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1 
Abstract — Rapid growth of Internet of Things (IoT) devices 

dealing with sensitive data has led to the emergence of new access 
control technologies in order to maintain this data safe from 
unauthorized use. In particular, a dynamic IoT environment, 
characterized by a high signaling overhead caused by subscribers’ 
mobility, presents a significant concern to ensure secure data 
distribution to legitimate subscribers. Hence, for such dynamic 
environments, group key management (GKM) represents the 
fundamental mechanism for managing the dissemination of keys 
for access control and secure data distribution. However, existing 
access control schemes based on GKM and dedicated to IoT are 
mainly based on centralized models, which fail to address the 
scalability challenge introduced by the massive scale of IoT devices 
and the increased number of subscribers. Besides, none of the 
existing GKM schemes supports the independence of the members 
in the same group. They focus only on dependent symmetric group 
keys per subgroup communication, which is inefficient for 
subscribers with a highly dynamic behavior. To deal with these 
challenges, we introduce a novel Decentralized Lightweight Group 
Key Management architecture for Access Control in the IoT 
environment (DLGKM-AC). Based on a hierarchical architecture, 
composed of one Key Distribution Center (KDC) and several Sub 
Key Distribution Centers (SKDCs), the proposed scheme enhances 
the management of subscribers’ groups and alleviate the rekeying 
overhead on the KDC. Moreover, a new master token 
management protocol for managing keys dissemination across a 
group of subscribers is introduced. This protocol reduces storage, 
computation, and communication overheads during join/leave 
events. The proposed approach accommodates a scalable IoT 
architecture, which mitigates the single point of failure by 
reducing the load caused by rekeying at the core network. 
DLGKM-AC guarantees secure group communication by 
preventing collusion attacks and ensuring backward/forward 
secrecy. Simulation results and analysis of the proposed scheme 
show considerable resource gain in terms of storage, computation, 
and communication overheads. 

Index Terms—IoT, Group Key Management, Access Control, 
Scalability, Dynamic environment, Security, Group 
communication. 

I. INTRODUCTION 

IoT has been introduced as a universal and ubiquitous 
paradigm that connects transparently and seamlessly a 
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multitude of digital devices to the Internet [1]. Recently, IoT 
devices are progressively becoming a large part of people’s 
daily lives. They are widely used in various kinds of 
applications, such as environmental sensing and industrial 
monitoring (e.g., smart city, smart hotel, smart office, industry 
4.0) [1]. A generic IoT network architecture, as shown in Fig.1, 
is composed of a set of physical objects (i.e., smart things) that 
are interconnected to exchange and collect data over the 
Internet. [2] has predicted that, by 2025, more than 41.6 billion 
connected IoT devices will be used worldwide. These smart 
things form a diverse and heterogeneous network of 
interconnected physical objects with a wide range of 
functionalities and requirements; one essential feature being 
data collection. The vast majority of IoT devices have minimal 
resources, in terms of computation, communication, and 
storage, preventing them from efficiently performing 
cryptographic operations, thus rising more security challenges. 
Indeed, large scale IoT deployments still face serious security 
issues that still need to be addressed, such as authentication, 
privacy preservation, and data integrity [3][4].  

In order to safeguard IoT data from tampering and 
unauthorized access, an appropriate scheme for access control 
is more crucial than ever. To ensure this, GKM is one promising 
approach, which would be used to provide access control to data 
streams for legitimate users only [4]. In other words, it consists 
of creating a group key that will be shared between a device’s 
group and its current subscribers, such that the device can 
encrypt its data, and only the subscribers can decrypt it. This 
mechanism is suitable for IoT environments as it does not 
require a trusted third entity. This can be achieved through a 
publish-subscribe messaging model, such as MQTT [5]. 

Given the dynamic nature of IoT environments, where 
member’s group can intermittently join and leave the system 
(e.g., reservation IoT systems), safeguarding IoT data from 
unauthorized access represents a primordial security issue. 
Therefore, enforcing access control is reduced to solving the 
GKM problem. Moreover, in order to guarantee backward and 
forward secrecy, the shared keys need to be changed whenever 
a new member joins or an existing one leaves its group [6]. To 
efficiently reduce the overhead keys management, resulting 
mainly from rekeying, GKM is extensively studied in the 
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literature [12]. Most of the existing GKM schemes are not 
suitable for IoT applications. Indeed, existing GKM for IoT 
applications are designed to manage communication within a 
single group, and the GKM schemes introduced for access 
control in the IoT environment are mostly based on a 
centralized access management architecture. Consequently, 
they are not suitable for a scalable and dynamic IoT 
environment comprising multiple groups. In fact, many users 
can subscribe to numerous services offered by different IoT 
devices and change their interest frequently over time. Thus, 
maintaining an efficient GKM in a dynamic IoT environment 
remains a challenging issue due to the rekeying process that 
affects all members in the same group for joining/leaving 
events. Therefore, all members should update their shared 
group access keys. Hence, an efficient group key mechanism 
should be introduced to reduce the rekeying dependence of 
members in the same group, and thus reducing overhead. 

To solve the rekeying dependence, minimize resulting 
overhead and achieve scalable access management for dynamic 
IoT environment, this work introduces a new Decentralized 
Lightweight Group Key Management Architecture for Access 
Control named DLGKM-AC. We consider in our use-case, in 
the context of the European project PARFAIT [28], an 
extensive reservation system for franchise hotels. In this 
scenario, key cards and smartphones might be interchangeably 
used to give access permissions for guests in different rooms. 
They can also be used to control the usage of various facilities 
according to room classes’ and purchased services. When a 
guest checks out, and the room becomes vacant, the devices 
should stop sending the room’s information and receiving 
information from other devices. 

The main idea of DLGKM-AC is to create an efficient and 
flexible mechanism to secure distribution of contents to 
eligible subscribers. A hierarchical scheme comprising a 
central Key Distribution Center (KDC) and several Sub Key 
Distribution Centers (SKDCs) to manage groups of 
subscribers and to mitigate the single point of failure issue is 
introduced. Key management tasks in DLGKM-AC are 
offloaded to several SKDCs, which allow enhancing the 
system’s performances in terms of computation and 
communication by reducing the overhead caused by 
membership changes (join/leave). The KDC manages device 
groups, while each SKDC manages user groups, which 
provides scalability for our DLGKM-AC. Furthermore, 
DLGKM-AC introduces a new key management mechanism 
that allows reducing the rekeying dependence of users in the 
same group. DLGKM-AC is a scalable and flexible access 
management protocol that is based on the GKM mechanism. 

It improves the computation capability, the storage capacity, 
and the communication overhead. The main contributions and 
novelties of this paper are summarized as follows: 
- Presenting a new lightweight decentralized keys 

distribution architecture to ensure forwarding valuable and 
sensitive information to legitimate users in a scalable and 
secure manner, 

- Designing a rekeying mechanism suitable for multiple 
groups of IoT devices and various users’ groups whenever 
memberships change, which ensures a flexible access 
management system, 

- Presenting a master token management algorithm that 
creates and updates a master token and multiple slave 
tokens for handling user groups, which achieves the 
independence of user during the rekeying process, 

- Ensuring security requirements, backward and forward 
secrecy even with changes in users and devices 
membership, and resisting to the collusion attack, 

- Minimizing computational and storage overheads for users 
and IoT devices, and also communication overhead for the 
overall system, which is proved through extensive 
analytical study and simulation work.  

The remainder of this paper is structured as follows: First, 
related work is described in Section II. Then, we discuss the 
necessary background related to our scheme in Section III 
before presenting the overall system architecture, attacker 
model and different system requirements in Section IV. The 
proposed DLGKM-AC for IoT is introduced in Section V. 
Security and performance analysis in terms of storage, 
communication and computation overheads are summarized in 
Section VI. Finally, conclusions and future works are given in 
Section VII.  

II. RELATED WORK 
The dynamic nature of group communications makes 

safeguarding data from unauthorized access a significant 
challenge. The larger problem of access control is reduced to 
GKM, where a group key is shared by the group members to 
define the access permissions. Table I summarizes and 
classifies existing GKM solutions based on different attributes 
and criteria as follow: (i) Environment of its application, such 
as wired Internet [6], wireless sensor networks (WSN) 
[7][9][11], ad hoc networks [8], wireless body area networks 
(WBAN) [10] and IoT environment [13][14]. (ii) Network 
model that could be centralized, decentralized or distributed. 
(iii)the used Cryptography types, and essential security services 
(iv) backward secrecy and (v) forward secrecy, where shared 
keys need to be updated whenever a new member joins, or an 
existing one leaves its group. (vi) Key independence to ensure 
the independence of keys from each other. (vii) Vulnerability to 
collusion attack (collaboration of adversaries to compromise a 
communication) for which rekeying is important to maintain 
security. However, this process may cause a lot of key 
management overhead and leads to (viii) Single point of failure, 
especially in a (ix) Scalable environment that supports (x) 
Multiple group services and composed of (xi) Dynamic 
publishers and dynamic subscribers. Hence, ensuring (xii) 
Subscribers’ independence makes subscribers of one group 
independent from the entire group in the rekeying process of the 
group key after a join/leave event in the group.  

 
Fig.1. Generic IoT Environment 
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Authors in [12] surveyed numerous key distribution schemes 
over wireless networks and classified them into centralized, 
decentralized, and distributed schemes. Centralized schemes 
use only one server known as the key distribution server (KDC) 
for creating and distributing encryption keys. Distributed 
schemes do not have a specific KDC; they rather generate group 
key either in a collaborative manner between the group 
members or by one member. Moreover, each member must 
keep track of the other members to make robust 
communication. Besides, membership change events 
(join/leave) cause a high processing and communication 
overheads [25], which may lead to a congestion problem in a 
dynamic IoT environment. In contrast, decentralized schemes 
divide the system into several subgroups, thus, reducing the 
load on the KDC and offering a solution to scalability issues. 
Furthermore, a subgroup manager is responsible for keeping 
track of the group’s members, which may reduce computation 
and storage overhead on members. 

The distribution of encryption keys in the different 
mentioned GKM architectures is further ensured by using two 
main cryptographic types (symmetric and asymmetric). Two 
fundamental and efficient GKM schemes were proposed: The 
Logical Key Hierarchy (LKH) [15] and the One-way Function 
Tree (OFT) [16] based on symmetric keys (traffic key and 
encryption key) to distribute the updated encryption keys. In 
contrast to LKH, all the OFT implementations suffer from 
collusion attacks and increase devices’ computational overhead 
for obtaining group keys. Hence, OFT is far from ideal in an 
IoT environment, where the communicating devices may have 
limited computational power. 

Additionally, [20] [21] schemes provided fine-grained access 
control Attribute-Based Encryption (ABE) to manage keys’ 
update. However, ABE is a cumbersome mechanism that relies 
on asymmetric cryptography, which is unsuitable for running 
on resource-constrained IoT devices [22]. Besides, asymmetric 
encryption mechanisms are also used in key management 
schemes [23] [24]. Specifically, Porambage et al. [7] proposed 
a group key establishment protocol for multicast 
communication by using the Elliptic Curve Cryptographic 
(ECC) operations. Even though, the latter are known to be 
suitable for resource-constrained devices; their protocol does 
not efficiently manage the rekeying process. Furthermore, all 
previous mentioned schemes are designed for single multicast 
groups, but users may subscribe to multiple services. To ensure 
many multicast groups, Park et al. [11] accommodate various 

services’ groups. Their scheme addressed rekeying in the 
wireless mobile environment, which is based on a centralized 
architecture and a LKH mechanism to manage multiple 
communications. Likewise, Mapoka et al. [17] proposed using 
a distribution list of the session key and key update slot for each 
subgroup. This list is centrally managed by a node called the 
area key distributor. The proposed protocol alleviates the 1-
affect-n phenomenon and transmission overhead of the core 
network, but it does not ensure the forward secrecy. Hence, 
Zhong et al. [18] proposed another protocol called area based 
multiple GKM that securely provides services when users 
migrate to different wireless networks, which ensures forward 
secrecy. Nonetheless, its high overhead, due to revocation 
events, makes it unsuitable for dynamic IoT environments.  

To address the rekeying issue in the IoT environment, Tsai et 
al. [19] proposed a lightweight symmetric key establishment 
based on the Kronecker product. However, their protocol does 
not consider the key update when users or devices join or leave 
the system, which lacks forward and backward secrecy. 
Furthermore, Abdmeziem et al. [14] proposed a decentralized 
batch-based group key that includes several subgroups 
managed by key servers. This scheme considered long term and 
short-term keys per group, which are common to all nodes. 
Nevertheless, [14] does not ensure communication between 
multiple groups and it requires large storage and computation 
resources. Their work was enhanced to decrease the 
communication overhead by adopting a Distributed Batch-
based Group Key [26]. It is based on polynomial cryptography 
to set up the key for collaborative groups in the IoT 
environment. However, these schemes are limited for managing 
communications in one group and do not consider 
communications between different groups and services. Kung 
et al. [13] took advantage of the Chinese Remainder Theorem 
(CRT) based construction proposed by Park et al. [11] to 
accommodate multiple device groups. They established a two-
tier centralized system KDC, where each group (devices or 
users) runs LKH to handle updates of keys efficiently. 
However, communication within a user group is based on 
symmetric group key, which leads to the dependence between 
all its members. Therefore, after each event (triggered by a 
join/leave user operation), the rekeying process induces all the 
members in the entire group to update their group key, and thus, 
increases the computation overhead.  

In summary, and as mentioned in Table I, existing GKM 
solutions do not support the independence of members in the 

TABLE. I: COMPARISON OF EXISTING GKM SCHEMES 
 [10] [11] [9] [20] [21] [22] [13] [17] [18] [8] [14] [25] [26] 

(i)Environment WBAN WSN CC IoT WSN IPv6 IoT IoT 
(ii)Network model Cent Cent Cent Cent Decent Decent Decent Distr 
(iii)Cryptography type Sym , P Sym , Asym ABE Sym, Asym Sym, Asym Sym Sym Asym 
(iv)Forward secrecy Yes No  Yes  No  No Yes Yes Yes  
(v)Backward secrecy Yes Yes Yes  Yes  Yes Yes  Yes Yes 
(vi)key Independence No Yes  No  Yes  No  No Yes No 
(vii)Vulnerable to collusion attack No Yes Yes  Yes  No  No Yes No 
(viii)Single point of failure Yes Yes Yes Yes No No No No  
(ix)Scalability No No No No High Moderate Limited Limited  
(x)Support multiple group services No Yes No  Yes Yes Yes  No No  
(xi)Support publishers’ dynamism No No No Yes No No No No  
(xii)Support subscribers’ independence No No No No No No No No  

NB: CC: cloud computing, cent: centralized, decent: decentralized, Sym: symmetric, asym: asymmetric, P: polynomial, ABE: Attribute Based Encryption 
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same group, where each member needs to update its key after 
every join/leave event. Specifically, they focus only on 
symmetric group key per subgroup communication. 
Consequently, the rekeying performance is decreased when the 
number of subscribers is high and varies frequently. Moreover, 
lesser attention is paid to achieve efficient and scalable GKM 
for access control among a dynamic IoT environment, where 
many users (subscribers) can subscribe to different IoT services 
and frequently change their interest over time. Hence, 
throughout this paper, we propose a flexible access 
management protocol that is based on the GKM mechanism. 
More specifically, to the best of our knowledge, a new 
decentralized GKM to secure group communication, offers the 
scalable feature in a dynamic IoT environment, alleviates the 
rekeying overhead caused by the member changes, and 
reduces the load on the KDC. 

III. PRELIMINARIES  
In this section, we briefly present the background and the 

main mechanisms used in our approach. We first describe the 
LKH scheme used for efficient key management of different 
device groups (DGs). Then, we present the Master Key 
Encryption (MKE) based Generalized Chinese Remainder 
Theorem (GCRT) that is used for managing multiple user 
groups (UGs) and various users.  
A. Logical key Hierarchy 

LKH uses a tree structure to manage the distribution of keys. 
This method reduces communication costs by multicasting 
multiple key-encryption keys O(logn) for n devices per group 
[15]. LKH structure is composed of devices located at the leaf 
nodes of the tree and a central control center called KDC, which 
maintains the keys’ virtual tree. Each leaf node shares a secret 
key with the KDC. The root of the tree holds the group Key 
(GK), and the internal nodes hold Key Encryption Keys (KEK). 
KEKs are known by each device in the leaf nodes within the 
same subtree rooted to a specific internal node. Furthermore, 
KEKs compose a Path key (PKt), which is used later to update 
group keys efficiently. In a complete tree with n devices, each 
device stores log(2n+1) keys [15]. To manage the group 
communication within IoT devices groups, we use the LKH 
scheme. Since, multiple users may subscribe to the same IoT 
device group, it would be more efficient if all these devices and 
all their subscribed users share a group key for encryption. 
Traffic Encryption Key (TEK) is a traffic key used to encrypt 
data published by a device group to its subscribers. This traffic 
key should be efficiently updated when a new user joins, or an 
old one leaves to ensure forward and backward secrecy. To do 
so, we explain the key management scheme used to manage 
communication with users in the next subsection. 
B. Master Key Encryption (MKE) 

Users subscribe to many DGs in the system to get data. For 
this purpose, each user gets all TEKs of DGs to which it is 
subscribed. Otherwise, the users may subscribe to the same 
DGs, which would lead to an increase in the overhead when an 
old user unsubscribes, or a new one subscribes. Thus, managing 
group communication with users is essential to reduce the cost 
of updating TEK after each join/leave event.  

In this context, we define the concept of master key 
encryption (MKE), which is a key management scheme based 
on GCRT. MKE permits multiple decryption keys to decrypt 

the same message encrypted by an encryption key [11]. The 
main idea of the master key encryption scheme is to generate 
one master key and several slave keys, where the master key 
encrypts a message that can be decrypted by all legitimate salve 
keys. The MKE scheme can alleviate the rekeying cost resulting 
from the symmetric cryptography. Hence, Park et al. [11] have 
proposed a general MKE algorithm to lessen the rekeying cost 
of the group key using a master key.  

Theorem 1: Let {p1, p2,… , pN, q1, q2,…,qN} a set of safe 
prime numbers. If all public keys satisfy the following 
condition, 𝑒! 	≡ 	 𝑒" 	≡ ⋯	≡ 𝑒#	𝑚𝑜𝑑(4), Then, there exists a 
unique master key, 𝑒$ modulo 4𝑥!𝑦!𝑥"𝑦"…	𝑥#𝑦#, where 𝑥% =
(𝑝% − 1)/2 and 𝑦% = (𝑞% − 1)/2, 1 ≤ i ≤ N.  

Theorem Proof: consider there are N public/private slave 
key pairs (𝑒% , 𝑑%), 𝑖 ≤ 𝑁 with	(𝑝%, 𝑞%) being the ith safe prime 
number pair, and one master key pair(𝑒$ , 𝑑$). For simplicity, 
we now consider the modulus of the prime pairs ∅(𝑝%𝑞%) =
(𝑝% − 1)(𝑞% − 1) are mutually prime to each other. For a 
plaintext P and a ciphertext C, the master key should satisfy:  

                           𝑃&! 	≡ 	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%)                         (1) 
                   𝐶'! 	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%), 1 ≤ 𝑖 ≤ 𝑁              (2) 

According to Euler’s theorem, the necessary condition for the 
equation above is: 

𝑒$ 	≡ 	 𝑒% 	𝑚𝑜𝑑	<∅(𝑝%𝑞%)=	,   𝑑$ 	≡ 	𝑑%	𝑚𝑜𝑑	(∅(𝑝%𝑞%)) 
The set of safe prime numbers satisfies the following condition: 
𝑒! 	≡ 	 𝑒" 	≡ ⋯	≡ 𝑒#	𝑚𝑜𝑑(4). Then, there exist a unique 
master key, 𝑒$mod(4𝑥!𝑦!𝑥"𝑦"…	𝑥#𝑦#), where 𝑥% = (𝑝% −
1)/2 and𝑦% = (𝑞% − 1)/2, 1 ≤ i ≤ N, solution of a system 
congruence that can be calculated by the GCRT as follows: 
𝑒$ = ∑ 	𝑒% 	𝑀[𝑖]	𝑁[𝑖]#

%(! , 
Where 𝑀[𝑖] = <∏ 𝑥)𝑦)#

)(! = ∕ 𝑥%𝑦% and 𝑁[𝑖] is an integer such 
that	𝑀[𝑖]	𝑁[𝑖] 	≡ 1𝑚𝑜𝑑(4𝑥%𝑦%). 

Based on theorem 1, [11] proposes a general MKE algorithm, 
which generates and modifies the master key and the key pairs, 
respectively. In our proposed scheme, we take advantage of this 
algorithm and propose an optimized algorithm for membership 
renewal and revocation. This algorithm is described in the 
DLGKM-AC scheme section. In the following, we define the 
system model and its underlying requirements. 

IV. SYSTEM MODEL 
In this paper, we propose a decentralized group key 

management scheme where the numbers of users and devices 

 
Fig.2. Proposed network model 
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change frequently. Before presenting the solution, we introduce 
the overall system, the attacker model and the system 
requirements. The architecture of the proposed network model, 
shown in Fig.2, illustrates a typical three-tier scheme used for a 
smart hotel for our use case scenario. The entire system 
considers three essential layers: publishers, subscribers and 
group key manager.  
§ The publisher layer contains IoT devices, such as smart 

door locks or IP cameras, collecting and sending data to 
subscribers. These constrained IoT devices have limited 
computation, storage and energy resources.  

§ The subscriber layer is composed of a set of users that want 
to get access to data of the publisher layer. A user can be a 
device owner with legitimate, full and permanent control 
or a guest user with only limited access. A user 
communicates and receives data from IoT devices via 
his/her smartphone. 

§ The group key manager layer is responsible for generating 
the system parameters and managing group members by 
providing required encryption keys used to control the 
access to data. The group key manager in our system is 
considered as a fully trusted third party.  

The intended approach considers a dynamic reservation 
system in an IoT environment, where both the number of users 
and IoT devices might frequently change over time. Indeed, a 
user may join or leave at any time. Likewise, an IoT device can 
be introduced in or removed from the system at any time. Thus, 
it is crucial to manage the distribution of encryption keys to 
secure both group communication and data transmission from 
possible threats that will be defined in the next subsection.  
A. Threat model 

The proposed GKM system model may confront different 
type of attacks that may threaten the security of the network. 
Thus, we define the attacker capabilities in compromising the 
GKM access control scheme based on the active insider and 
active outsider adversary models. An attacker A may be either 
an outsider, who has no access to any IoT device, or an insider 
who attempts to increase the access possibility. For example, a 
revoked user who has no longer access to future communication 
and yet tries to retrieve information on access policies to extend 
access scope. Another example is an attacker A that aims to 
extract sensitive information, such as the encryption key, to 
break the current encryption scheme and get access to data 
without proper permissions. A may cooperate with other 
members in the system to derive keys that he/she cannot obtain 
individually, which is known as a collision attack. Besides, the 
attacker may also be a compromised device, where he/she may 
masquerade as a legitimate communication partner before 
initiating communication with other participant in the network 
to gain access to data that are unknown to him. However, he 
cannot compromise or break the cryptographic primitives. 
B. System requirements  

Several requirements are identified and discussed for 
effective GKM. Generally speaking, an efficient and practical 
GKM should address the following requirements [4] [12]: 
a. Security requirement  

In order to ensure transmitted data security, in a dynamic IoT 
environment, the system should achieve some services. On the 

one hand, it should avoid any leaving member from decrypting 
the future exchanged messages, to maintain forward secrecy. 
On the other hand, new members that join the system should be 
prevented from decrypting the previous communications to 
guarantee backward secrecy. Forward/backward secrecy are 
accomplished through an efficient key updating process, where 
all keys should be completely independent from each other in 
order to safeguard the key independence security service. 
b. Efficient functioning requirement  

The efficient functioning of key management protocols is 
justified by a minimum overhead cost of different metrics. First, 
it reduces the number of keys stored on both users and IoT 
devices, which results in low storage overhead. Second, it 
decreases the required computation power from users, IoT 
devices and servers, which increases the efficiency by reducing 
the system response time. Finally, it minimizes the number of 
exchanged messages on the system, which raises the flexibility 
of the overall system and thus achieves a low communication 
cost.  
c. Performance requirement 

The performance is mainly related to factors that affect group 
communication. It includes the scalability, which determines 
the capability to handle variable group sizes and high 
membership changes. Besides, key management schemes suffer 
from the 1-affects-n phenomenon, where a failure of a single 
server leads to the collapse of the whole system. Hence, it is 
essential to avoid this phenomenon and assure the availability 
in a large and scalable system.  

V. PROPOSED DLGKM-AC SCHEME DESCRIPTION 
In this section, we introduce the proposed scheme, and we 

explain how it handles member’s joining and revocation events.  
A. Overview 

DLGKM-AC is composed of three essential layers, shown 
in Fig.3. The upper and lower layers define groups of devices 
(DGs) and users (UGs), respectively. In contrast, the middle 
layer defines the decentralized controller, KDC, which is 
responsible for key management between and within groups. 
§ Device groups DGs: DLGKM-AC for IoT environment 

establishes a fixed number of DGs based on their 

 
Fig.3. Proposed system model 
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functionalities, security levels, localization, etc. When a 
new IoT device joins the system, it is assigned to precisely 
one of the existing DGs. The LKH structure achieves the 
group communication within a DG.  

§ User groups UGs: DLGKM-AC for IoT environment 
creates user groups (UGs) based on user’s interest and 
reservation’s period. Each user joins one of those UGs, and 
encryption keys are distributed using the MKE technique 
within a UG. 

§ Decentralized group key manager: DLGKM-AC for IoT 
environment is a decentralized architecture of servers, 
which is composed of one KDC and several SKDC. The 
number of SKDC is not fixed and depends on the IoT 
application needs. More specifically, the number of SKDC 
is influenced by the characteristics of SKDC like storage, 
computation capacities, and the number of registered users 

KDC is the central server that relates publishers to the rest of 
the system, and it manages the keys’ update process within 
DGs. Further, KDC has a backup server that maintains the last 
updated version of keys in the system, which is sent to the 
backup periodically after the rekeying process. Besides, SKDCs 
manage the group communication within UGs, where users 
frequently join and leave the system. Hence, the decentralized 
aspect of the controller, where SKDCs are used, allows 
reducing the load on the KDC. Multiple user groups are under 
the control of one SKDC depending on users’ localization, 
which solves the problem of single-point failure (SKDC failure) 
and ensures the scalability of the system. Besides, we assume 
that the decentralized KDC can establish a one-time secure 
channel with users and devices, which can be used to 
authenticate and configure a newly joined user/device (e.g., by 
installing a shared secret key) before sharing with them the 
encryption keys. We can summarize the different encryption 
keys in our scheme into two main categories: (i) Traffic 
Encryption Key (TEK) and (ii) Key Encryption Key (KEK). 
The traffic keys are used to encrypt/decrypt data, while the key-
encryption keys are used to encrypt/decrypt traffic keys to 
distribute them securely. Table II presents the different keys 
used in this paper.  

TABLE II SUMMARY OF DIFFERENT TYPES OF KEYS 
Traffic Encryption 
Keys (encrypt data) 

• TEK: encrypts data of DG 
• DK: encrypts data of one device 

Key Encryption 
Key (encrypt traffic 

key)  

• KEK & GK encrypt and distribute TEK 
within a DG 

• MT encrypts updated TEK keys to users 
in SKDC 

• ST decrypts updated TEK keys in UG 
Definition: Let U = {U!, U", … , U*}, n ≤ N be the universe 

of users controlled by one SKDC. Each user in a network can 
subscribe to one or more services of device groups DGs among 
a total of M (DG)	denoted by	{DG!, DG", … , DG+}. Let UG	 ⊂
U	be the set of users who subscribe to the same set of 
DGs	during the same time T. Let  {UG!, UG", … , UG,} be the set 
of user groups UGs. Here, each UG	possesses an ID	defined as 
follows: 

𝐼𝐷! = $𝐴!,#	|	1 ≤ 𝑗 ≤ 𝑀|	𝑏	𝜖	[0,1]	2 ,  

𝐼𝐷! =	 3
𝐴!,$ = 0	, 𝑈𝐺	𝑖𝑠	𝑛𝑜𝑡	𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝐷𝐺!
𝐴!,% = 1, 𝑈𝐺	𝑖𝑠	𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝐷𝐺!

A.      (3) 

B. Scheme construction 
In this section, we detail the structure of the proposed scheme 

and explain how to manage group keys according to users and 
devices changes efficiently. Our system can be divided into five 
parts: (i) Initialization, (ii) device group registration, (iii) User 
group registration, (iv) Dynamic changes in users’ membership 
(Join/Leave), and (v) IoT device changes (Join/Leave). We give 
a brief description of all used symbol in Table III. 
a. Initialization  

The group key manager performs the initialization, and it 
includes both SKDCs and KDC initialization. 

i. KDC initialization  
KDC runs MkeyGen algorithm based on GCRT, to generate 

a master key and several salve keys to communicate with 
several SKDCs under its control. Besides, when a new SKDC 
is added to the system, KDC has to run the MkeyGen algorithm 
to generate a slave key for the new SKDC and update its master 
key. Moreover, KDC establishes a secure channel with devices 
and users, and creates DGs and assigns UGs to SKDC. We 
consider an example of architecture with 4 DGs and 6 UGs in 
Fig.3.  

ii. SKDC initialization  
Each SKDC in the system runs algorithm 1, the master key 

generation algorithm named MkeyGen, to initialize the system 
for many users. Let N be the maximum number of slave keys 
provided by SKDC. First of all, the SKDC generates a master 
key	(𝒆𝑴, 𝒅𝑴)	and a set of N public-private key pairs, named 
slave keys, 𝑆𝐾 = {(𝒆𝒊, 𝒅𝒊); 	𝟏	 ≤ 𝒊 ≤ 𝑵} through MkeyGen.  

SKDC defines a function f which maps a pair key from a set 
of slave keys to {0, 1}as follows: 

𝑓: 𝑆à	{0,1}, where  

𝑓: 3
𝑓	((𝒆𝒊, 𝒅𝒊)) = 1	,														((𝒆𝒊, 𝒅𝒊)		𝑖𝑠	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑎	𝑢𝑠𝑒𝑟)
𝑓	((𝒆𝒊, 𝒅𝒊)) = 0	, ((𝒆𝒊, 𝒅𝒊)𝑖𝑠	𝑛𝑜𝑡	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑎𝑛𝑦	𝑢𝑠𝑒𝑟)

    (4) 

After the generation of master and slave keys, SKDC initializes 
all pair keys using (4) as follows: 𝟏 ≤ 𝒊 ≤ 𝑵,𝑓((𝒆𝒊, 𝒅𝒊)) = 0. 
b. Device Groups registration  

Multiple IoT DGs are established, and each DG 
accommodates devices with similar attributes (i.e., security 
levels, localization...). KDC generates KEKs for devices in each 
DG. First, KDC sets a binary LKH tree for the universe of 
devices in each DG, which will be used to distribute updated 
keys to devices. In the tree, each intermediate node holds a 
KEK. A set of KEKs on the path nodes from a leaf to the root 
are called Path Keys (PKt).  

TABLE III SUMMARY OF SYMBOLS AND THEIR DESCRIPTION 

Symbol Description 
TEK Traffic Encryption Key 
KEK 
M 
N 

Key Encryption Key 
Total number of Device Groups 
Total number of Slave Keys under SKDC 

(eM,dM) Master Key 
(ei,di) 
MT, ST 
DGy 

DKj 

UGx 

UKi 

Slave Key 
Master Token, Slave Token 
Device Group y 
Shared secret key between device j and KDC 
User Group x 
Shared secret key between user i and SKDC 

GKy 

PKt 

Group Key for device group y 
Path Key  

h(.),[.]K Hash Function, Encryption function using encryption key K. 
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The LKH tree is constructed by KDC as follows: 
§ Devices in DG are assigned to the leaf nodes of the tree. 

Random keys DKj are generated and assigned securely to 
each leaf node.  

§ The root node holds group key GK to communicate with 
devices and TEK to encrypt data of DG. 

§ Each device Dj in DG receives the path keys PKt from the 
root node to the parent node of the tree, securely. 

Then, the path keys will be used as KEKs to encrypt the 
group key by the KDC in each rekeying process and to 
distribute updated encryption keys to leaf nodes. 
c. User Groups registration  

In this phase, multiple user groups UGK are constructed, and 
each UGK accommodates rk users with the same interest for a 
period T. Each user Ui in UGK is authenticated before joining 
the system and shares a secret key UKi with SKDC. The SKDC 
assigns a user group ID denoted by	𝐼𝐷/0# = X𝐴),2	|	1 ≤ 𝑗 ≤
𝑀|	𝑏	𝜖	[0,1]	_ using (3), where j defines DGj, and b outlines the 
user group subscription to the corresponding DGj when b=1. 
Otherwise, when b=0, this means that the user group is not 
subscribed to the corresponding DGj. 

The communication within user groups is based on Master 
Token Encryption (MTE), which reduces the communication 
and computational complexities. Besides, MTE also supports 
efficient key updating. Therefore, SKDC conducts 
MTokenGen (algorithm 2) to generate the group key MTK and 
a set SK of slave tokens STs for UGK. Then, each user member 
Ui in UGK receives a ST through a secure unicast. 

The SKDC adds user group information 
<𝐼𝐷/0# , 𝑀𝑇3 , 𝑆3 , 𝑟3 , 𝑇= to the list of active user groups. 
Subscribers and IoT devices can join or leave the 
communication session over time. Hence, the keys should be 
changed in each join and leave event. Therefore, dynamic 
membership management is a critical component of any 

security architecture to ensure the backward and forward 
secrecy, which will be detailed in the next subsection. 
d. User membership changes (join/leave) 

In this section, the key updating scheme is illustrated 
according to two events; namely, the user join event, and the 
user leave event. In order to describe the keys’ update process 
of DLGKM-AC, and for simplicity, we consider the case of a 
user that joins/leaves the user group UG1, where users are 
subscribed to DG1, DG2, and DG4. 

i. When a user joins a group:  
Consider a user Ujoin that joins an existing group UGK; few 

steps are necessary as introduced below: First, Ujoin should 
register to SKDC after being authenticated. Then, Ujoin obtains 
a shared secret key UKjoin with SKDC. Subsequently, SKDC 
conducts JoKeyUpdate algorithm to update the group key 
MTK, eM, and generates a new slave token ST for the new user 
Ujoin. It is noticed that the existing users in the joined UGK can 
decrypt newly sent messages, encrypted with the new MTK, 
using their STs. After that, SKDC runs the JoKeyDistribute 
algorithm to distribute the rekeying message distribution 
process in the system when a user Ujoin joins UGK. First, SKDC 
notifies the KDC about the joining event, and then, SKDC 
notifies all users subscribed to the same device groups through 

Algorithm 1 Master Key Generation MKeyGen   
Inputs: A set of safe prime numbers 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, 𝒒𝟏, 𝒒𝟐, … , 𝒒𝑵.		 
Output: One master key 𝒆𝑴 and N slave public-private key pairs 
𝑺 =	 {(𝒆𝒊, 𝒅𝒊)	; 	𝟏	 ≤ 	𝒊	 ≤ 	𝑵} 
1: 𝑺 =	 {	};  
2:	𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵  

𝝋𝒊 	= 	 (𝒑𝒊 − 𝟏)	×	(𝒒𝒊 − 𝟏);  
𝒙𝒊 	= 	 (𝒑𝒊– 	𝟏)/𝟐;	
𝒚𝒊 	= 	 (𝒒𝒊	– 	𝟏)/𝟐;	
𝒆𝒊 	= 	𝟒 × 	𝑹𝒂𝒏𝒅𝒐𝒎	 + 	𝟏;	
𝒅𝒊 	= 	𝒆𝒊𝟐(𝒙𝒊	.𝟏)(𝒚𝒊	.𝟏) 	− 𝟏	𝒎𝒐𝒅	𝟒𝒙𝒊𝒚𝒊; 
𝑺 = 𝑺 +	{(𝒆𝒊, 𝒅𝒊)}; 	

					𝑬𝒏𝒅	𝑭𝒐𝒓  
3:	𝒑𝒓𝒐𝒅𝒖𝒄𝒕	 = 	𝟏;  
4:	𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵  

𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = 	𝒑𝒓𝒐𝒅𝒖𝒄𝒕	 ×	(𝒙𝒊𝒚𝒊);  
				𝑬𝒏𝒅	𝑭𝒐𝒓  
5: 𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵 	

𝑴[𝒊] 	= 	𝒏/(𝒙𝒊𝒚𝒊); 	
𝑵[𝒊] 	= 	𝑴[𝒊](𝒙𝒊 − 𝟏)(𝒚𝒊 − 𝟏) − 𝟏	𝒎𝒐𝒅	(𝒙𝒊𝒚𝒊); 	

				𝑬𝒏𝒅	𝑭𝒐𝒓 	
6: 𝒆𝑴 	= 	𝟎; 	
7:	𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵 	

𝒆𝑴 	= 	 (𝒆𝑴 	+	(𝒆𝒊 	× 𝑴[𝒊] 	× 	𝑵[𝒊]));  	
				𝑬𝒏𝒅	𝑭𝒐𝒓  	
 

 

Algorithm 2 Master Token Generation MTokenGen 
Inputs: Number of user r, Time T, 𝐞𝑴, S 
Output: 𝑴𝑻𝑲Master Token of 𝑼𝑮𝑲 and list 𝑺𝑲 
1:	𝐞𝑴𝑲 = 𝐞𝑴 ; 
2:	𝑪𝒐𝒎𝒑	 = 𝟎;		
3:	𝑺𝑲 =	 {	};			
					//	 Select a list of slave keys for	𝑼𝑮𝑲, 
					𝑺𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	}.  
					//𝒆𝒊𝟏𝑲 =	𝒆𝒊 assigned to user in 𝑼𝑮𝑲 
4: While (Comp	<r) do  
     Select a random (𝒆𝒊, 𝒅𝒊) from 𝑺 = {(𝒆𝒊, 𝒅𝒊)	|	𝟏 ≤ 𝐢 ≤ 𝐍}   
5: If 𝒇((𝒆𝒊, 𝒅𝒊)) 	== 	𝟎	 

Then  
𝑺𝑲 = 𝑺𝑲 	+	 {(𝒆𝒊, 𝒅𝒊)};  
𝒇((𝒆𝒊, 𝒅𝒊)) 	= 	𝟏;	  
𝒄𝒐𝒎𝒑	 + +;  

    End if 
    End while 
6: For i = 1 to N    

If  𝒆𝒊 	 ∉ 	 𝑺𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	}  
Then  

𝐞𝑴𝑲 = 𝐞𝑴𝒌 	− 𝐞𝒊	𝐌[𝐢]	𝑵[𝒊] ; 
End if 

    End For 
7:	𝑴𝑻𝑲 =	 �𝒆𝑴𝑲 + 	𝑻�  
 

Algorithm 3 JoKeyUpdate 
Inputs:	𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and (𝒆𝑴, 𝑺). 
Output: updated	𝑴𝑻3𝑲,	𝑺′𝑲,	𝒓′𝑲, 𝒆′𝑴 and 𝑺′. 
A new user joins the UGK 
1: Find 𝒆𝒊  from 𝑺 = {(𝒆𝒊, 𝒅𝒊)	|	𝟏 ≤ 𝐢 ≤ 𝐍}  where 𝒇((𝒆𝒊, 𝒅𝒊)) = 𝟎  
//𝒆𝒊{𝒋𝒐𝒊𝒏}𝑲 = 𝒆𝒊, 𝐢𝐬	𝐚𝐝𝐝𝐞𝐝	𝐭𝐨	𝑺𝑲  
2:𝑺′𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	} + $𝒆𝒊{𝒋𝒐𝒊𝒏}𝑲2	  
3:𝒓′𝑲 = 𝒓𝑲 + 𝟏;  
4:𝒆𝑴𝑲 =	(𝑴𝑻𝑲 − 	𝑻);  
5:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 + 𝒆𝒊

{𝒋𝒐𝒊𝒏}𝑲	𝐌[𝐢]	𝑵[𝒊]	;  
6:𝑴𝑻′𝑲 =	�𝒆′𝑴𝑲 + 	𝑻�;  
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a multicast message, to update TEKj by using a hash function. 
Consequently, old users update TEKj to minimize the 
communication overhead in the system. Hence, the new user 
cannot access to previous exchanged data. Finally, SKDC sends 
the updated keys to the new user Ujoin through a unicast 
message, including his ST key.  

Suppose a user U4 wants to get access to DG1, DG2, and 
DG4, as shown in Fig.4, meanwhile U4 needs to get these 
traffic keys TEK1, TEK2, TEK4. For that, U4 requests to join 
UG1 after being authenticated and authorized. First, SKDC 
creates a shared secret key UK4 with U4; then, it multicasts a 
notification based on the identities of user groups subscribed to 
the same device group to update TEK1, TEK2, TEK4, so that the 
new user cannot access to previous exchanged data. 

  Besides, SKDC updates the group key MT1’ of UG1 as 
mentioned in JoKeyUpdate algorithm to protect previous 
communications between users and SKDC from intruders, and 
generates a new ST for U4, while existing users of UG1 still be 
able to decrypt data of new group key MT1’. Moreover, devices 
of DG1, DG2, and DG3 update TEK’1=h(TEK1), 
TEK’2=h(TEK2), TEK’4=h(TEK4). Finally, ST and updated 
TEK’1, TEK’2, TEK’4 keys are sent, in unicast, to the new user 
U4 by the SKDC. The protocol steps are given in the 
JoKeyDistribute algorithm.  

ii. When a user leaves a group: 
In this phase, assume that a user Uleave leaves a group UGK. 

Thus, he is not allowed to obtain the exchanged messages after 
revocation to ensure the forward secrecy. Hence, SKDC 
conducts the LeKeUpdate algorithm to update the group key 
MTK, eM, and user group information. Otherwise, the updating 
of the master key MTK is ensured by deleting the ST of the 
leaving user, while the remaining slave tokens are valid to 
decrypt data of the new MTK. After that, SKDC runs the 
algorithm LeKeyDistribute to distribute the necessary 
rekeying message in the whole network when user Uleave leaves 
UGK. Firstly, a user Uleave announces his willing to leave the 
system to SKDC, which verifies the request and unicasts a 
message to KDC to signal a leave event. Then, KDC updates all 
TEKj to which Uleave was subscribed according to the group 
identity	𝐼𝐷/0# by generating new TEKj based on the updating 

method (TEKj |random processes of KDC), and then, KDC 
broadcasts the new TEKs to SKDCs. At that point, SKDC 
enforces an access control level for the user group using its 
IDUG; b𝑇𝐸𝐾)4&5 , ∀	𝑗	e𝐴),2 = 1	𝑜𝑓𝑈𝐺3	]. Thus, according to 
IDUG, SKDC encrypts the updated 𝑇𝐸𝐾)4&5 using the 
corresponding MT of UG and encrypts the results with the 
master key of SKDC. Consequently, the message is broadcasted 
to all corresponding users. Notice that only users with a valid 
ST can decrypt the new 𝑇𝐸𝐾)4&5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose a user U3 leaves the group UG1, as shown in Fig.5. 

Thus, she/he unsubscribes from DG1, DG2, and DG4, which 
leads to losing the access privilege to those DGs. Since the data 
of DG1, DG2, and DG4 should not be visible to this user 
anymore, TEK1, TEK2, TEK4 should be updated to meet the 
requirements of the forward secrecy [5].  

First, SKDC updates MT1’’ of the UG1, while all users of 
this left group still get access to their previous STs. Then, KDC 
broadcasts the newly generated TEKs via encrypted message 
(TEKi, DKj’|update methods, i=1,2,4)MK to SKDCs. After, 
SKDC transmits TEK1’, TEK2’, TEK4’ via an encrypted 
message with MT1’’ securely to UG, based on the user group 
identity. The remaining users decrypt, with their STs, the 
message to handle the updated information. Finally, devices in 
groups DG1, DG2, and DG4 get the new TEKs keys encrypted 
with KEK and GK, sent in multicast by the KDC, to prevent a 
leaving user from obtaining additional data. The steps are 
defined in the LeKeyDistribute algorithm. 

Algorithm 4 JoKeyDistribute 
Inputs: TEKs, DKs, MT  
Output: new and updated keys ST, Ui, MT’, TEKs’, DKs’ 
1: SKDC 

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯� User i: establish a shared secret key with user i Ui 

2: SKDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� All: Notify KDC, old users of the joined group 

and other user groups which subscribed to the same DG to update 
TEK’=h(TEK). 
3: KDC 

𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯�Devices: update their key DK’=h(DK) 

4: SKDC: update MT of this group joined  
5: SKDC 

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯� User: [STi, DKs, TEK]UKi  

 

Algorithm 6 LeKeyDistribute  
Inputs: TEKs, DKs, MT  
Output: new generated keys MT’, TEKs’, DKs’ 
1: SKDC updates MT of the group UG has been left 
2: SKDC  

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯�KDC: notify that UG has been left 

3: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� SKDCs: (TEK’| DK’)MK 

4: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� Devices: (TEK’)GK 

5: SKDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� user groups UG: ((TEK’)MT)MK  

 

         
Fig.4. Structure inside UG1 when U4 joins 

                           
Fig.5. structure inside UG1 when U3 leaves 

Algorithm 5 LeKeyUpdate 
Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and system 
information(𝒆𝑴, 𝑺). 
Output: updated	𝑴𝑻3𝑲,	𝑺′𝑲and	𝒓′𝑲. 
The ith user leaves the UGK 
1:𝒇�𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲� = 𝟎  
2:𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲𝐢𝐬	𝐫𝐞𝐯𝐨𝐤𝐞𝐝	𝐟𝐫𝐨𝐦	𝑺𝑲  
3:𝑺′𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	} ∖ $𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲2	  
4:𝒓′𝑲 = 𝒓𝑲 − 𝟏;  
5:𝐞′𝒊 = 𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲 = 	𝟒 × 𝑹𝒂𝒏𝒅𝒐𝒎+ 𝟏	;   
6:𝒆𝑴𝑲 =	(𝑴𝑻𝑲 − 	𝑻);  
7:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 	− 𝒆𝒊

{𝒍𝒆𝒂𝒗𝒆}𝑲	𝐌[𝐢]	𝑵[𝒊]	;  
8:𝐞′𝑴 = 𝐞𝑴 	− 𝐞𝒊	𝐌[𝐢]	𝑵[𝒊] + 𝐞3𝒊	𝐌[𝐢]	𝑵[𝒊];  
9:𝑴𝑻′𝑲 =	�𝒆′𝑴𝑲 + 	𝑻�;  
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e. IoT device membership changes (join/leave) 
In order to describe the update key process of DLGKM-AC 

during IoT device join/leave events, we consider the case of the 
device group DG1, which publishes data to the user groups 
UG1, UG3, UG4, UG6 based on their group identity.  

i. When an IoT device joins a group: 
Consider the update procedure of an IoT device Djoin joining a 
DG. Therefore, the KDC runs the DeJoKeUpdate algorithm. 
First, KDC shares a secret key with Djoin that joins the device 
group DGy. Then, KDC updates the necessary part of the LKH 
tree in which the device resides, multicasts to the existing 
devices a notification to upgrade the group key GK. Finally, 
KDC sends to Djoin the PKt and TEK of the DGy through unicast. 
Suppose a new device D4 joining the system. D4 is assigned to 
the device group DG1 as shown in Fig.6.  

KDC notifies devices of DG1 to update GK’1=h(GK1) and 
creates a shared secret key D4 with device 4 to send necessary 
information TEK’1, GK’1, KEK2 encrypted with the secret key 
of D4 through a unicast communication. Finally, KDC sends 
KEK2 to D3. The protocol steps are defined in the 
DeJoKeUpdate Algorithm. 

ii. When an IoT device leaves a group: 
When a device Dleave leaves a DG, the KDC rearranges the 

LKH tree structure in the group and runs the DeLeKeUpdate 
algorithm. Thus, KDC multicasts an updated group key GK’ to 
the remaining devices encrypted with KEKs, which defines the 
LKH tree of the leaved DG. Then, KDC broadcasts a message 
to announce that Dleave is no longer a valid device. 

As shown in Fig.6, when device D2 leaves the group DG1, 
KDC makes a new device group key (GK’1|update method) and 
multicasts it to D1 and D3. The protocol steps are defined in the 
DeLeKeUpdate Algorithm.  

Algorithm 8 DeLeKeUpdate 
Inputs: KEKs, GK  
Output: new keys KEKs’, GK.’ 
1: KDC 

𝐛𝐫𝐨𝐚𝐝𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯�All: “leaving device j is no longer available.”  

2: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯�DG:  update GK’ and KEK’s. 

VI. SECURITY ANALYSIS  
In this section, we analyze the proposed scheme 

effectiveness in terms of forward and backward secrecy and 
resistance to the collusion attack.  
A. Forward Security 

In this section, we analyze the forward security property of 
the proposed protocol. 

Theorem 1: The proposed group key management scheme 
between SKDC and users provides forward security against an 
adversary. In other words, the revoked user cannot get access 
to the ongoing communication. 

Proof: Consider the case that the key pair <𝑒)	, 𝑑)= should be 
revoked when user Uj leaves the group UGK. The SKDC 
updates 𝑒$	and	𝑒$#. Thus, the master key of UGK satisfies (1) 
and (2): 

𝑃&!#
$
	≡ 	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%)	                       (1) 

	𝐶'!#
$
	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%);	∀	𝑖	𝜖	[1, 𝑟3], 𝑖 ≠ 𝑗     (2) 

At the data source, the plaintext P is encrypted 
as	𝑃J$%

&
		𝑚𝑜𝑑	(∏ ∅(𝑝K𝑞K)L

KM!N% ) = 𝐶∗. After receiving the new 
ciphertext	𝐶∗, each user in the group can decrypt it with its 
individual private key	𝐶∗P' 	𝑚𝑜𝑑	(𝑝K𝑞K) = 𝑃	, ∀	𝑖 ≠ 𝑗. Although 
the left user from UGK knows the old keys	�𝑒!	, 𝑑!�, he/she 
cannot obtain the correct plaintext from the ciphertext 
𝐶∗through the old keys	𝐶∗P( 	𝑚𝑜𝑑	(𝑝!𝑞!) = 𝑃∗ ≠ 𝑃. 

Theorem 2: The proposed group key management scheme 
between KDC and IoT devices provides forward security 
against an adversary. In other words, the revoked IoT device 
cannot get access to the current communication. 

Proof: This theorem is analyzed through the game	𝐺!. Let 𝐴! 
be an adversary by colluding with the left IoT device Dj in the 
device group DGK. It is worth that	𝐴!obtains all information 
stored in left IoT device <𝐷𝐾) , 𝐺𝐾3 , 𝑇𝐸𝐾,𝐾𝐸𝐾𝑠= and wants to 
derive the current group key, 𝐺𝐾38 . After the IoT device is 
revoked, KDC is responsible for updating the LKH tree of DGk, 
likewise updating the path key from the revoked leaf node to 
the root node {𝐾𝐸𝐾% 	𝜖	𝑃𝐾9	𝑜𝑓	𝐷)} which are used to encrypt 
and broadcast the	𝐺𝐾38  to the remaining devices. Thus,	𝐴! 
cannot decrypt the keying message and get	𝐺𝐾38 . Therefore, our 
protocol provides forward secrecy in DG. 
B. Backward Security  

In this section, we analyze the backward security property of 
the proposed protocol. 

Theorem 3: The proposed group key management scheme 
between SKDC and users provides backward security against 
an adversary. In other words, the newly joined user cannot get 
access to previous communications. 
Proof: Suppose a new user Uj joining a group UGK with the key 
pair <𝑒)	, 𝑑)=. The previous data source P is encrypted as 
𝑃&!# 	𝑚𝑜𝑑	<∏ ∅(𝑝%𝑞%)#

%:)(! = = 𝐶, and the master key of UGK 
satisfies ∀	𝑖	𝜖	[1, 𝑟3]	𝑎𝑛𝑑	𝑖 ≠ 𝑗: 
 𝑃&!# ≡	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%), 𝐶'!# 	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%);	 

The SKDC updates 𝑒$	and	𝑒$# such that the master key of 
UGK satisfies ∀	𝑖	𝜖	[1, 𝑟3]	𝑎𝑛𝑑	𝑖 = 𝑗: 

𝑃&!#
$

≡	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%), 𝐶
'!#
$
	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%);	 

Thus, the user joining the group UGK with the pairs 
keys	<𝑒)	, 𝑑)=, cannot obtain the correct previous plaintext from 

Algorithm 7 DeJoKeUpdate 
Inputs: KEKs, GK  
Output: new and updated keys DK, Dj, KEKs’, GK’ 
1: KDC → device Dj: establish a shared secret key with the new 
device (Dj) 

2: KDC 
𝐦𝐮𝐥𝐭𝐢𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯⎯�old devices in DG: update group key GK’= 

h(GK) 
3: KDC 

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯�devices: update KEK’ encrypted either by secret 

keys or shared KEK 
 

     
Fig.6. Examples of structure updates for device join/leave. 
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the ciphertext 𝐶 through the new keys because 
	𝐶'% 	𝑚𝑜𝑑	(𝑝)𝑞)) = 𝑃∗ ≠ 𝑃. 

Theorem 4: The proposed group key management scheme 
between KDC and IoT device provides backward security 
against an adversary. In other words, the joined IoT device 
cannot get access to the previous communication. 

Proof: Suppose a new IoT device Dj joins the device group 
DGK and has <𝐷𝐾) , 𝐺𝐾3 , 𝑇𝐸𝐾,𝐾𝐸𝐾𝑠= new keys. Thus, the 
group key GK cannot be derived by Dj. Meanwhile, knowing 
the secret key and the new	𝐺𝐾38 , the newly joined device cannot 
learn anything about the previous group keys.  

C. Resistance to Collusion Attack  
In this section, we analyze the resistance to the collusion 

attack using the Random Oracle Model (ROM) standard [25]. 
Theorem 5: The proposed GKM is collusion resistance 

secure.  
Proof: Let 𝐺;<be the adversarial game for collusion resistance. 
This game is played between two adversaries; one acts as the 
challenger 𝐶;< who interacts with the adversary 𝐴;< trying to 
win 𝐶;<. It is worth noting that 𝐶;< has the ability to simulate 
all the oracles	𝑂)=%4, 𝑂>&?@&, 𝑂;%AB&<9C&9and 𝑂'&;<DA9 functions 
and output signed messages as a real signer. 𝐺;<	consists of the 
following phases:  
Setup: 𝐶;<runs the MTokenGen algorithm for a random choice 
of ID by 𝐴;<. Rekeying operation is simulated after that, and the 
timeline is started (t=0).  
Queries: It is allowed to query the oracle	𝑂)=%4, 𝑂>&?@&, 
𝑂;%AB&<9C&9 and 𝑂'&;<DA9 to control group dynamicity.  
Challenge: 𝐴;<	issues one challenge query to 𝐶;< at time 
𝑡;B?>>&4E& (which is the choice of the 𝐴;<). Before responding 
to the challenge, 𝐶;< retrieves the set challenge Schallenge from 
the list Ls, and forms the list of leaving members Lg, for all ID	
∉ Schallenge. Then, for each identity ID	∉ Schallenge,	𝐶;<issues the 
query 𝑂&C9<?;9(ID) to obtain SID. Besides, 𝐶;<encrypts (TEK, 
ST, Schallenge) to get (Ai,b’, TEK’), where Ai,b’ defines the 
authorized receivers of TEK challenged with 𝐶;<. After, 𝐶;< 
chooses a bit b ∈ {0, 1} at random and sets Kb to TEK’ and Kb-

1 to a random TEK from the key space. Finally, it challenges 
with (Ai,b’, K0, K1).  
Guess: 𝐴;<outputs a bit b’ ∈ {0,1} as its guess. 𝐶;<passes on b’ 
as its guess to 𝐴;<.  
The adversary advantage in winning the game is defined as 
𝐴𝑑𝑣03$;< = r𝑝𝑟[𝑏8 = 𝑏] − !

"
r; hence, we can see that the 

advantage that 𝐴;< breaks the collision resistance of GKM is 
the same that 𝐶;<breaks chosen-ciphertext attack (CCA), 
meanwhile, breaks the encrypted messages (Ex. AES). Thus, if 
there exists no adversary who can break CCA security with 
non-negligible advantage, then there cannot be any adversary 
𝐴;<, who can break the collision resistance of GKM with non-
negligible probability.  

VII. PERFORMANCE ANALYSIS AND EVALUATION  
In this section, we analyze the performance of the proposed 

scheme in terms of storage overhead, computation overhead, 
and communication overhead. Then, we compare the results 
with existing methods. We also discuss the time complexity to 
renew the master token and revoke the slave token that we 
proposed for the communication with users in the same group. 

A. Performance Analysis  
This subsection presents the performance analysis of 

DLGKM-AC. In order to guarantee generality, we assume that 
IoT devices are equally distributed in each device group, and 
the LKH structures are all balanced binary trees.  
a. Storage overhead  

Storage overhead can be considered as the memory 
capacity required to maintain the keys. In this section, the 
storage overhead is formulated, both at each user in UGx and 
each device in DGy. A user belonging to UGx has a slave token 
ST, which is an asymmetric key AK, and as many symmetric 
keys (SK) TEKs as the number of DGs for which UGx is 
subscribed. Moreover, it has his secret key shared with SKDC. 
We can calculate the storage of keys for each user in UGx as 
follow using Eq (5): 

𝑆𝑂Q∈QS) = 𝐴𝐾 + �∑ 𝐴K,#T
KN% + 1�𝑆𝐾                     (5) 

The analysis of a single d-degree key tree accommodating n 
member requires the tree depth denoted by 𝑓'(𝑛). It is known 
that 𝑓'(𝑛) is either L0 or L0 +1, where 𝐿F = 𝑙𝑜𝑔'(𝑛). The 
authors of [11] made useful inequality (6) in order to analyze 
the storage overhead for key trees:  

𝐸[𝑓'(𝑛)] ≤ 	𝐸[𝑙𝑜𝑔'(𝑛)] + 1 ≤ 𝑙𝑜𝑔'𝐸[𝑛] + 1,								 (6) 
where the expectation, E[.], is taken over the distribution of n 
devices and the length of the branches on the key trees. 

A device belonging to DGy, containing n devices, has a traffic 
key TEK, a group device key GK, and as many symmetric keys, 
including the KEKs and the individual key, as the length of the 
branch. As we consider that devices are distributed in binary 
trees, we can calculate the number of keys for each device in 
DGy using the following Eq (7): 

𝑆𝑂G∈G0& = (log" 𝑛 + 3) × 𝑆𝐾		              (7) 

b. Computation overhead 
The computational overhead can be measured as the total 

time consumption for encryption and decryption cost and 
processing requirement. This action takes place on the server, 
user as well as on the device sides, after each member (user/ 
IoT device) joining or leaving actions. We explain the different 
computation costs as follows:   

i. When a user joins a subgroup x UGx: 
The SKDC assigns a slave token to Ujoin and updates the 

master token of UGx and its master key. The new user needs 
one symmetric decryption to gain the slave token ST, new TEK, 
and all DKs of the devices in the device groups to which they 
are subscribed. An existing user needs to do one hash function 
to update TEK. Finally, the devices need to perform one hash 
function to update their TEK and another hash function to 
derive their new device keys DK.  

ii. When a user leaves a subgroup x UGx: 
The SKDC needs to update the master token of UGx and its 

master key in order to send TEK securely to users. The 
remaining user groups need to perform one asymmetric 
decryption and one symmetric decryption to gain the update 
information. Devices to which user groups are subscribed, need 
to do one symmetric decryption to obtain the update 
information TEK and DK.  
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iii. When a device joins a device group y DGy: 
The old devices of the left device group require to do one 

hash function to update the device group key GKy. Since the 
GKM scheme of a group device based on LKH, the structure 
will change, and some devices need to decrypt O(log(n)) KEK 
update messages. While the new device needs only to decrypt 
one message sent from KDC to obtain KEKs. Users subscribed 
to the group joined by the new device require to decrypt the 
message sent by KDC to gain the new device key.  

iv. When a device leaves a device group: 
The remaining devices execute one symmetric decryption 

to gain the new group key. While users subscribed to the leaving 
groups, they do not need to perform extra computation. 
c. Communication overhead 

This subsection evaluates the communication overhead of 
the new DLGKM-AC for the IoT environment, as shown in 
Table IV: 

TABLE. IV: COMMUNICATION OVERHEAD 

B. Performance Evaluation 
In this section, we present experimental results for the DLGKM-
AC scheme developed on MATLAB. We evaluate DLGKM-
AC performances in terms of storage, computation, and 
communication overheads caused by rekeying. The rekeying 
transmission overhead corresponds to the additional signaling 
load after each join/leave event. We compare the new proposed 
DLGKM-AC scheme with two other key management 
solutions designed for access control between subscribers and 
publisher; a centralized scheme that support groups of 
publishers( GroupIT[13]) and a decentralized scheme does not 
support groups of publishers (SMGKM [17]). 

 
a. Storage overhead  

The storage overhead is formulated at both sides, user, and 
IoT devices. To achieve a comparable security strength, we 
assume the symmetric encryption/decryption key length to 
AES-256 bits, the ECC-512 decryption key length to 512 bits. 
To calculate the storage overhead at the user, we consider two 
cases: case (1), where we vary the number of publishers DGs to 
which users are subscribed while fixing 20 users per UG, and 
case (2) where we change the number of users in each UG and 
consider the number of DGs settled to 4 and the number of 
devices fixed to 20 per DG.  

Case (1): Through Fig.7, we notice that, unlike existing 
solutions such as GroupIT [13] and SMGKM [17], our scheme 
is less affected by the increase of DGs number to which users 
are subscribed. This can be explained by the fact that our 
scheme uses a decentralized architecture and divides IoT 

devices into groups which can alleviate the storage overhead 
compared to [13] and [17]. 

Case (2): Fig.8 shows that, in [13] [17] schemes, when the 
number of users increases, the storage on users increases too. 
Thus, the larger the number of users in each UG, the more these 
schemes incur users’ storage overhead. In our scheme, the users 
are not affected by the number of users in their UG. This is 
explained by the use of the proposed MTE-based scheme for 
grouping users, which is not sensitive to the number of users in 
each UG. Hence, this can reduce the storage overhead per-user 
more efficiently. 

 
Fig.7: Users’ storage overhead while varying the number of devices 

 
Fig. 8: Users’ storage overhead while varying the number of users  

The storage on devices is not affected neither by the number 
of users nor by the number of devices in other different DGs 
because devices are considered just as data publishers. We can 
notice that devices are only affected by the number of devices 
of their group. Fig.9 shows that [13] and our scheme have 
mainly the same storage. Otherwise, [17] does not hold the 
notion of grouping the devices (publishers). Thus, storage on 
devices (publisher) is not affected by the number of devices in 
the same group. 

  
Fig.9: Devices storage overhead 

Events Communication cost  

User leave’s 
event 

SKDC broadcasts the new TEK and DK to 
subgroups 
KDC sends log(n) messages to devices 

User join’s 
event 

SKDC unicasts a message to the new user  
SKDC notifies all users to update TEK 

Device join’s KDC unicasts a message to the new device 
KDC broadcasts the subscribers with the new DK  

Device 
leave’s event 

KDC notifies the subscribers that the leaving 
device is no longer available. 
KDC multicasts log(n) messages for the 
remaining devices to update group key.  
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b. Computation overhead 
To evaluate the computation overhead, we simulate the 

cryptographic operations with Miracle Library. It is a 
cryptographic library designed for use in constrained 
environments in terms of computational power [26]. All 
simulations are implemented on a computer with the following 
features: an Intel i5-4200 CPU@ 2.5 GH with a physical 
memory of 8 GB; and Ubuntu 12.04 OS over VMware 
workstation 15. We provide the time cost for different 
cryptographic operations. As a result, we define Th = 2,445µs 
be the time for one hashing operation using SHA-256 function 
on a 64-byte block. Then, TEnc=TDec=2,7µs be respectively the 
time for one encryption/decryption operation using symmetric 
cryptography AES-256 encryption on a 64-bytes, and 
TECC=365,63µs represents the time for one elliptic curve 
cryptographic operation.  

Since our protocol is designed for a dynamic IoT 
environment, the computational cost is measured based on 
leave and join operations of both users and devices. In the 
practical scenario, users frequently join or leave (subscribe or 
unsubscribe) UG. Hence, we focus on user leave/join events in 
the following subsection:  

i. Computation overhead when a user leaves a UG:  
Assume a user U of UGK leaves UGK. Thus, it is not allowed 

to obtain the rekeying message. Therefore, this operation is 
triggered by the server and transmitted to users and devices to 
ensure forward secrecy. We compare the computation cost as 
follows:  
- Computation cost on the remaining users’ side: We consider 
two cases. In the first case, we vary the number of publishers 
DGs to which users are subscribed while fixing 20 users per 
UG. Fig.10 shows that our scheme is less affected by the 
number of DGs to which users are subscribed than solutions 
developed in [13] [17]. The result explains that a decentralized 
architecture reduces the computation overhead resulting after a 
leave event. Otherwise, using SKDCs offload the computation 
overhead of updating keys in such an IoT environment. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.10: Remaining user computation overhead varying devices’ number (leave) 

In the second case, we modify the number of users in each 
UG and consider the number of DGs fixed to 4 and the number 
of devices fixed to 20 per DG. Fig.11 shows that, unlike our 
scheme, more the number of users in each UG is large, more the 
computation overhead is high in [13] [17] schemes. The 
proposed MTE algorithm for managing communication within 
user groups is one reason that explains why our proposed 
system has low computational cost while having a high number 
of users in UG. 

 
Fig. 11: Remaining user computation overhead varying users’ number (leave) 

- Computation on the server-side: The group key updating time 
of SKDC was considered to prove the efficiency of our group 
key updating scheme based on CRT. Fig.12 shows that, 
compared to traditional MKE, our solution consumes less time 
for the key updating when a user is revoked.  

 
Fig.12: Server time update on the leaving event 

ii. Computation overhead when a user joins a UG: 
Assume a user U joining UGK. U should not be allowed to 

access previous communications. Thus, the rekeying operation 
is triggered. Hence, we compare the updating overhead when a 
user joins a group as follows:  
- Computation cost on old users’ side: We also consider two 
cases. In the first case, we vary the number of publishers DGs 
to which users of UG are subscribed while fixing 20 users per 
UG. Fig.13 presents a comparison of the computation cost for 
old users of the joining user group UG. We note that our scheme 
is less affected by the number of DGs to which users are 
subscribed, than [13] [17] schemes. This outcome is explained 
by using subgroup controllers SKDCs to manage the update of 
keys and thus reducing computation for end-users.  

 
Fig.13: Old user computation overhead varying the devices’ number (join) 
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In the second case, we vary the number of users in each UG and 
consider 4 DGs and 20 devices per DG. Fig.14 depicts the 
comparison of the update overhead when varying the number 
of users per group. We notice that our scheme is not affected by 
the number of users in the group as key management for user 
groups is based on MTE. 

- Computation cost on new users’ side: Fig.15 presents the 
update overhead on a new user who joins a user group. Our 
scheme and [17] present a negligible computation overhead 
compared to [13]. In fact, the new user needs only to decrypt 
received messages to get information. While in [13], a new user 
needs to compute the device keys to which he/she is subscribed.  

- Computation cost on the server side: Fig.16 shows the average 
time to update keys when there is a user joining operation. More 
specifically, the time needed to execute the JoKeyUpdate 
algorithm when varying the number of users per group. Unlike 
the traditional MKE, the execution time of our scheme 
increases slowly with the increase of the number of users per 
group.  

 
Fig.16: Server time update on the joining event 

 
 

iii. Computation overhead when a device joins/leaves a DG 
In this subsection, we compare the overhead update triggered 

by device join and leave operations as follows: 
- The computation cost when a device joins DG: Fig.17 depicts 
the update overhead when a device joins a device group. The 
overhead is measured on both the existing devices and the new 
device sides. We notice that the computation cost of the new 
device in our scheme is less than GroupIT. In contrast, the 
existing devices in DG present the same cost to get the updated 
keys. However, the cost in SMGKM is fixed as they do not consider 
grouping devices.  

 
Fig.17: Computation overhead: device join 

- The computation cost when a device leaves DG: Fig.18 
depicts the update overhead when a device leaves a DG. The 
cost is measured on both the remaining devices of the group and 
the users subscribed to the DG. In our scheme, the users' 
computation cost is not affected by the operation of the leaving 
device, while, in [17], it increases with the increase in the 
number of devices. The advantage of grouping devices explains 
this result. Moreover, remaining devices in our scheme have 
less computation cost compared to [13] because using a 
decentralized scheme reduces the reload on KDC, and thus, 
KDC reduces the reload on devices.  

 
Fig.18: Computation overhead: device leave 

c. Communication overhead  
To evaluate the communication overhead of the new proposed 
DLGKM-AC for the IoT environment, we analyze the number 
of updating keys messages transmitted when a user leaves a 
UG. Fig.19 shows that [17] scheme causes many rekeying 
messages when a user leaves a user group, and the number of 
devices is high. Therefore, [13] incurs much less 
communication overhead than [17] but still causes little more 
communication overhead compared to our scheme, which is 
explained by using device groups and introducing MKE for 
grouping users. 

 
Fig.14: Old user computation overhead varying the users’ number (join) 

 

 
Fig.15: New user computation overhead varying devices  
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 Fig. 19: Communication overhead: the leave event 

VIII. CONCLUSION  
A novel decentralized lightweight group key management 

for access control in a dynamic IoT environment named 
DLGKM-AC has been introduced in this paper. A hierarchical 
architecture is adopted using one KDC, for managing group 
keys and broadcasting update messages, and several SKDCs, 
for handling direct communication links between devices and 
users. Besides, a new master token encryption algorithm has 
been introduced in order to ensure members’ independence in 
highly dynamic group communication. In DLGKM-AC, 
mobility is smoothly handled as we provide the backward and 
the forward secrecy with fewer rekeying operations. 
Furthermore, our protocol mitigates the 1-affects-n issue. 
Indeed, users can always get access to data even if one SKDC 
is affected. Extensive security analysis covering a wide range 
of desired security properties has also been provided. 
Additionally, performance analyses shows that our proposed 
scheme offers better performances by reducing storage, 
communication, and computation overheads. Finally, adopting 
a decentralized architecture increases scalability and reduces 
overhead for resource-constrained devices. As future work, to 
put it into practice via a proof-of-concept, we are already 
planning to deploy our architecture in a real-world setting, in 
the context of the European project PARFAIT [28], by 
constructing a physical network comprising a set of IoT devices 
and smartphones as users.  
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ACRONYM TABLE 
Acronyms Descriptions 
AES 
ABE 
CCA 
CRT 
DeJoKeUpdate 
DeLeKeUpdat 
DG 
DK  
DLGKM-AC 
 
ECC 
GCRT 
GK 
GKM 
IoT 
JoKeyUpdate 
JoKeyDistribute 

Asymmetric Encryption Standard  
Attribute-Based Encryption 
Chosen-Ciphertext Attack 
Chinese Remainder Theorem 
Device Join Key Update 
Device Leave Key Update 
Device Group  
Device Key 
Decentralized Lightweight Group Key Management 
for Access Control 
Elliptic Curve Cryptographic 
Group Chinese Remainder Theorem 
Group Key  
Group Key Management  
Internet of Thing   
Join Key Update  
Join Key Distribute  

KDC 
KEK 
LeKeUpdate 
LeKeDistribute 
LKH 
MKE 
MkeyGen 
MT 
MTE 
MTokenGen 
MQTT 
OFT 
PKt  
ROM 
SHA  
SKDC 
ST 
TEK 
UG  
WBAN 
WSN 

Key Distribution Center 
Key Encryption Keys  
Leave Key Update  
Leave Key Distribute 
Logical Key Hierarchy 
Master Key Encryption 
Master Key Generation 
Master Token 
Master Token Encryption 
Master Token Generation 
Message Queuing Telemetry Transport 
One-way Function Tree 
Path key 
Random Oracle Model  
Secure Hash Algorithm  
Sub-Key Distribution Center 
Slave Token 
Traffic Encryption Key 
User Group  
Wireless Body Area Network 
Wireless Sensor Network 
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