 ≤ n < N :

1

δt

[
(ρe)n+1

K − (ρe)nK
]
+ d̃ivK(ρeu)n+1 + pn+1

K divK(u)n+1 = Sn+1
K , (23)

where

(ρe)n+1
K = ρn+1

K (es)
n+1
K + ρnK

∑

i∈I

∆h0f,i(yi)
n+1
K ,

d̃ivK(ρeu)n+1 = divK

[
(ρes)

n+1
u
n+1 + ρn

[∑

i∈I

∆h0f,i y
k
i

]
u
n
]
.

Proof. We begin by deriving a local sensible internal energy balance, starting
from the sensible enthalpy balance (18e) and mimicking the previously given
formal passage between these two equations at the continuous level (i.e. the
passage from Equation (11) to Equation (10)). To this purpose, let us write
(18e) as T1 + T2 = T3 with

T1 =
1

δt

[
ρn+1
K (hs)

n+1
K − ρnK (hs)

n
K

]
−

1

δt
(pn+1

K − pnK),

T2 = divK(ρhsu)
n+1 −

(
u ·∇p

)n+1

K
,

T3 = (ω̇θ)
n+1
K + Sn+1

K .

Using ρℓK(hs)
ℓ
K = ρℓK(es)

ℓ
K + pℓK for ℓ = n and ℓ = n+ 1, we easily get

T1 =
1

δt

[
ρn+1
K (es)

n+1
K − ρnK (es)

n
K

]
.
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The term T2 reads:

|K| T2 =
∑

σ∈E(K)

|σ|
[
ρn+1
σ (hs)

n+1
σ − pn+1

σ + pn+1
K

]
un+1
K,σ .

If un+1
K,σ > 0, by definition, ρn+1

σ (hs)
n+1
σ = ρn+1

K (hs)
n+1
K and pn+1

σ = pn+1
K ;

otherwise, thanks to the assumptions on the boundary conditions, σ is an
internal face and, denoting by L the adjacent cell to K such that σ = K|L,
ρn+1
σ (hs)

n+1
σ = ρn+1

L (hs)
n+1
L and pn+1

σ = pn+1
L . In both cases, denoting by

(es)
n+1
σ the upwind choice for (es)

n+1 at the face σ, we get

ρn+1
σ (hs)

n+1
σ − pn+1

σ = ρn+1
σ (es)

n+1
σ ,

so, finally

|K| T2 =
∑

σ∈E(K)

Fn+1
K,σ (es)

n+1
σ + pn+1

K

∑

σ∈E(K)

|σ| un+1
K,σ .

We thus get the following sensible internal energy balance:

|K|

δt

[
ρn+1
K (es)

n+1
K − ρnK (es)

n
K

]
+

∑

σ∈E(K)

Fn+1
K,σ (es)

n+1
σ

+ pn+1
K

∑

σ∈E(K)

|σ| un+1
K,σ = |K|

[
(ω̇θ)

n+1
K + Sn+1

K

]
, (24)

or, using the discrete differential operator formalism,

1

δt

[
ρn+1
K (es)

n+1
K − ρnK (es)

n
K

]
+ divK(ρesu)

n+1

+ pn+1
K divKu

n+1 = (ω̇θ)
n+1
K + Sn+1

K . (25)

We now derive from this relation a discrete (sensible and chemical) inter-
nal energy balance. Multiplying the mass fraction balance equations by the
corresponding formation enthalpy (∆h0f,i)i∈I and summing over i ∈ I yields:

1

δ
t
∑

i∈I

∆h0f,i
[
ρnK(yi)

n+1
K − ρn+1

K (yi)
n
K

]
+

∑

σ∈E(K)

Fn
K,σ

∑

i∈I

∆h0f,i (yi)
k
σ =

∑

i∈I

∆h0f,i (ω̇i)
n+1
K = (ω̇θ)

n+1
K .

Adding this relation to (24) yields the balance equation (23).

Remark 1 (Positivity of the sensible internal energy). Equation (25) implies
that the sensible internal energy remains positive, provided that the right-
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hand side is non-negative, which is true if ω̇θ ≥ 0, i.e. if the chemical reaction
is exothermic. The proof of this property may be found in [8, Lemma 4.3],
and relies on two arguments: first, the convection operator may be recast
as a discrete positivity-preserving transport operator thanks to the mass
balance, and, second, the pressure pn+1

K vanishes when (es)
n+1
K vanishes, by

the equation of state.

The following local discrete kinetic energy balance holds on the dual mesh
(see [8, Lemma 4.1] for a proof).

Lemma 2 (Discrete kinetic energy balance on the dual mesh).

A solution to (18)-(21) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E
(i)
S

and 0 ≤ n < N :

|Dσ|

δt

[
(ek)

n+1
σ,i − (ek)

n
σ,i

]
+
∑

ε∈Ẽ(Dσ)

Fn
σ,ε(ek)

n+1
ε,i + |Dσ|(∇p)n+1

σ,i u
n+1
σ,i = −Rn+1

σ,i , (26)

where

(ek)
n+1
σ,i =

1

2
ρnDσ

(un+1
σ,i )2 + δt2

|Dσ|

2ρnDσ

(
(∇p)n+1

σ,i

)2
,

(ek)
n+1
ε,i =

1

2
ũn+1
σ,i ũ

n+1
σ′,i ,

Rn+1
σ,i =

|Dσ| ρ
n−1
Dσ

2δt
(ũn+1

σ,i − unσ,i)
2.

We now derive a kinetic energy balance equation on the primal cells from
Relation (26). For the sake of clarity, we make a separate exposition for the
Rannacher-Turek case and the MAC case. The case of simplicial discretiza-
tions, with the degrees of freedom of the Crouzeix-Raviart element, is an easy
extension of the Rannacher-Turek case.

The Rannacher-Turek case

Since the dual meshes are the same for all the velocity components in this
case, we may sum up Equation (26) over i = 1, . . . d to obtain, for σ ∈ E and
0 ≤ n < N :

|Dσ|

δt

[
(ek)

n+1
σ −(ek)

n
σ

]
+
∑

ε∈Ẽ(Dσ)

Fn
σ,ε(ek)

n+1
ε + |Dσ|(∇p)n+1

σ ·un+1
σ = −Rn+1

σ , (27)
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Fig. 2: From fluxes at dual faces to fluxes at primal faces, for the Rannacher-Turek
discretization.

with (ek)
ℓ
σ =

d∑

i=1

(ek)
ℓ
σ,i, for ℓ = n or ℓ = n+ 1,

(ek)
n+1
ε =

d∑

i=1

(ek)
n+1
ε,i and Rn+1

σ =

d∑

i=1

Rn+1
σ,i .

For K ∈ M, let us define a kinetic energy associated to K and the flux Gn+1
K,σ

as follows (see Figure 2):

(ek)
ℓ
K =

1

2 |K|

∑

σ∈E(K)

|Dσ| (ek)
ℓ
σ, ℓ = n or ℓ = n+ 1,

Gn+1
K,σ = −

1

2

∑

ε∈E(Dσ),ε⊂K

Fn
σ,ε (ek)

n+1
ε +

1

2

∑

ε∈E(Dσ),ε6⊂K

Fn
σ,ε (ek)

n+1
ε .

We easily check that the fluxes Gn+1
K,σ are conservative, in the sense that, for

σ = K|L, Gn+1
K,σ = −Gn+1

L,σ . Let us now divide Equation (27) by 2 and sum
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over the faces of K. A reordering of the summations, using the conservativity
of the mass fluxes through the dual edges and the expression of the discrete
pressure gradient, yields:

|K|

δt

[
(ek)

n+1
K −(ek)

n
K

]
+

∑

σ∈E(K)

Gn+1
K,σ+

1

2

∑

σ=K|L

|σ| (pn+1
L −pn+1

K ) un+1
K,σ = −Rn+1

K ,

with Rn+1
K =

1

2

∑

σ∈E(K)

Rn+1
σ . (28)

The MAC case

Let 1 ≤ i ≤ d, let K ∈ M, let us denote by σ and σ′ the two faces of E(i)(K),
and let us define:

(ek)
ℓ
K,i =

1

2 |K|

[
|Dσ| (ek)

ℓ
σ,i + |Dσ| (ek)

ℓ
σ,i

]
, for ℓ = n or ℓ = n+ 1.

Case of primal faces parallel to the dual faces. Let τ = σ or τ = σ′, let ε1
and ε2 be the two faces of Dτ perpendicular to e

(i), and let ε2 be the one
included in K (see Figure 3). Then we define

Gn+1
K,τ,i =

1

2

[
Fτ,ε1(ek)

n+1
ε1,i

− Fτ,ε2(ek)
n+1
ε2,i

]
.

K

σ σ
′

ε 1

Fσ,ε1

ε 2

−Fσ,ε2

GK,σ,1 = 1
2

[

Fσ,ε1
(ek)ε1,1 − Fσ,ε2

(ek)ε2,1

]

Fig. 3: From fluxes at dual faces to fluxes at primal faces, for the MAC discretization,
primal faces parallel to the dual edges, first component of the velocity.

Case of primal faces orthogonal to the dual faces. For τ ∈ E(K) \ {σ, σ′},
let ε and ε′ be such that τ ⊂ (ε̄∪ ε̄′) with ε a face of Dσ and ε′ a face of Dσ′

(see Figure 4).
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Fig. 4: From fluxes at dual faces to fluxes at primal faces, for the MAC discretization,
primal faces orthogonal to the dual edges, first component of the velocity.

Then we define

Gn+1
K,τ,i =

1

2

[
Fσ,ε(ek)

n+1
ε,i + Fσ′,ε′(ek)

n+1
ε′,i

]
.

Summing Equation (26) written for σ and for σ′ and dividing the result by
2 yields:

|K|

δt

[
(ek)

n+1
K,i − (ek)

n
K,i

]
+

∑

σ∈E(K)

Gn+1
K,σ,i

+
1

2

∑

σ∈E(i)(K)
σ=K|L

|σ| (pn+1
L − pn+1

K ) un+1
K,σ = −

1

2

(
Rn+1

σ,i +Rn+1
σ,i

)
. (29)

Now let (ek)
ℓ
K =

d∑

i=1

(ek)
ℓ
K,i, for ℓ = n or ℓ = n+ 1, and

Gn+1
K,σ =

d∑

i=1

Gn+1
K,σ,i, for σ ∈ E(K).

Since only one equation is written for a given face σ of the mesh (for the
velocity component i with i such that the normal vector to σ is parallel to
e
(i)), we may define in the MAC case Rn+1

σ = Rn+1
σ,i . Summing Equation (29)

over the space dimension, we finally get
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|K|

δt

[
(ek)

n+1
K − (ek)

n
K

]
+

∑

σ∈E(K)

Gn+1
K,σ +

1

2

∑

σ=K|L

|σ| (pn+1
L − pn+1

K ) un+1
K,σ

= −Rn+1
K , with Rn+1

K =
1

2

∑

σ∈E(K)

Rn+1
σ , (30)

which is formally the same equation as Relation (28) (although with a differ-
ent definition of all the terms in the equation except the pressure gradient).

Remark 2 (On the definition of the cell kinetic energy). Note that, both in
the Rannacher-Turek and the MAC case, the cell kinetic energy is not a
convex combination of the face kinetic energies, since, on a non-uniform mesh,
the equalities |K| = 1

2

∑
σ∈E(K) |Dσ| (Rannacher Turek case) and |K| =

1
2

∑
σ∈E(i)(K) |Dσ| (MAC case) do not hold in general. Consequently, the cell

kinetic energy may oscillate from cell to cell while the face kinetic energy
does not. Nevertheless, the discrete time derivative of the cell kinetic energy
is consistent in the Lax-Wendroff sense, because, despite of these oscillations,
the cell kinetic energy still converges weakly if the velocity converges.

Equations (28) and (30) suggest a choice for the term Sn+1
K , the purpose

of which is to compensate the numerical dissipation terms appearing in the
kinetic energy balance:

Sn+1
K = Rn+1

K , for K ∈ M and 0 ≤ n < N. (31)

This expression yields a conservative scheme, in the sense that the discrete
solutions satisfy a discrete total energy balance without any remainder term
(see Equation (4c) below); as a consequence, the scheme can be proven to
be consistent in the Lax-Wendroff sense. However, different definitions are
possible (and this latitude may be useful in explicit variants of the scheme,
to ensure the positivity of Sn+1

K , see Remark 3 below).

We are now in position to state a total energy balance for the scheme.

Theorem 1 (Discrete total energy and stability of the scheme).
A solution to (18)-(21) satisfies the following discrete total energy balance,
for any K ∈ M and 0 ≤ n < N :

1

δt

[
(ρE)n+1

K − (ρE)nK
]
+ d̃ivK((ρE + p)u)n+1 = 0, (32)

where
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(ρE)ℓK = (ek)
ℓ
K + ρℓK(es)

ℓ
K + ρl−1

K

∑

i∈I

∆h0f,i(yi)
ℓ
K , for ℓ = n and ℓ = n+ 1,

d̃ivK((ρE + p)u)n+1 = divK

[
(ρes)

n+1
u
n+1 + ρn

[∑

i∈I

∆h0f,i y
k
i

]
u
n
]

+
1

|K|

∑

σ∈E(K)

Gn+1
K,σ +

1

|K|

∑

σ=K|L

|σ|
pn+1
K + pn+1

L

2
un+1
K,σ .

Let us suppose that e0s, ρ
0 and ρ−1 are positive. Then, a solution to (18)-(21)

satisfies ρn > 0, ens > 0 and the following stability result:

En = E0,

where, for 0 ≤ n ≤ N ,

En =
∑

K∈M

|K|(ρe)nK+
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρ
n−1
Dσ

(unσ,i)
2+

δt2

2

∑

σ∈Eint

|Dσ|

ρn−1
Dσ

|(∇p)nσ|
2.

Proof. The discrete total energy balance equation (32) is obtained by sum-
ming the internal energy balance (23) and the kinetic energy balance, i.e.
Equation (28) in the Rannacher-Turek case and Equation (30) for the MAC
scheme, and remarking that the numerical dissipation terms in the kinetic en-
ergy balance Rn+1

K exactly compensate with the corrective terms Sn+1
K in the

internal energy balance. Then the stability result is obtained by summation
over the time steps.

Remark 3 (Consistency of the scheme). The consistency in the Lax-Wendroff
sense follows from the conservativity of the scheme (for all balance equations)
so, in particular, from the fact that the discrete solutions satisfy the discrete
total energy balance (32), thanks to standard (but technical) arguments.
Note however that the consistency of the scheme does not require a strict
conservativity, and in particular, variants for the choice (31) of the compen-
sation term in the sensible enthalpy balance are possible; indeed, what is
really needed is only that the difference between the dissipation in the ki-
netic energy balance and its compensation tend to zero in a distributional
sense. In practice, this allows a different redistribution of the face residuals to
the neighbour primal cells, and this can help to preserve the non-negativity
of the compensation term for explicit versions of the scheme.

7 Numerical tests

At the continuous level, the boundedness of the chemical mass fractions for-
mally implies that, when ε → 0, the relaxed model converges to the asymp-
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totic one. Indeed, integrating any of the reactive species mass balance equa-
tions with respect to time and space, we observe that ||ω̇||L1(Ω×(0,T )) tends to
zero as ε, and thus two separate zones appear: a zone characterized byG < 0.5
where the reaction is complete, and a zone corresponding to G ≥ 0.5, where
no reaction has occured.

A closed form of the solution of the Riemann problem for the asymptotic
model is available [1]. In order to perform numerical tests, a Riemann problem
with initial conditions such that the analytic solution has the profile presented
in Figure 5 is chosen.

x

W

Precursor shock

Reactive shock

CD

NL wave
W

⋆
R

W
⋆⋆

W
⋆
L

WR

WL

Fig. 5: The analytic solution of the numerical test configuration.

Moreover, the selected configuration imposes zero amplitude for the contact
discontinuity and the left non linear wave, thus the solution consists of three
different constant states: W∗

R,W
∗∗ and WR. The right state corresponds

to a stoichiometric mixture of hydrogen and air (so the molar fractions of
Hydrogen, Oxygen and Nitrogen are 2/7, 1/7 and 4/7 respectively) at rest,
at the pressure p = 9.9 104 Pa and the temperature T = 283◦ K. The velocity
is supposed to be zero in the left state, which is sufficient to determine the
solution. Physically, speaking, supposing that the initial discontinuity lies at
x = 0, this situation corresponds to the left part of a (symmetrical) constant
velocity plane deflagration starting at x = 0. The flame velocity is uf = 63
m/s and the formation enthalpies are zero except for the product (i.e. steam),
with ∆h0f,O = −13.255 106 J (Kg K)−1. The quantity ρu is the analytical
density in the intermediate state (so the total velocity of the flame brush
is equal to the sum of uf and the material velocity on the right side of
the reactive shock, see [1]). The computation is initialized by the analytical
solution at t = 0.002 and the final time is t = 0.005. The computational
domain is the interval (0, 4.5).

The numerical tests performed aim at checking the convergence of the
scheme to such a solution, which in fact may result from two different prop-
erties: the convergence of the relaxed model to the asymptotic model when ε
tends to zero, and the convergence of the scheme towards a numerical solu-
tion when the time and space steps tend to zero. To this purpose, we choose



28 D. Grapsas, R. Herbin, J.-C. Latché and Y. Nasseri
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Fig. 6: Upwind scheme – From top left to bottom right, fuel mass fraction, G, velocity,
pressure, temperature and density at t = 0.005, as a function of the space variable.

ε proportional to the space step and make it tend to zero, with a constant
CFL number. We test the scheme behaviour with three different discretiza-
tions of the convection operator in the chemical mass species balances: the
standard upwind scheme, a MUSCL-like discretization which is an extension
to variable density flows of the scheme proposed in [15] and is described in
Appendix 8, and a first-order anti-diffusive scheme which is an adaptation to
our setting of the scheme proposed in [5]; we detail it in Appendix 9 for the
sake of completeness.

Results obtained at t = 0.005 with the upwind scheme, the MUSCL-like
scheme and the anti-diffusive scheme, for increasingly refined meshes, are
shown on Figure 6, Figure 7 and Figure 8 respectively, together with the
analytical solution. The expected convergence is indeed observed but, with
the upwind discretization, the rate of convergence is poor. This seems to be
due to the interaction between the numerical diffusion of the upwind scheme,
which artificially introduces unburnt reactive chemical species into the burnt
zone, and the stiffness of the reaction term. As expected in such a case, the
results are significantly improved by the use of a less diffusive scheme for the
chemical species balance equations. Indeed, passing from the upwind to the
MUSCL-like and to the anti-diffusive discretization improves the accuracy of
the scheme, as may be observed in Figure 9, where the results obtained by
the three discretizations for a regular mesh composed of 500 cells are plotted
together with the continuous solution.
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Fig. 7: MUSCL scheme – From top left to bottom right, fuel mass fraction, G, velocity,
pressure, temperature and density at t = 0.005, as a function of the space variable.

h ||p− pex||L1 × 10−4 ||u− uex||L1 × 10−2 ||ρ− ρex||L1 × 10

h0 16.5 7.26 4.59 2.17 1.56 1.07 7.69 3.71 2.74
h0

2
12.5 3.88 2.43 1.64 0.787 0.579 6.16 2.23 1.65

h0

4
9.66 2.05 1.38 1.23 0.471 0.371 4.73 1.26 0.913

h0

8
7.58 1.17 0.708 0.958 0.263 0.175 3.63 0.691 0.476

h0

20
5.78 0.673 0.375 0.728 0.160 0.103 2.77 0.382 0.267

h0

40
4.31 0.414 0.194 0.543 0.0786 0.0458 2.03 0.201 0.134

Table 1: L1 norm of the error between the discrete and continuous solutions for the
various schemes - Black : upwind scheme, blue: MUSCL scheme, orange: anti-diffusive
scheme; h0 = 4.5/250 is the size of the least refined mesh.

This observation is comforted by the measure, in L1-norm, of the difference
between the discrete and continuous solutions, see Table 1. For every mesh
and variable, the anti-diffusive scheme is the most accurate and the upwind
one the least. The calculated order of convergence is close to 0.5 for the
upwind scheme, and to 1 for the MUSCL-like and anti-diffusive schemes.
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Fig. 8: Anti-diffusive scheme – From top left to bottom right, fuel mass fraction, G,
velocity, pressure, temperature and density at t = 0.005, as a function of the space
variable.
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Fig. 9: Comparison of the solutions obtained with the upwind, MUSCL and anti-
diffusive scheme – From top to bottom, fuel mass fraction, G, velocity, pressure,
temperature and density at t = 0.005, as a function of the space variable. Results
obtained with a regular mesh composed of n = 500 cells.
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8 Appendix A: The MUSCL scheme

The MUSCL discretization of the convection operators of the chemical species
balance and G-equation closely follows the technique proposed in [15]. To
present this discretization, we consider the following system of equations:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρuy) = 0.

We suppose for short that this system is complemented by impermeability
boundary conditions, i.e. that the normal velocity, both at the continuous and
the discrete level, vanishes on the boundary of the computational domain.

The discretization of the above system reads:

∀K ∈ M,
ρn+1
K − ρnK

δt
+

1

|K|

∑

σ∈E(K)

Fn+1
K,σ = 0,

ρn+1
K yn+1

K − ρnKy
n
K

δt
+

1

|K|

∑

σ∈E(K)

Fn+1
K,σ y

n
σ = 0.

For any σ ∈ E , the procedure consists in three steps:

- calculate a tentative value for yσ as a linear interpolate of nearby
values,

- calculate an interval for yσ which guarantees the stability of the
scheme,

- project the tentative value yσ on this stability interval.

For the tentative value of yσ, let us choose some real coefficients (ασ
K)K∈M

such that
xσ =

∑

K∈M

ασ
KxK ,

∑

K∈M

ασ
K = 1.

The coefficients used in this interpolation are chosen in such a way that as
few as possible cells, to be picked up in the closest cells to σ, take part. For
example, for σ = K|L and if xK , xσ, xL are aligned, only two non-zero
coefficients exist in the family (ασ

K)K∈M, namely ασ
K and ασ

L. Then, these
coefficients are used to calculate the tentative value of yσ by

yσ =
∑

K∈M

ασ
KyK .

The construction of the stability interval must be such that the following
property holds:
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∀K ∈ M, ∀σ ∈ E(K) ∩ Eint, ∃β
σ
K ∈ [0, 1] and Mσ

K ∈ M such that

ynσ − ynK =

∣∣∣∣∣∣

βσ
K (ynK − ynMσ

K
), if Fn+1

K,σ ≥ 0,

βσ
K (ynMσ

K
− ynK), otherwise.

(33)

Indeed, under this latter hypothesis and a CFL condition, the scheme pre-
serves the initial bounds of y.

Remark 4. Note that, in Assumption (33), only internal faces are considered,
since the fluxes through external faces are supposed to vanish. However, the
present discussion may easily be generalized to cope with convection fluxes
entering the domain.

Definition 1. The so-called CFL number reads for any 0 ≤ n ≤ N :

CFLn+1 = max
K∈M

{ δt

ρn+1
K |K|

∑

σ∈E(K)

∣∣Fn+1
K,σ

∣∣
}
.

Lemma 3. Let us suppose that CFLn+1 ≤ 1. For K ∈ M, let us note
by V(K) the union of the set of cells Mσ

K , σ ∈ E(K) ∩ Eint such that
(33) holds. Then ∀K ∈ M, the value of yn+1

K is a convex combination of
{ynK , (y

n
M )M∈V(K)}.

Proof. The discrete mass balance equation yields:

ρnK = ρn+1
K +

δt

|K|

∑

σ∈E(K)

Fn+1
K,σ .

Replacing this expression of ρnK in the discrete balance equation of y and
using the relations provided by (33), we obtain:

ρn+1
K yn+1

K = ρnKy
n
K −

δt

|K|

∑

σ∈E(K)

Fn+1
K,σ y

n
σ

= ρn+1
K ynK −

δt

|K|

∑

σ∈E(K)

Fn+1
K,σ (ynσ − ynK)

= ρn+1
K ynK −

δt

|K|

∑

σ∈E(K)

(
Fn+1
K,σ

)+
(ynσ − ynK) +

δt

|K|

∑

σ∈E(K)

(
Fn+1
K,σ

)−
(ynσ − ynK)

= ρn+1
K ynK −

δt

|K|

∑

σ∈E(K)

(
Fn+1
K,σ

)+
βσ
K(ynK − ynMσ

K
)

+
δt

|K|

∑

σ∈E(K)

(
Fn+1
K,σ

)−
βσ
K(ynMσ

K
− ynK).

This relation yields
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yn+1
K = ynK

(
1−

δt

ρn+1
K |K|

∑

σ∈E(K)

βσ
K

∣∣Fn+1
K,σ

∣∣
)
+

δt

|K|

∑

σ∈E(K)

ynMσ
K
βσ
K

∣∣Fn+1
K,σ

∣∣,

which concludes the proof under the hypothesis that CFL ≤ 1.

We now need to reformulate (33) in order to construct the stability interval.
Let σ ∈ E , let us denote by V − and V + the upstream and downstream cell
separated by σ, and by Vσ(V

−) and Vσ(V
+) two sets of neighbouring cells

of V − and V + respectively, and let us suppose:

(H1)− ∃M ∈ Vσ(V
+) s.t. unσ ∈ |[unM , u

n
M +

ζ+

2
(unV + − unM )]|,

(H2)− ∃M ∈ Vσ(V
−) s.t. unσ ∈ |[unV − , unV − +

ζ−

2
(unV − − unM )]|,

where for a, b ∈ R, we denote by |[a, b]| the interval {αa+(1−α)b, α ∈ [0, 1]},
and ζ+ and ζ− are two numerical parameters lying in the interval [0, 2].

Conditions (H1)-(H2) and (33) are linked in the following way: let K ∈ M
and σ ∈ E(K). If Fn

K,σ ≤ 0, i.e. K is the downstream cell for σ, denoted above

by V +, since ζ+ ∈ [0, 2], condition (H1) yields that there exists M ∈ M such
that unσ ∈ |[unK , u

n
M ]|, which is (33). Otherwise, i.e. if Fn

K,σ ≥ 0 and K is the

upstream cell for σ, denoted above by V −, condition (H2) yields that there
exists M ∈ M such that ynσ ∈ |[ynK , 2y

n
K − ynM ]|, so ynσ − ynK ∈ |[0, ynK − ynM ]|,

which is once again (33).

Remark 5. For σ ∈ E , if V − ∈ Vσ(V
+), the upstream choice ynσ = ynV − always

satisfies the conditions (H1)-(H2), and is the only one to satisfy them if we
choose ζ− = ζ+ = 0.

Remark 6 (1D case). Let us take the example of an interface σ separating
Ki and Ki+1 in a 1D case (see Figure 10 for the notations), with a uniform
meshing and a positive advection velocity, so that V − = Ki and V

+ = Ki+1.
In 1D, a natural choice is Vσ(Ki) = {Ki−1} and Vσ(Ki+1) = {Ki}. On
Figure 10, we sketch: on the left, the admissible interval given by (H1) with
ζ+ = 1 (green) and ζ+ = 2 (orange); on the right, the admissible interval
given by (H2) with ζ− = 1 (green) and ζ− = 2 (orange). The parameters ζ−

and ζ+ may be seen as limiting the admissible slope between (xi, y
n
i ) and

(xσ, y
n
σ) (with xi the abscissa of the mass centre of Ki and xσ the abscissa

of σ), with respect to a left and right slope, respectively. For ζ− = ζ+ = 1,
one recognizes the usual minmod limiter (e.g. [7, Chapter III]). Note that,
since, on the example depicted on Figure 10, the discrete function yn has an
extremum in Ki, the combination of the conditions (H1) and (H2) imposes
that, as usual, the only admissible value for ynσ is the upwind one.
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i−1

b

y∗

i
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Ki Ki+1

b

y∗

i

b
y∗

i+1

(H1)

Fig. 10: Conditions (H1) and (H2) in 1D.

V −

V +

F

(a)

V −

V +

F

(b)

Fig. 11: Notations for the definition of the limitation process. In orange, control
volumes of the set Vσ(V −) for σ = V −|V +, with a constant advection field F:
upwind cells (a) or opposite cells (b).

Finally, we need to specify the choice of the sets Vσ(V
−) and Vσ(V

+).
Here, we just set Vσ(V

+) = {V −}; such a choice guarantees that at least
the upstream choice is in the intersection of the intervals defined by (H1)
and (H2), as explained in Remark 6. The set Vσ(V

−) may be defined in two
different ways (cf. Figure 11):

– as the “upstream cells” to V −, i.e.

Vσ(V
−) = {L ∈ M, L shares a face σ with V − and FV −,σ ≤ 0},

– when this makes sense (i.e. with a mesh obtained by Q1 mappings from
the (0, 1)d reference element), the opposite cells to σ in V − are chosen.
Note that for a structured mesh, this choice allows to recover the usual
minmod limiter.
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9 Appendix B: an anti-diffusive scheme

The scheme proposed in [5] by of B. Després and F. Lagoutière for the
constant velocity advection problem presents some interesting properties in
one space dimension (and may be extended to structured multi-dimensional
meshes using alternate directions techniques); in particular, it notably limits
the numerical diffusion. We extend here this scheme to work with unstruc-
tured meshes for which the ”opposite cell to a face” (in the sense introduced
in the previous section) may be defined and with a variable density. With
the same notations as in the previous section, for σ ∈ Eint, σ = K|L with
Fn+1
K,σ ≥ 0,

- the tentative value for yσ is chosen as the downwind value, i.e. ynσ = ynL,

- Then we project ynσ on the interval

Iσ =
[
ynK , y

n
K +

1− ν

ν
(yK − yM )

]
, ν =

|Fn+1
K,σ | δt

ρn+1
K |K|

,

where M ∈ M is the control volume which stands at the opposite side
of K with respect to L.

The original scheme presented in [5] is recovered by this formulation for
the one-dimensional constant velocity convection equation. In addition, by
arguments similar to those of the previous section, the discretization proposed
here may be shown to satisfy a discrete maximum principle.
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15. Piar, L., Babik, F., Herbin, R., Latché, J.C.: A formally second order cell centered
scheme for convection-diffusion equations on general grids. International Journal
for Numerical Methods in Fluids 71, 873–890 (2013)

16. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Editions R.T
Edwards Inc. (2005)

17. Rannacher, R., Turek, S.: Simple nonconforming quadrilateral Stokes element.
Numerical Methods for Partial Differential Equations 8, 97–111 (1992)

18. Zimont, V.: Gas premixed combustion at high turbulence. Turbulent flame clo-
sure combustion model. Experimental Thermal and Fluid Science 21, 179–186
(2000)


