
HAL Id: hal-02966233
https://hal.science/hal-02966233

Submitted on 13 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Dependability via Deadline Guarantees in
Commodity Real-time Networks

Ashish Kashinath, Monowar Hasan, Sibin Mohan, Rakesh B Bobba, Radhika
Mittal

To cite this version:
Ashish Kashinath, Monowar Hasan, Sibin Mohan, Rakesh B Bobba, Radhika Mittal. Improving
Dependability via Deadline Guarantees in Commodity Real-time Networks. SecSDN 2020: The IEEE
International Workshop on Secure and Dependable Software-defined Networking for Sustainable Smart
Communities, Dec 2020, Taipei, Taiwan. �hal-02966233�

https://hal.science/hal-02966233
https://hal.archives-ouvertes.fr

Improving Dependability via Deadline Guarantees
in Commodity Real-time Networks

Ashish Kashinath∗, Monowar Hasan∗, Sibin Mohan∗, Rakesh B Bobba† and Radhika Mittal∗
∗University of Illinois at Urbana-Champaign, †Oregon State University,

∗{ashishk3,mhasan11,sibin,radhikam}@illinois.edu †rakesh.bobba@oregonstate.edu

Abstract—Software-defined Networking (SDN) can facilitate
the deployment of deterministic algorithms with stringent Quality
of Service (QoS) requirements that pave the way for commodity
Real-time (RT) networks. However, current QoS approaches are
conservative and under-provision the network, that becomes a
bottleneck when scaling or upgrading infrastructure. In this pa-
per, we argue that the use of fixed priorities for flows – a common
practice in RT networks, is the root-cause of this issue. We
develop algorithms that use the global view provided by SDN to
develop on-demand, variable priority schemes. Evaluation shows
that this “correct by construction” approach increases network
utilization while still meeting the necessary QoS requirements,
thereby improving network robustness under high utilization.

I. INTRODUCTION

Deterministic networks are typically found in infrastructure
applications such as industrial automation, avionics, IoT and
automotive systems where safety and predictability is critical.
This is because in infrastructure applications, failures can lead
to potentially catastrophic consequences such as loss of human
life and property. Finally, these systems have certification
requirements (hardware, software, design processes) that are
designated by standards such as ISO-26262 for automotive
systems and ARP-4761 for avionics systems. Delay guaran-
tees for network flows is one such aspect that is central to
safe operations of such systems. Such networks, also called
hard real-time (RT) networks are currently provisioned using
expensive hardware that are built to deploy proprietary, non-
interoperable protocols, each requiring its own standardization
process - e.g., IEEE 802.1 TSN, TTEthernet, SAE AS6802
are used in industrial ethernet, space communication and
automotive systems respectively.

With the push to use commodity hardware and commodity
software protocols, Software-defined Networking (SDN) [1]
has found its way to guaranteeing Quality of Service (QoS) in
RT systems and networks [2], [3], [4], [5], [6], [7], [8], [9].
RT networks typically have a well-defined network structure
(topologies, hosts and links), clearly defined flow specifica-
tions, and are under the control of a centralized authority
(e.g., San Diego Gas & Electric (SDG&E) owns the substation
network in San Diego and nearby counties in California).
The closed nature of such networks make it amenable for

The material in this paper is based upon work supported in part by the
U.S. Department of Energy (DoE) award DE-OE0000780 and the National
Science Foundation award NSF CPS 1544901. Any findings, opinions, rec-
ommendations or conclusions expressed in the paper are those of the authors
and do not necessarily reflect the views of sponsors.

enforcement of system-wide policies that take into account
safety requirements such as worst-case latency.

While SDN gives a great deal of flexibility, the push to
guarantee safety has resulted in very conservative designs.
Some of the conservative tactics used in RT networks include:
(i) rate-limiting of flows, resulting in less throughput for
bandwidth-intensive applications [2], [10], (ii) spatial isolation
of flows using per-flow queues that result in lower number
of flows admitted into the network [8] or (iii) isolating
flows in time epochs using time-division multiplexing or its
variants [10]. Although these techniques provide deadline
guarantees by design, they lead to low network utilization and
high management overheads due to the use of custom hardware
and software. Due to the long lifetimes of infrastructure
systems, we desire high network utilization with deadline
guarantees to allow the network to support system upgrades
as more flows are added to the network without having to
redeploy extra networking infrastructure.

We investigate the factors involved in the trade-off between
determinism and network utilization. We find that the use of
fixed (static) priorities across the entire RT network leads to
lower network utilization. Our experiments show the potential
for increased utilization by devising a novel method of varying
priorities of a flow at contained local points in the networks.
We accomplish this by leveraging network and flow models
to obtain tighter guarantees on delays and using it to improve
network utilization.
Contributions: Our contributions include:
(i) Demonstrating that using spatially variable priorities for
flows improves the ability to accept more flows compared
to fixed priorities, (ii) Demonstrating that spatially variable
priorities allows the network to meet tighter deadlines and
(iii) a heuristic-based algorithm that can be used to instantiate
spatially variable priorities in the network using the global
view of an SDN controller giving a a more robust RT network.

II. BACKGROUND

A. System Model

We consider an SDN network G(Π, L) with a set of M
switches Π := {π1, π2, . . . , πM} and set of links L, each of
capacity C. The network has N flows, F := {F1, F2, . . . , FN}
that are assigned paths Pi, 1 ≤ i ≤ N . The timing requirement
of a flow Fi is represented by the deadline, Di which is the
maximum permissible end-to-end delay the flow Fi can incur
on its path Pi for safe and reliable operation of the network.

ps ptpu
… …pu-1 pu+1

Path Pi of flow Fi

t

Flow Source Flow Destination

Dea
dli

ne

p s
arr

iva
l

p s
de

pa
rt

…
p u-1

 ar
riv

al

p u-1
 de

pa
rt

p u
arr

iva
l

p u
de

pa
rt

p u+
1
arr

iva
l

p u+
1
de

pa
rt

p t
arr

iva
l

p t
de

pa
rt

Sis

Si(u-1)
Siu

Si(u+1)

Sit

……

Fig. 1: Slack of a flow The slack of a flow Fi at a switch
πu on path Pi indicates proximity to the deadline while
accounting for the estimated delay at the switch πu

Fig. 2: Overall Solution Workflow We leverage the global
view of SDN to develop algorithms that schedule flows to
maximize utilization without sacrificing deadline guarantees.

Each of the switches πj ∈ Π have L queues, {q1, q2, . . . , qL}.
The number of flows intersecting a switch πj is given by Nj
and for simplicity Nj ≤ L.

Modeling Flows: We use arrival curve α(t), a network-
calculus mathematical abstraction [11], to model a flow.
Specifically, α(k) denotes an upper bound on the number of
bytes of a flow in a time-interval k. The representation of an
arrival curve depends on the nature of the flow. Flows in the
network can be classified into 3 types based on their timing
requirements and what the designer knows about the flows at
design time: (a) Periodic flows Fp, (b) Sporadic flows Fs, and
(c) Aperiodic flows Fa.

A periodic flow of x bytes every T seconds is modeled
by using a leaky bucket arrival curve, αp(t) = rt, where
r = x/T . We have complete knowledge about the arrival
times, the deadline requirements and priorities of periodic
flows. Sporadic flows are modeled using a token bucket
arrival curve, αs(t) = b + rt, where r is the maximum rate
(obtained from minimum traffic arrival spacing) and b is the
maximum allowable burst tolerance. Aperiodic flows, that are
usually short-lived, are modeled using a ramp arrival curve,
αa(t) = min(k(t − T)/e, k), t ≥ T , where k is the number
of packets due to the aperiodic event at time T and lasting
for time e, the duration for which the flow’s bandwidth is
k. For t < T , αp(t) = 0. In contrast to periodic flows, the
arrival times are not known apriori for sporadic and aperiodic
flows. In addition, aperiodic flows do not require hard deadline
guarantees and the switch tries to complete each aperiodic
flow as soon as possible. A summary of the parameters of the
different types of flow is presented in Table I.

Urgency of a flow: The slack of a flow Fi at a switch πs,
denoted by Sis is defined as the proximity to the deadline, Di.
Sis determines the degree of flexibility available in scheduling
i.e., a flow having lower slack requires more immediate (i.e.,
is more urgent) scheduling than a flow having higher slack.
Typically, at the beginning of the path, the slack of a flow is
equal to its deadline and it decreases as the flow traverses its
path. The slack of a flow is pictorially represented in Figure 1.

Modeling Switches: Switches are represented by their ser-
vice curves, β(t), that estimate the lower bound of bytes
switched from input to the output. The most common service
curve is the rate-latency service curve, β(t) = R(t− T), that
implies flows have to wait for at most T time units before
being served at a rate R.

TABLE I: System Designer knowledge on the different flow
types in RT networks. Sporadic and aperiodic flows with
unpredictability make scheduling in RT networks challenging
and interesting.

FLOW TYPE ARRIVAL DELAY PERIOD1 DEADLINE

Periodic 3 3 3 3
Sporadic 5 3 3 3
Aperiodic 5 5 5 5

1 called inter-arrival time for sporadic and aperiodic flows

B. Current Challenges & Motivation

For safe operation of RT networks, periodic and sporadic
flows must meet their deadlines and aperiodic flows get the
best-effort service. Current techniques to schedule these flows
fall into one of 3 categories: (i) No support for aperiodic and
sporadic flows [8], [5], (ii) Partial support for aperiodic and
sporadic flows with no timing guarantees, [2], [3] and (iii)
Support all the three types of flows either by providing each
with separate network or by deploying on non-commodity
switches and protocols [6]. While (iii) provides timing isola-
tion for deadline guarantees, this is at the expense of heavily
under-provisioning the network and engineering each network
according to the traffic type supported.

C. Scheduling objectives

Our goal is to efficiently schedule all the flows in the net-
work while satisfying the following scheduling objectives: (a)
increasing utilization of the network, i.e., accommodating the
highest number of flows possible, (b) meet deadline guarantees
of existing flows as well as potential sporadic or aperiodic
flows and (c) analyze the trade-offs between (a) and (b) .

III. APPROACH

Our approach to achieving the twin goal of deadline guaran-
tees and improved utilization involves the following steps: (a)
identifying gaps in static priority-based scheduling schemes
used in RT networks, (b) using analytical methods (from
Network Calculus and RT scheduling theory) to analyze and
reason about the gaps and (c) proposing ‘variable priority’
schemes with heuristics and algorithms to enable them.

A. Shortcomings of static priority-based scheduling schemes

Consider the network shown in Figure 3 with the flow
specifications and deadlines as shown in Table II. We first
consider a static priority assignment scheme where the flows

having nearest deadline has the highest priority and priority
decreases as deadlines get farther. Thus, in this case, priority
of F5 > F1 > F2 > F3 > F4. We vary the utilization of
the network from lightly loaded (50%) to heavily loaded (>
90%) by varying the link capacities. We capture the slack of
all flows at every switch along its path and plot it as a function
of the switch in Figure 4.

p1 p2 p3 p4

s

s' t t' t’’

s’’ : Switch
: Host

Fig. 3: Motivational Example 4-switch 6-host topology
demonstrating the limitation of Static Priority Assignment
using Deadline Monotonic Algorithm. The links have 100
Mbps capacity.
TABLE II: Flow specifications for the topology in Figure 3

FLOW ID SIZE1 RATE DEADLINE PATH

F1 1 kB 8 Mbps 9 ms {π1, π2}
F2 1 kB 12 Mbps 11 ms {π1, π2}
F3 1 kB 24 Mbps 13 ms {π1, π2}
F4 1 kB 3 Mbps 16 ms {π1, π2, π3}
F5 1 kB 3 Mbps 4 ms {π3, π4}

1 size of a packet

Summary (Figures 4a - 4d) Figures 4a - 4d depict the
slack of flows across different switches along its path. We
observe that the slack is a monotonically decreasing function.
Any flow with a non-negative slack at the end of its path is
said to have met its deadline.
Impact of utilization on a given flow (Figs 4a & 4b) For a
given flow at any switch, the slack decreases as the network
utilization increases. For example, the slack of Flow 4 at
Switch 2 decreases from 14 ms to 11 ms as utilization is
increased from 50% to 70%.
Impact of utilization on a given switch path (Fig. 4c) At
a given switch path (e.g., Switch 1 to Switch 2), we see that
the rate of decrease the slack is inversely proportional to the
priority assignment. A flow with a higher priority has a lower
drop in slack than a flow with lower priority. The consequence
of this is that, at higher utilization, a lower priority flow such
as Flow 4 misses deadlines.
Impact of utilization on deadlines at high loads (Fig. 4c-
4d) We see that the slack of Flow 4 drops to zero at Switch
2 (Fig. 4d) and it reaches its destination in Switch 3 with a
negative slack, thereby missing its deadline. Flow 4 meets its
deadline at 90% load but misses it at 92.6% load.
Variable priority-based scheduling schemes at high loads: We
now allow local priority changes for a subset of flows and
observe the effects on slack. We tweak the priorities of Flow
4 (that missed its deadline in Fig. 4d) and capture the slack
in Fig. 5.
Summary Figures 5a - 5b depict that the process of changing
the priority of a flow at a local level helps meet deadlines as

long as it is done at the appropriate switch along the path.
Priority changes can be useless if performed later or earlier.
Impact of priority on deadlines at high loads (Fig. 5a-
Fig. 5b) We see that by raising the priority of Flow 4 by two
priority levels at a point of contention (e.g., Switch 2), it is
able to meet its deadline. Also, raising the priority after the
points of contention (e.g., Switch 3), the flow would not see
any benefits as it is too late to make up for the lost slack.

(a) (b)

(c) (d)

Fig. 4: Spatial variation of slack of flows along its paths
demonstrating slack going negative at high loads - 92.6%
for this specific topology : (4a) 50% load, (4b) 70% load,
(4c) 90% load and (4d) 92.6% load. The slack is a decreasing
function along the path of a flow, starting at a value equal to
the deadline of the flow – when slack becomes negative, the
flow has missed its deadline.

(a) (b)

Fig. 5: Raising priority of flow F4 at intermediate switches
helps accommodate the 92.6% load : (5a) Raising priority
of flow F4 at Switch 2 saves enough slack for the flow to
consume in future hops, (5b) Raising priority of flow F4 at
Switch 3 is too late as the slack has become 0 at Switch 2.

B. Mechanism to Enable Variable Priority Schemes: Delay
Measurements via Network Calculus Analysis

To enable variable priorities, we use analytical tools from
Network Calculus ([2]) to derive the upper bounds on end-to-

end delays of a flow along its path considering the 3 classes
of flows at a switch as described in Section II.

We reserve the highest priority queue for sporadic flows
– while they have deadline requirements yet the designer
has only partial knowledge of the flow specifications. This
is accomplished by reframing a sporadic flow as a synthetic
periodic flow called a ‘bandwidth-preserving deferrable server’
of period ps = bs

rs
and buffer size bs, where bs is the maximum

burst in bytes and rs is the rate corresponding to the minimum
inter-arrival time. Note that due to the non-preemptive nature
of network links, we allocate a deferrable maximum burst
and minimum inter-arrival time. This parameter can be tuned
according to the desired range of sporadic flows accepted by
the server. Additionally, the lowest priority queue is reserved
for aperiodic flows that require only best-effort service. As a
result, the remaining queues are for periodic flows. Therefore,
the queue allocation can be summarized as :
• q1 : Sporadic Flow,
• {q2, q3 . . . q(L−1)} : Periodic Flow and
• qL : Aperiodic Flow
We derive analytical expressions beginning with the fixed

priority model from Guck et al. [2] and customizing it for our
variable priority model. Towards this, we extend expressions
of slack that are derived for the fixed priority model.
Fixed Priorities For the case of static priorities, we can
express the service curve, βij(t), offered to the periodic flow
Fi in the queue j in switch with capacity C as:

βij(t) = (Ct − (trs + bs)− t
∑j−1
k=1 rk −

max
(j+1)≤k≤Nj

lmaxk − lmaxi),

Service Avail.

Total Service Cap.

Spor. Flows Higher Prio

Non-Pre. Blocking Str & Fwd

(1)

where terms trs + bs denote the service consumed by the
sporadic traffic, t

∑j−1
k=1 rk denote the service curve due to

higher priority flows, max
(j+1)≤k≤Nj

lmaxk the blocking delay

from lower priority flows and lmaxi is the store-and-forward
correction factor.

The service curve in Equation (1) can be rewritten as a rate-
latency curve βRij ,Tij

= Rij(t − Tij) with Rij = C − rs −∑(j−1)
k=1 rk and Tij =

bs+
∑k=Nj

k=(j+1)
lmax
k +lmax

i

Rij
. Note that Rij is

the service rate and Tij is the service latency provided to the
flow Fi in queue j. The Total Switch Delay experienced by a
flow Fi in a queue j at a single switch πs, denoted by dijs is
given by Equation 2, where bi is the burst of the flow Fi.

dijs = Tij +
bi

Rij
,

Per Switch Delay

Service Latency
Service Rate

Burst

(2)

Slack-driven Priorities To derive priorities based on slack,
we need to consider the scenario when all the other flows
can potentially impact the flow Fi in queue j under consid-
eration. Thus the rate latency curve now becomes βRij ,Tij =

Rij(t − Tij) with Rij = C − rs −
∑Nj

k=1,k 6=i rk and Tij =

bs+
∑k=Nj

k=1 lmax
k

Rij
. Again, we can use Equation 2 to calculate the

Total Switch Delay.
End-to-end Delay The end-to-end delay of a flow Fi over a
path Pi is calculated by adding the individual switch delays
incurred in the queues qj of all the switches πs in the path
Pi. Therefore, the end-to-end delay di is given by :

di =
∑

Fi⊂qj ,πs∈Pi

dijs ,

End-to-end Delay Add Per-switch Delays

(3)

We use the delay computations at every switch in the path
to compute the slack. The slack of a flow Fi along a path Pi
at switch πs is represented in Figure 1 and given by:

Sis = Di −
∑

Fi⊂qj ,πs∈Pi

dijs ,

Slack Deadline End-to-end Delay

(4)

The slack of a flow Fi at the end of its path Pi is denoted
by Si. If Si ≥ 0, we say that Fi has met its deadline. On the
other hand, if Si < 0, Fi has missed its deadline.

Algorithm 1 GALE-LSTF
1: Stage 1 : Initialization with LSTF We schedule the flows Fi ∈ F

on paths Pi ∈ P using Least Slack Time First (LSTF) scheduling and
compute the slack values Si at the output of Pi using Eqn 4.

2: if Si ≥ 0 ∀Fi ∈ F then
3: return Schedulable /* LSTF is sufficient for the flow set F */
4: end if

/* LSTF failed to meet deadlines for F. Retry using priority exchange */
5: Stage 2: Linear Search for Priority Exchange
6: Fmiss = {Fi ∈ F | Si < 0} /* Flows not meeting deadlines via LSTF */
7: /* Goal: Schedule flows in Fmiss while not missing deadlines of flows in

F− Fmiss */
8: /* Loop through all flows Fi missing deadlines via LSTF */
9: schedulablei = false , ∀Fi ∈ Fmiss /* A Boolean flag */

10: while Fmiss not empty and elements in Fmiss change in consecutive
iterations do

11: for Fi ∈ Fmiss do
12: /* Try all switches in the path Pi in reverse order */
13: for πk ∈ Pi.reverse() do
14: p̂ki ← Priority of Fi at switch πk
15: G ← Set of all flows at switch πk that has priority > p̂ki
16: /* Try all priority exchanges at switch πk */
17: for Fj ∈ G do
18: Swap priority of flow Fi and Fj

19: Recompute Si of all flows intersecting πk and flows in F−
Fmiss using Eqn. 4

20: if Slack ∀ flows in πk ≥ 0 and Slack ∀ flows in F −
Fmiss ≥ 0 then

21: /* Assign these priorities at switch πk */
22: schedulablei = true
23: /* Remove Fi from Fmiss */
24: Fmiss ← Fmiss − Fi

25: break
26: end if
27: end for
28: end for
29: end for
30: end while
31: /* Finished trying all flows Fi */
32: if schedulablei = true ∀Fi ∈ Fmiss then
33: return Schedulable /* GALE-LSTF scheduled flows in Fmiss */
34: end if
35: return Unschedulable /* GALE-LSTF could not schedule F */

Fig. 6: Dynamic Slack computation demonstrating spatially
varying priorities across different switches. Flow F3 has
variable priorities at π1 and π2, occupying different queues.

C. Policy/Heuristics to Enable Variable Priority Schemes:
GALE-LSTF

The slack of a flow Fi at switch πs, given by Equation 4,
provides a measure of the degree of closeness to the deadline.
Therefore, at a switch using Least Slack Time First (LSTF)
scheduling, a flow with a lower value of slack is scheduled
before a flow with a higher value of slack. Mittal et al. [12] ar-
gues that LSTF comes closest to mimicking a universal packet
scheduler when there are more than two switches. However,
there are possible schedules which LSTF does not capture
due to two factors – (a) Lack of global information of flow
slacks and (b) Lack of information about flow routes. Due to
the well-defined structure of RT networks and clearly defined
flow specifications, we have access to additional information
with respect to (a) and (b) . Therefore, we package LSTF
with heuristics and policies (called GALE-LSTF) with the goal
of accommodating flows that were hitherto unschedulable by
LSTF thereby increasing utilization of the network.

Intuition behind Policy: In practice, flows in a network
typically take diverse paths and have different deadlines. It is
likely that flows that take a longer path have a higher deadline
and as a result if we were to assign priorities in a deadline-
monotonic manner (lower deadline → higher priority), the
longer path flows could be designated to lower levels of
priority at every switch and as a result could potentially miss
their deadlines. Instead, slack allows us to track the progress
of a flow towards its deadline and if needed, change priorities
of a flow from one switch to another.

According to LSTF, at every switch πs, the flows are
reorganized into priorities F1 ≥ F2 ≥ F3 ≥ . . . ≥ FNs , where
S1s ≤ S2s ≤ S3s ≤ . . . ≤ SNss. As a result, the priority of a
flow can vary from one switch to another in the path.

GALE-LSTF: To LSTF, we introduce an optimization where
we alter the priorities assigned by LSTF at certain, constrained
switches in the network. We induce slack-based priority inver-
sions when the slack maintained by LSTF is unable to schedule
flows while meeting flow deadlines. This gives us a better
acceptance ratio because LSTF uses only local slack values at
the switches while GALE-LSTF uses global knowledge of the
network structure and traffic characteristics to determine when
a flow would miss its deadline and accordingly induce neces-
sary priority inversions. GALE-LSTF, a 2-stage algorithm is
described next and summarized in Algorithm 1. A high-level
overview of the overall workflow is illustrated in Fig 2.

Stage 1: Initialization with LSTF As noted, we are pro-

vided with the assignment of flows to routes i.e., for flows
Fi ∈ F, the routes Pi, 1 ≤ i ≤ Nare known. Using LSTF
scheduling on routes provided, we obtain slack measurements
Si for flow Fi at the output of path Pi. If here all the flows
have slack Si ≥ 0, then LSTF is sufficient for flow set F and
we can return. On the contrary, if some flows missed their
deadlines using LSTF, we need to go to the next stage. For
this, we partition the flow set F into two disjoint subsets - (i)
Fmiss - flows that missed deadlines using LSTF and (ii) Rest
viz., F− Fmiss i.e., flows that met their deadlines using LSTF.

Stage 2: Linear Search for Priority Exchange For every
flow Fi in Fmiss, we search its path (i.e., Pi) starting from
the destination to find suitable switches πk where priority
exchanges can be performed. Searching in the direction op-
posite to the flow minimally perturbs flows already accepted
by LSTF. At every candidate switch, we consider flows that
have priority higher than Fi, and perform priority exchange
and recompute slack using Eqn. 4 to check if the flows – both
at the switch and those in F−Fmiss meet their deadlines. If so,
we mark Fi as schedulable and use this priority assignment at
switch πk. Note that this priority reassignment at switch πk –
by performing slack-based priority inversions and raising the
priority of flows with negative slack and lowering priority of
other flows with lower slack is counter to LSTF. This process
is repeated for other flows in Fmiss. After stage 2, we check
if all flows in Fmiss met its deadlines using GALE-LSTF and
return accordingly.

IV. EVALUATION

A. Implementation

Our solution is developed as an application implementing
Algorithm 1 that takes into account flow specifications, the
network topology, the routes and performs priority reassign-
ment for every switch of the path. The application is amenable
to be implemented in an SDN controller.

B. Simulation-based Evaluation

We evaluate our solution in 2 stages:
• Fixed Priority vs. LSTF: Simulations comparing the uti-

lization of both LSTF and Fixed Priority (FP) algorithm
such as Deadline Monotonic Scheduling.

• Insufficiency of LSTF at high loads i.e., Benefits of
using GALE-LSTF Simulations comparing the benefits
of varying priorities of flows across switches to accom-
modate cases where LSTF gives lower acceptance.

1) Fixed Priority vs. LSTF: We study a simple network
consisting of 2 hosts and 2 switches arranged as: Host-Switch
1-Switch 2-Host. We stress test this network by incrementally
adding flows (4 → 8 → 12 → 16) and capturing the end-to-
end delays of all flows. The deadlines of all flows are fixed at
40 ms and the network capacity is 100Mbps. The experiment
is performed twice- (a) when flows are scheduled by Fixed
Priority and (b) when flows are scheduled by LSTF.
Summary Fig. 7 shows that the FP scheduling scheme violates
deadlines for a lower number of flows compared to LSTF. This
shows that given a deadline, LSTF can schedule more flows.

Delay comparison for a fixed number of flows (Fig. 7) For
a given number of flows, LSTF shows a lower variation and
a lower worst-case end-to-end delay (99.9%ile) as compared
to fixed priority assignments. This is because the slack-based
priorities is able to reassign the priorities at Switch 2 to make
up for lost slack in Switch 1. Static priority is not able to take
advantage of this and thus flow delays are more dispersed.
Acceptance/Utilization Comparison (Fig. 7) We find that
LSTF is able to accept more flows before the deadlines are
violated whereas FP algorithm starts missing deadlines at a
lower number of flows. In this case, we see that FP is able to
accept 7 flows whereas LSTF is able to accept upto 12 flows.

Fig. 7: End-to-End Delay values for comparison between
Static Priority (FP) Scheduling and Least Slack Time First
(LSTF) Scheduling Algorithm showing that Static Priority
scheme violates deadline at a lower number of flows (8).

2) LSTF vs. GALE-LSTF: For networks with high loads,
we show that LSTF has the tendency to miss deadlines,
especially for flows across long hops – there is a possi-
bility that flows with lower priorities (at earlier hops) can
have slack dropping below 0 at an intermediate switch. We
consider a linear topology of 6 switches, with 3 flows,
loading the network at 90% utilization. Flows 1 and 2
have path {Switch 1,Switch 2} whereas Flow 3 has the path
{Switch 1,Switch 2, . . . ,Switch 6}.The flow parameters are
identical to Table II.

Summary (Fig. 8) Both Figure 8a and Figure 8b plots the
slack of flows across the network. In case of Figure 8a, Flow 3
misses its deadline as its slack becomes zero at its penultimate
switch, whereas using GALE-LSTF, we promote Flow 3 in
Switch 2 despite its higher slack than Flow 1 and 2, thereby
allowing Flow 3 to meet its deadlines. This also shows that
LSTF does not meet deadlines for all cases, and demonstrates
the need to develop additional heuristics and algorithms.

V. DISCUSSION

We introduced Global Aware Local Effects LSTF (GALE-
LSTF) as a means of spatially varying the priority of a flow
from one switch to another. In our current scheme, the number
of flows is limited by the number of queues, as our system
model does not include FIFO multiplexing delays. We used a
slack-based heuristic to perform priority exchanges.

VI. CONCLUSION

Unlike wide-area networks, RT networks have different
metrics of performance viz., certification, predictability and

(a) (b)

Fig. 8: LSTF vs. GALE-LSTF for a network at 90% load
: (8a) LSTF violates deadlines of Flow 3, (8b) GALE-LSTF
meets all the deadlines.

deadline guarantees. In addition, the specialized and controlled
nature of RT networks with SDN allow us to tune facets such
as scheduling to meet these requirements while improving
utilization. Today, the most common scheduling schemes in
RT systems are fixed priority schemes – we show that using
variable priority schemes in network with relevant optimiza-
tions can pave the way for improved utilization, thus lowering
the cost and engineering effort to deploy RT networks.

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
vol. 17, no. 2, pp. 30–32, 2009.

[2] J. W. Guck, A. Van Bemten, and W. Kellerer, “Detserv: Network models
for real-time qos provisioning in sdn-based industrial environments,”
IEEE Transactions on Network and Service Management, vol. 14, no. 4,
pp. 1003–1017, 2017.

[3] A. Van Bemten, Nemanja, J. Zerwas, A. Blenk, S. Schmid, and
W. Kellerer, “Loko: Predictable latency in small networks,” in Pro-
ceedings of the 15th International Conference on Emerging Networking
Experiments And Technologies, 2019, pp. 355–369.

[4] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-
defined network (tssdn) for real-time applications,” in Proceedings of
the 24th International Conference on Real-Time Networks and Systems,
2016, pp. 193–202.

[5] K. Lee, M. Kim, H. Kim, H. S. Chwa, J. Lee, and I. Shin, “Fault-
resilient real-time communication using software-defined networking,”
in 2019 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2019, pp. 204–215.

[6] K. Lee, T. Park, M. Kim, H. S. Chwa, J. Lee, S. Shin, and I. Shin,
“Mc-sdn: Supporting mixed-criticality scheduling on switched-ethernet
using software-defined networking,” in 2018 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2018, pp. 288–299.

[7] T. Qian, F. Mueller, and Y. Xin, “A linux real-time packet scheduler
for reliable static sdn routing,” in 29th Euromicro Conference on Real-
Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2017.

[8] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees
for real-time systems using sdn,” in 2017 IEEE Real-Time Systems
Symposium (RTSS). IEEE, 2017, pp. 231–242.

[9] G. S. Aujla, A. Singh, and N. Kumar, “Adaptflow: Adaptive flow
forwarding scheme for software-defined industrial networks,” IEEE
Internet of Things Journal, vol. 7, no. 7, pp. 5843–5851, 2020.

[10] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,
S. Hand, and J. Crowcroft, “Queues don’t matter when you can {JUMP}
them!” in 12th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 15), 2015, pp. 1–14.

[11] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-
istic queuing systems for the internet. Springer Science & Business
Media, 2001, vol. 2050.

[12] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal packet
scheduling,” in 13th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 16), 2016, pp. 501–521.

