
HAL Id: hal-02965346
https://hal.science/hal-02965346

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Decentralized Lightweight Group Key Management for
Dynamic Access Control in IoT Environments

Maissa Dammak, Sidi-Mohammed Senouci, Mohamed Ayoub Messous,
Mohamed Houcine Elhdhili, Christophe Gransart

To cite this version:
Maissa Dammak, Sidi-Mohammed Senouci, Mohamed Ayoub Messous, Mohamed Houcine Elhdhili,
Christophe Gransart. Decentralized Lightweight Group Key Management for Dynamic Access Control
in IoT Environments. IEEE Transactions on Network and Service Management, 2020, 17 (3), pp.1742-
1757. �10.1109/TNSM.2020.3002957�. �hal-02965346�

https://hal.science/hal-02965346
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

 1

1
Abstract — Rapid growth of Internet of Things (IoT) devices

dealing with sensitive data has led to the emergence of new access
control technologies in order to maintain this data safe from
unauthorized use. In particular, a dynamic IoT environment,
characterized by a high signaling overhead caused by subscribers’
mobility, presents a significant concern to ensure secure data
distribution to legitimate subscribers. Hence, for such dynamic
environments, group key management (GKM) represents the
fundamental mechanism for managing the dissemination of keys
for access control and secure data distribution. However, existing
access control schemes based on GKM and dedicated to IoT are
mainly based on centralized models, which fail to address the
scalability challenge introduced by the massive scale of IoT devices
and the increased number of subscribers. Besides, none of the
existing GKM schemes supports the independence of the members
in the same group. They focus only on dependent symmetric group
keys per subgroup communication, which is inefficient for
subscribers with a highly dynamic behavior. To deal with these
challenges, we introduce a novel Decentralized Lightweight Group
Key Management architecture for Access Control in the IoT
environment (DLGKM-AC). Based on a hierarchical architecture,
composed of one Key Distribution Center (KDC) and several Sub
Key Distribution Centers (SKDCs), the proposed scheme enhances
the management of subscribers’ groups and alleviate the rekeying
overhead on the KDC. Moreover, a new master token
management protocol for managing keys dissemination across a
group of subscribers is introduced. This protocol reduces storage,
computation, and communication overheads during join/leave
events. The proposed approach accommodates a scalable IoT
architecture, which mitigates the single point of failure by
reducing the load caused by rekeying at the core network.
DLGKM-AC guarantees secure group communication by
preventing collusion attacks and ensuring backward/forward
secrecy. Simulation results and analysis of the proposed scheme
show considerable resource gain in terms of storage, computation,
and communication overheads.

Index Terms—IoT, Group Key Management, Access Control,
Scalability, Dynamic environment, Security, Group
communication.

I. INTRODUCTION

IoT has been introduced as a universal and ubiquitous
paradigm that connects transparently and seamlessly a

1M. Dammak, S. M. Senouci and M. A. Messous are with the DRIVE

Laboratory, University of Burgundy, Nevers, France (e-mail:
{maissa.dammak;sidi-mohammed.senouci;ayoub.messous}@u-bourgogne.fr).

2M.H. Elhdhili is with the CRISTAL Laboratory, ENSI, Manouba
University, Manouba 2010, Tunisia (e-mail: mohamedhoucine.elhdhili@ensi-
uma.tn)

multitude of digital devices to the Internet [1]. Recently, IoT
devices are progressively becoming a large part of people’s
daily lives. They are widely used in various kinds of
applications, such as environmental sensing and industrial
monitoring (e.g., smart city, smart hotel, smart office, industry
4.0) [1]. A generic IoT network architecture, as shown in Fig.1,
is composed of a set of physical objects (i.e., smart things) that
are interconnected to exchange and collect data over the
Internet. [2] has predicted that, by 2025, more than 41.6 billion
connected IoT devices will be used worldwide. These smart
things form a diverse and heterogeneous network of
interconnected physical objects with a wide range of
functionalities and requirements; one essential feature being
data collection. The vast majority of IoT devices have minimal
resources, in terms of computation, communication, and
storage, preventing them from efficiently performing
cryptographic operations, thus rising more security challenges.
Indeed, large scale IoT deployments still face serious security
issues that still need to be addressed, such as authentication,
privacy preservation, and data integrity [3][4].

In order to safeguard IoT data from tampering and
unauthorized access, an appropriate scheme for access control
is more crucial than ever. To ensure this, GKM is one promising
approach, which would be used to provide access control to data
streams for legitimate users only [4]. In other words, it consists
of creating a group key that will be shared between a device’s
group and its current subscribers, such that the device can
encrypt its data, and only the subscribers can decrypt it. This
mechanism is suitable for IoT environments as it does not
require a trusted third entity. This can be achieved through a
publish-subscribe messaging model, such as MQTT [5].

Given the dynamic nature of IoT environments, where
member’s group can intermittently join and leave the system
(e.g., reservation IoT systems), safeguarding IoT data from
unauthorized access represents a primordial security issue.
Therefore, enforcing access control is reduced to solving the
GKM problem. Moreover, in order to guarantee backward and
forward secrecy, the shared keys need to be changed whenever
a new member joins or an existing one leaves its group [6]. To
efficiently reduce the overhead keys management, resulting
mainly from rekeying, GKM is extensively studied in the

3C. Gransart is with IFSTTAR/COSYS/LEOST laboratory, Villeneuve
d’Ascq, France (e-mail: christophe.gransart@ifsttar.fr).

Decentralized Lightweight Group Key
Management for Dynamic Access Control in

IoT Environments
Maissa Dammak1, Sidi Mohammed Senouci1, Mohamed Ayoub Messous1, Mohamed Houcine Elhdhili2,

Christophe Gransart3

 2

literature [12]. Most of the existing GKM schemes are not
suitable for IoT applications. Indeed, existing GKM for IoT
applications are designed to manage communication within a
single group, and the GKM schemes introduced for access
control in the IoT environment are mostly based on a
centralized access management architecture. Consequently,
they are not suitable for a scalable and dynamic IoT
environment comprising multiple groups. In fact, many users
can subscribe to numerous services offered by different IoT
devices and change their interest frequently over time. Thus,
maintaining an efficient GKM in a dynamic IoT environment
remains a challenging issue due to the rekeying process that
affects all members in the same group for joining/leaving
events. Therefore, all members should update their shared
group access keys. Hence, an efficient group key mechanism
should be introduced to reduce the rekeying dependence of
members in the same group, and thus reducing overhead.

To solve the rekeying dependence, minimize resulting
overhead and achieve scalable access management for dynamic
IoT environment, this work introduces a new Decentralized
Lightweight Group Key Management Architecture for Access
Control named DLGKM-AC. We consider in our use-case, in
the context of the European project PARFAIT [28], an
extensive reservation system for franchise hotels. In this
scenario, key cards and smartphones might be interchangeably
used to give access permissions for guests in different rooms.
They can also be used to control the usage of various facilities
according to room classes’ and purchased services. When a
guest checks out, and the room becomes vacant, the devices
should stop sending the room’s information and receiving
information from other devices.

The main idea of DLGKM-AC is to create an efficient and
flexible mechanism to secure distribution of contents to
eligible subscribers. A hierarchical scheme comprising a
central Key Distribution Center (KDC) and several Sub Key
Distribution Centers (SKDCs) to manage groups of
subscribers and to mitigate the single point of failure issue is
introduced. Key management tasks in DLGKM-AC are
offloaded to several SKDCs, which allow enhancing the
system’s performances in terms of computation and
communication by reducing the overhead caused by
membership changes (join/leave). The KDC manages device
groups, while each SKDC manages user groups, which
provides scalability for our DLGKM-AC. Furthermore,
DLGKM-AC introduces a new key management mechanism
that allows reducing the rekeying dependence of users in the
same group. DLGKM-AC is a scalable and flexible access
management protocol that is based on the GKM mechanism.

It improves the computation capability, the storage capacity,
and the communication overhead. The main contributions and
novelties of this paper are summarized as follows:
- Presenting a new lightweight decentralized keys

distribution architecture to ensure forwarding valuable and
sensitive information to legitimate users in a scalable and
secure manner,

- Designing a rekeying mechanism suitable for multiple
groups of IoT devices and various users’ groups whenever
memberships change, which ensures a flexible access
management system,

- Presenting a master token management algorithm that
creates and updates a master token and multiple slave
tokens for handling user groups, which achieves the
independence of user during the rekeying process,

- Ensuring security requirements, backward and forward
secrecy even with changes in users and devices
membership, and resisting to the collusion attack,

- Minimizing computational and storage overheads for users
and IoT devices, and also communication overhead for the
overall system, which is proved through extensive
analytical study and simulation work.

The remainder of this paper is structured as follows: First,
related work is described in Section II. Then, we discuss the
necessary background related to our scheme in Section III
before presenting the overall system architecture, attacker
model and different system requirements in Section IV. The
proposed DLGKM-AC for IoT is introduced in Section V.
Security and performance analysis in terms of storage,
communication and computation overheads are summarized in
Section VI. Finally, conclusions and future works are given in
Section VII.

II. RELATED WORK
The dynamic nature of group communications makes

safeguarding data from unauthorized access a significant
challenge. The larger problem of access control is reduced to
GKM, where a group key is shared by the group members to
define the access permissions. Table I summarizes and
classifies existing GKM solutions based on different attributes
and criteria as follow: (i) Environment of its application, such
as wired Internet [6], wireless sensor networks (WSN)
[7][9][11], ad hoc networks [8], wireless body area networks
(WBAN) [10] and IoT environment [13][14]. (ii) Network
model that could be centralized, decentralized or distributed.
(iii)the used Cryptography types, and essential security services
(iv) backward secrecy and (v) forward secrecy, where shared
keys need to be updated whenever a new member joins, or an
existing one leaves its group. (vi) Key independence to ensure
the independence of keys from each other. (vii) Vulnerability to
collusion attack (collaboration of adversaries to compromise a
communication) for which rekeying is important to maintain
security. However, this process may cause a lot of key
management overhead and leads to (viii) Single point of failure,
especially in a (ix) Scalable environment that supports (x)
Multiple group services and composed of (xi) Dynamic
publishers and dynamic subscribers. Hence, ensuring (xii)
Subscribers’ independence makes subscribers of one group
independent from the entire group in the rekeying process of the
group key after a join/leave event in the group.

Fig.1. Generic IoT Environment

 3

Authors in [12] surveyed numerous key distribution schemes
over wireless networks and classified them into centralized,
decentralized, and distributed schemes. Centralized schemes
use only one server known as the key distribution server (KDC)
for creating and distributing encryption keys. Distributed
schemes do not have a specific KDC; they rather generate group
key either in a collaborative manner between the group
members or by one member. Moreover, each member must
keep track of the other members to make robust
communication. Besides, membership change events
(join/leave) cause a high processing and communication
overheads [25], which may lead to a congestion problem in a
dynamic IoT environment. In contrast, decentralized schemes
divide the system into several subgroups, thus, reducing the
load on the KDC and offering a solution to scalability issues.
Furthermore, a subgroup manager is responsible for keeping
track of the group’s members, which may reduce computation
and storage overhead on members.

The distribution of encryption keys in the different
mentioned GKM architectures is further ensured by using two
main cryptographic types (symmetric and asymmetric). Two
fundamental and efficient GKM schemes were proposed: The
Logical Key Hierarchy (LKH) [15] and the One-way Function
Tree (OFT) [16] based on symmetric keys (traffic key and
encryption key) to distribute the updated encryption keys. In
contrast to LKH, all the OFT implementations suffer from
collusion attacks and increase devices’ computational overhead
for obtaining group keys. Hence, OFT is far from ideal in an
IoT environment, where the communicating devices may have
limited computational power.

Additionally, [20] [21] schemes provided fine-grained access
control Attribute-Based Encryption (ABE) to manage keys’
update. However, ABE is a cumbersome mechanism that relies
on asymmetric cryptography, which is unsuitable for running
on resource-constrained IoT devices [22]. Besides, asymmetric
encryption mechanisms are also used in key management
schemes [23] [24]. Specifically, Porambage et al. [7] proposed
a group key establishment protocol for multicast
communication by using the Elliptic Curve Cryptographic
(ECC) operations. Even though, the latter are known to be
suitable for resource-constrained devices; their protocol does
not efficiently manage the rekeying process. Furthermore, all
previous mentioned schemes are designed for single multicast
groups, but users may subscribe to multiple services. To ensure
many multicast groups, Park et al. [11] accommodate various

services’ groups. Their scheme addressed rekeying in the
wireless mobile environment, which is based on a centralized
architecture and a LKH mechanism to manage multiple
communications. Likewise, Mapoka et al. [17] proposed using
a distribution list of the session key and key update slot for each
subgroup. This list is centrally managed by a node called the
area key distributor. The proposed protocol alleviates the 1-
affect-n phenomenon and transmission overhead of the core
network, but it does not ensure the forward secrecy. Hence,
Zhong et al. [18] proposed another protocol called area based
multiple GKM that securely provides services when users
migrate to different wireless networks, which ensures forward
secrecy. Nonetheless, its high overhead, due to revocation
events, makes it unsuitable for dynamic IoT environments.

To address the rekeying issue in the IoT environment, Tsai et
al. [19] proposed a lightweight symmetric key establishment
based on the Kronecker product. However, their protocol does
not consider the key update when users or devices join or leave
the system, which lacks forward and backward secrecy.
Furthermore, Abdmeziem et al. [14] proposed a decentralized
batch-based group key that includes several subgroups
managed by key servers. This scheme considered long term and
short-term keys per group, which are common to all nodes.
Nevertheless, [14] does not ensure communication between
multiple groups and it requires large storage and computation
resources. Their work was enhanced to decrease the
communication overhead by adopting a Distributed Batch-
based Group Key [26]. It is based on polynomial cryptography
to set up the key for collaborative groups in the IoT
environment. However, these schemes are limited for managing
communications in one group and do not consider
communications between different groups and services. Kung
et al. [13] took advantage of the Chinese Remainder Theorem
(CRT) based construction proposed by Park et al. [11] to
accommodate multiple device groups. They established a two-
tier centralized system KDC, where each group (devices or
users) runs LKH to handle updates of keys efficiently.
However, communication within a user group is based on
symmetric group key, which leads to the dependence between
all its members. Therefore, after each event (triggered by a
join/leave user operation), the rekeying process induces all the
members in the entire group to update their group key, and thus,
increases the computation overhead.

In summary, and as mentioned in Table I, existing GKM
solutions do not support the independence of members in the

TABLE. I: COMPARISON OF EXISTING GKM SCHEMES
 [10] [11] [9] [20] [21] [22] [13] [17] [18] [8] [14] [25] [26]

(i)Environment WBAN WSN CC IoT WSN IPv6 IoT IoT
(ii)Network model Cent Cent Cent Cent Decent Decent Decent Distr
(iii)Cryptography type Sym , P Sym , Asym ABE Sym, Asym Sym, Asym Sym Sym Asym
(iv)Forward secrecy Yes No Yes No No Yes Yes Yes
(v)Backward secrecy Yes Yes Yes Yes Yes Yes Yes Yes
(vi)key Independence No Yes No Yes No No Yes No
(vii)Vulnerable to collusion attack No Yes Yes Yes No No Yes No
(viii)Single point of failure Yes Yes Yes Yes No No No No
(ix)Scalability No No No No High Moderate Limited Limited
(x)Support multiple group services No Yes No Yes Yes Yes No No
(xi)Support publishers’ dynamism No No No Yes No No No No
(xii)Support subscribers’ independence No No No No No No No No

NB: CC: cloud computing, cent: centralized, decent: decentralized, Sym: symmetric, asym: asymmetric, P: polynomial, ABE: Attribute Based Encryption

 4

same group, where each member needs to update its key after
every join/leave event. Specifically, they focus only on
symmetric group key per subgroup communication.
Consequently, the rekeying performance is decreased when the
number of subscribers is high and varies frequently. Moreover,
lesser attention is paid to achieve efficient and scalable GKM
for access control among a dynamic IoT environment, where
many users (subscribers) can subscribe to different IoT services
and frequently change their interest over time. Hence,
throughout this paper, we propose a flexible access
management protocol that is based on the GKM mechanism.
More specifically, to the best of our knowledge, a new
decentralized GKM to secure group communication, offers the
scalable feature in a dynamic IoT environment, alleviates the
rekeying overhead caused by the member changes, and
reduces the load on the KDC.

III. PRELIMINARIES
In this section, we briefly present the background and the

main mechanisms used in our approach. We first describe the
LKH scheme used for efficient key management of different
device groups (DGs). Then, we present the Master Key
Encryption (MKE) based Generalized Chinese Remainder
Theorem (GCRT) that is used for managing multiple user
groups (UGs) and various users.
A. Logical key Hierarchy

LKH uses a tree structure to manage the distribution of keys.
This method reduces communication costs by multicasting
multiple key-encryption keys O(logn) for n devices per group
[15]. LKH structure is composed of devices located at the leaf
nodes of the tree and a central control center called KDC, which
maintains the keys’ virtual tree. Each leaf node shares a secret
key with the KDC. The root of the tree holds the group Key
(GK), and the internal nodes hold Key Encryption Keys (KEK).
KEKs are known by each device in the leaf nodes within the
same subtree rooted to a specific internal node. Furthermore,
KEKs compose a Path key (PKt), which is used later to update
group keys efficiently. In a complete tree with n devices, each
device stores log(2n+1) keys [15]. To manage the group
communication within IoT devices groups, we use the LKH
scheme. Since, multiple users may subscribe to the same IoT
device group, it would be more efficient if all these devices and
all their subscribed users share a group key for encryption.
Traffic Encryption Key (TEK) is a traffic key used to encrypt
data published by a device group to its subscribers. This traffic
key should be efficiently updated when a new user joins, or an
old one leaves to ensure forward and backward secrecy. To do
so, we explain the key management scheme used to manage
communication with users in the next subsection.
B. Master Key Encryption (MKE)

Users subscribe to many DGs in the system to get data. For
this purpose, each user gets all TEKs of DGs to which it is
subscribed. Otherwise, the users may subscribe to the same
DGs, which would lead to an increase in the overhead when an
old user unsubscribes, or a new one subscribes. Thus, managing
group communication with users is essential to reduce the cost
of updating TEK after each join/leave event.

In this context, we define the concept of master key
encryption (MKE), which is a key management scheme based
on GCRT. MKE permits multiple decryption keys to decrypt

the same message encrypted by an encryption key [11]. The
main idea of the master key encryption scheme is to generate
one master key and several slave keys, where the master key
encrypts a message that can be decrypted by all legitimate salve
keys. The MKE scheme can alleviate the rekeying cost resulting
from the symmetric cryptography. Hence, Park et al. [11] have
proposed a general MKE algorithm to lessen the rekeying cost
of the group key using a master key.

Theorem 1: Let {p1, p2,… , pN, q1, q2,…,qN} a set of safe
prime numbers. If all public keys satisfy the following
condition, 𝑒! 	≡ 	 𝑒" 	≡ ⋯	≡ 𝑒#	𝑚𝑜𝑑(4), Then, there exists a
unique master key, 𝑒$ modulo 4𝑥!𝑦!𝑥"𝑦"…	𝑥#𝑦#, where 𝑥% =
(𝑝% − 1)/2 and 𝑦% = (𝑞% − 1)/2, 1 ≤ i ≤ N.

Theorem Proof: consider there are N public/private slave
key pairs (𝑒% , 𝑑%), 𝑖 ≤ 𝑁 with	(𝑝%, 𝑞%) being the ith safe prime
number pair, and one master key pair(𝑒$, 𝑑$). For simplicity,
we now consider the modulus of the prime pairs ∅(𝑝%𝑞%) =
(𝑝% − 1)(𝑞% − 1) are mutually prime to each other. For a
plaintext P and a ciphertext C, the master key should satisfy:

 𝑃&! 	≡ 	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%) (1)
 𝐶'! 	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%), 1 ≤ 𝑖 ≤ 𝑁 (2)

According to Euler’s theorem, the necessary condition for the
equation above is:

𝑒$ 	≡ 	 𝑒% 	𝑚𝑜𝑑	<∅(𝑝%𝑞%)=	, 𝑑$ 	≡ 	𝑑%	𝑚𝑜𝑑	(∅(𝑝%𝑞%))
The set of safe prime numbers satisfies the following condition:
𝑒! 	≡ 	 𝑒" 	≡ ⋯	≡ 𝑒#	𝑚𝑜𝑑(4). Then, there exist a unique
master key, 𝑒$mod(4𝑥!𝑦!𝑥"𝑦"…	𝑥#𝑦#), where 𝑥% = (𝑝% −
1)/2 and𝑦% = (𝑞% − 1)/2, 1 ≤ i ≤ N, solution of a system
congruence that can be calculated by the GCRT as follows:
𝑒$ = ∑ 	𝑒% 	𝑀[𝑖]	𝑁[𝑖]#

%(! ,
Where 𝑀[𝑖] = <∏ 𝑥)𝑦)#

)(! = ∕ 𝑥%𝑦% and 𝑁[𝑖] is an integer such
that	𝑀[𝑖]	𝑁[𝑖] 	≡ 1𝑚𝑜𝑑(4𝑥%𝑦%).

Based on theorem 1, [11] proposes a general MKE algorithm,
which generates and modifies the master key and the key pairs,
respectively. In our proposed scheme, we take advantage of this
algorithm and propose an optimized algorithm for membership
renewal and revocation. This algorithm is described in the
DLGKM-AC scheme section. In the following, we define the
system model and its underlying requirements.

IV. SYSTEM MODEL
In this paper, we propose a decentralized group key

management scheme where the numbers of users and devices

Fig.2. Proposed network model

 5

change frequently. Before presenting the solution, we introduce
the overall system, the attacker model and the system
requirements. The architecture of the proposed network model,
shown in Fig.2, illustrates a typical three-tier scheme used for a
smart hotel for our use case scenario. The entire system
considers three essential layers: publishers, subscribers and
group key manager.
§ The publisher layer contains IoT devices, such as smart

door locks or IP cameras, collecting and sending data to
subscribers. These constrained IoT devices have limited
computation, storage and energy resources.

§ The subscriber layer is composed of a set of users that want
to get access to data of the publisher layer. A user can be a
device owner with legitimate, full and permanent control
or a guest user with only limited access. A user
communicates and receives data from IoT devices via
his/her smartphone.

§ The group key manager layer is responsible for generating
the system parameters and managing group members by
providing required encryption keys used to control the
access to data. The group key manager in our system is
considered as a fully trusted third party.

The intended approach considers a dynamic reservation
system in an IoT environment, where both the number of users
and IoT devices might frequently change over time. Indeed, a
user may join or leave at any time. Likewise, an IoT device can
be introduced in or removed from the system at any time. Thus,
it is crucial to manage the distribution of encryption keys to
secure both group communication and data transmission from
possible threats that will be defined in the next subsection.
A. Threat model

The proposed GKM system model may confront different
type of attacks that may threaten the security of the network.
Thus, we define the attacker capabilities in compromising the
GKM access control scheme based on the active insider and
active outsider adversary models. An attacker A may be either
an outsider, who has no access to any IoT device, or an insider
who attempts to increase the access possibility. For example, a
revoked user who has no longer access to future communication
and yet tries to retrieve information on access policies to extend
access scope. Another example is an attacker A that aims to
extract sensitive information, such as the encryption key, to
break the current encryption scheme and get access to data
without proper permissions. A may cooperate with other
members in the system to derive keys that he/she cannot obtain
individually, which is known as a collision attack. Besides, the
attacker may also be a compromised device, where he/she may
masquerade as a legitimate communication partner before
initiating communication with other participant in the network
to gain access to data that are unknown to him. However, he
cannot compromise or break the cryptographic primitives.
B. System requirements

Several requirements are identified and discussed for
effective GKM. Generally speaking, an efficient and practical
GKM should address the following requirements [4] [12]:
a. Security requirement

In order to ensure transmitted data security, in a dynamic IoT
environment, the system should achieve some services. On the

one hand, it should avoid any leaving member from decrypting
the future exchanged messages, to maintain forward secrecy.
On the other hand, new members that join the system should be
prevented from decrypting the previous communications to
guarantee backward secrecy. Forward/backward secrecy are
accomplished through an efficient key updating process, where
all keys should be completely independent from each other in
order to safeguard the key independence security service.
b. Efficient functioning requirement

The efficient functioning of key management protocols is
justified by a minimum overhead cost of different metrics. First,
it reduces the number of keys stored on both users and IoT
devices, which results in low storage overhead. Second, it
decreases the required computation power from users, IoT
devices and servers, which increases the efficiency by reducing
the system response time. Finally, it minimizes the number of
exchanged messages on the system, which raises the flexibility
of the overall system and thus achieves a low communication
cost.
c. Performance requirement

The performance is mainly related to factors that affect group
communication. It includes the scalability, which determines
the capability to handle variable group sizes and high
membership changes. Besides, key management schemes suffer
from the 1-affects-n phenomenon, where a failure of a single
server leads to the collapse of the whole system. Hence, it is
essential to avoid this phenomenon and assure the availability
in a large and scalable system.

V. PROPOSED DLGKM-AC SCHEME DESCRIPTION
In this section, we introduce the proposed scheme, and we

explain how it handles member’s joining and revocation events.
A. Overview

DLGKM-AC is composed of three essential layers, shown
in Fig.3. The upper and lower layers define groups of devices
(DGs) and users (UGs), respectively. In contrast, the middle
layer defines the decentralized controller, KDC, which is
responsible for key management between and within groups.
§ Device groups DGs: DLGKM-AC for IoT environment

establishes a fixed number of DGs based on their

Fig.3. Proposed system model

 6

functionalities, security levels, localization, etc. When a
new IoT device joins the system, it is assigned to precisely
one of the existing DGs. The LKH structure achieves the
group communication within a DG.

§ User groups UGs: DLGKM-AC for IoT environment
creates user groups (UGs) based on user’s interest and
reservation’s period. Each user joins one of those UGs, and
encryption keys are distributed using the MKE technique
within a UG.

§ Decentralized group key manager: DLGKM-AC for IoT
environment is a decentralized architecture of servers,
which is composed of one KDC and several SKDC. The
number of SKDC is not fixed and depends on the IoT
application needs. More specifically, the number of SKDC
is influenced by the characteristics of SKDC like storage,
computation capacities, and the number of registered users

KDC is the central server that relates publishers to the rest of
the system, and it manages the keys’ update process within
DGs. Further, KDC has a backup server that maintains the last
updated version of keys in the system, which is sent to the
backup periodically after the rekeying process. Besides, SKDCs
manage the group communication within UGs, where users
frequently join and leave the system. Hence, the decentralized
aspect of the controller, where SKDCs are used, allows
reducing the load on the KDC. Multiple user groups are under
the control of one SKDC depending on users’ localization,
which solves the problem of single-point failure (SKDC failure)
and ensures the scalability of the system. Besides, we assume
that the decentralized KDC can establish a one-time secure
channel with users and devices, which can be used to
authenticate and configure a newly joined user/device (e.g., by
installing a shared secret key) before sharing with them the
encryption keys. We can summarize the different encryption
keys in our scheme into two main categories: (i) Traffic
Encryption Key (TEK) and (ii) Key Encryption Key (KEK).
The traffic keys are used to encrypt/decrypt data, while the key-
encryption keys are used to encrypt/decrypt traffic keys to
distribute them securely. Table II presents the different keys
used in this paper.

TABLE II SUMMARY OF DIFFERENT TYPES OF KEYS
Traffic Encryption
Keys (encrypt data)

• TEK: encrypts data of DG
• DK: encrypts data of one device

Key Encryption
Key (encrypt traffic

key)

• KEK & GK encrypt and distribute TEK
within a DG

• MT encrypts updated TEK keys to users
in SKDC

• ST decrypts updated TEK keys in UG
Definition: Let U = {U!, U", … , U*}, n ≤ N be the universe

of users controlled by one SKDC. Each user in a network can
subscribe to one or more services of device groups DGs among
a total of M (DG)	denoted by	{DG!, DG", … , DG+}. Let UG	 ⊂
U	be the set of users who subscribe to the same set of
DGs	during the same time T. Let {UG!, UG", … , UG,} be the set
of user groups UGs. Here, each UG	possesses an ID	defined as
follows:

𝐼𝐷! = $𝐴!,#	|	1 ≤ 𝑗 ≤ 𝑀|	𝑏	𝜖	[0,1]	2 ,

𝐼𝐷! =	 3
𝐴!,$ = 0	, 𝑈𝐺	𝑖𝑠	𝑛𝑜𝑡	𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝐷𝐺!
𝐴!,% = 1, 𝑈𝐺	𝑖𝑠	𝑠𝑢𝑏𝑠𝑐𝑟𝑖𝑏𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝐷𝐺!

A. (3)

B. Scheme construction
In this section, we detail the structure of the proposed scheme

and explain how to manage group keys according to users and
devices changes efficiently. Our system can be divided into five
parts: (i) Initialization, (ii) device group registration, (iii) User
group registration, (iv) Dynamic changes in users’ membership
(Join/Leave), and (v) IoT device changes (Join/Leave). We give
a brief description of all used symbol in Table III.
a. Initialization

The group key manager performs the initialization, and it
includes both SKDCs and KDC initialization.

i. KDC initialization
KDC runs MkeyGen algorithm based on GCRT, to generate

a master key and several salve keys to communicate with
several SKDCs under its control. Besides, when a new SKDC
is added to the system, KDC has to run the MkeyGen algorithm
to generate a slave key for the new SKDC and update its master
key. Moreover, KDC establishes a secure channel with devices
and users, and creates DGs and assigns UGs to SKDC. We
consider an example of architecture with 4 DGs and 6 UGs in
Fig.3.

ii. SKDC initialization
Each SKDC in the system runs algorithm 1, the master key

generation algorithm named MkeyGen, to initialize the system
for many users. Let N be the maximum number of slave keys
provided by SKDC. First of all, the SKDC generates a master
key	(𝒆𝑴, 𝒅𝑴)	and a set of N public-private key pairs, named
slave keys, 𝑆𝐾 = {(𝒆𝒊, 𝒅𝒊); 	𝟏	 ≤ 𝒊 ≤ 𝑵} through MkeyGen.

SKDC defines a function f which maps a pair key from a set
of slave keys to {0, 1}as follows:

𝑓: 𝑆à	{0,1}, where

𝑓: 3
𝑓	((𝒆𝒊, 𝒅𝒊)) = 1	,														((𝒆𝒊, 𝒅𝒊)		𝑖𝑠	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑎	𝑢𝑠𝑒𝑟)
𝑓	((𝒆𝒊, 𝒅𝒊)) = 0	, ((𝒆𝒊, 𝒅𝒊)𝑖𝑠	𝑛𝑜𝑡	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑎𝑛𝑦	𝑢𝑠𝑒𝑟)

 (4)

After the generation of master and slave keys, SKDC initializes
all pair keys using (4) as follows: 𝟏 ≤ 𝒊 ≤ 𝑵,𝑓((𝒆𝒊, 𝒅𝒊)) = 0.
b. Device Groups registration

Multiple IoT DGs are established, and each DG
accommodates devices with similar attributes (i.e., security
levels, localization...). KDC generates KEKs for devices in each
DG. First, KDC sets a binary LKH tree for the universe of
devices in each DG, which will be used to distribute updated
keys to devices. In the tree, each intermediate node holds a
KEK. A set of KEKs on the path nodes from a leaf to the root
are called Path Keys (PKt).

TABLE III SUMMARY OF SYMBOLS AND THEIR DESCRIPTION

Symbol Description
TEK Traffic Encryption Key
KEK
M
N

Key Encryption Key
Total number of Device Groups
Total number of Slave Keys under SKDC

(eM,dM) Master Key
(ei,di)
MT, ST
DGy

DKj

UGx

UKi

Slave Key
Master Token, Slave Token
Device Group y
Shared secret key between device j and KDC
User Group x
Shared secret key between user i and SKDC

GKy

PKt

Group Key for device group y
Path Key

h(.),[.]K Hash Function, Encryption function using encryption key K.

 7

The LKH tree is constructed by KDC as follows:
§ Devices in DG are assigned to the leaf nodes of the tree.

Random keys DKj are generated and assigned securely to
each leaf node.

§ The root node holds group key GK to communicate with
devices and TEK to encrypt data of DG.

§ Each device Dj in DG receives the path keys PKt from the
root node to the parent node of the tree, securely.

Then, the path keys will be used as KEKs to encrypt the
group key by the KDC in each rekeying process and to
distribute updated encryption keys to leaf nodes.
c. User Groups registration

In this phase, multiple user groups UGK are constructed, and
each UGK accommodates rk users with the same interest for a
period T. Each user Ui in UGK is authenticated before joining
the system and shares a secret key UKi with SKDC. The SKDC
assigns a user group ID denoted by	𝐼𝐷/0# = X𝐴),2	|	1 ≤ 𝑗 ≤
𝑀|	𝑏	𝜖	[0,1]	_ using (3), where j defines DGj, and b outlines the
user group subscription to the corresponding DGj when b=1.
Otherwise, when b=0, this means that the user group is not
subscribed to the corresponding DGj.

The communication within user groups is based on Master
Token Encryption (MTE), which reduces the communication
and computational complexities. Besides, MTE also supports
efficient key updating. Therefore, SKDC conducts
MTokenGen (algorithm 2) to generate the group key MTK and
a set SK of slave tokens STs for UGK. Then, each user member
Ui in UGK receives a ST through a secure unicast.

The SKDC adds user group information
<𝐼𝐷/0# , 𝑀𝑇3 , 𝑆3 , 𝑟3 , 𝑇= to the list of active user groups.
Subscribers and IoT devices can join or leave the
communication session over time. Hence, the keys should be
changed in each join and leave event. Therefore, dynamic
membership management is a critical component of any

security architecture to ensure the backward and forward
secrecy, which will be detailed in the next subsection.
d. User membership changes (join/leave)

In this section, the key updating scheme is illustrated
according to two events; namely, the user join event, and the
user leave event. In order to describe the keys’ update process
of DLGKM-AC, and for simplicity, we consider the case of a
user that joins/leaves the user group UG1, where users are
subscribed to DG1, DG2, and DG4.

i. When a user joins a group:
Consider a user Ujoin that joins an existing group UGK; few

steps are necessary as introduced below: First, Ujoin should
register to SKDC after being authenticated. Then, Ujoin obtains
a shared secret key UKjoin with SKDC. Subsequently, SKDC
conducts JoKeyUpdate algorithm to update the group key
MTK, eM, and generates a new slave token ST for the new user
Ujoin. It is noticed that the existing users in the joined UGK can
decrypt newly sent messages, encrypted with the new MTK,
using their STs. After that, SKDC runs the JoKeyDistribute
algorithm to distribute the rekeying message distribution
process in the system when a user Ujoin joins UGK. First, SKDC
notifies the KDC about the joining event, and then, SKDC
notifies all users subscribed to the same device groups through

Algorithm 1 Master Key Generation MKeyGen
Inputs: A set of safe prime numbers 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, 𝒒𝟏, 𝒒𝟐, … , 𝒒𝑵.		
Output: One master key 𝒆𝑴 and N slave public-private key pairs
𝑺 =	 {(𝒆𝒊, 𝒅𝒊)	; 	𝟏	 ≤ 	𝒊	 ≤ 	𝑵}
1: 𝑺 =	 {	};
2:	𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵

𝝋𝒊 	= 	 (𝒑𝒊 − 𝟏)	×	(𝒒𝒊 − 𝟏);
𝒙𝒊 	= 	 (𝒑𝒊– 	𝟏)/𝟐;	
𝒚𝒊 	= 	 (𝒒𝒊	– 	𝟏)/𝟐;	
𝒆𝒊 	= 	𝟒 × 	𝑹𝒂𝒏𝒅𝒐𝒎	 + 	𝟏;	
𝒅𝒊 	= 	𝒆𝒊𝟐(𝒙𝒊	.𝟏)(𝒚𝒊	.𝟏) 	− 𝟏	𝒎𝒐𝒅	𝟒𝒙𝒊𝒚𝒊;
𝑺 = 𝑺 +	{(𝒆𝒊, 𝒅𝒊)}; 	

					𝑬𝒏𝒅	𝑭𝒐𝒓
3:	𝒑𝒓𝒐𝒅𝒖𝒄𝒕	 = 	𝟏;
4:	𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵

𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = 	𝒑𝒓𝒐𝒅𝒖𝒄𝒕	 ×	(𝒙𝒊𝒚𝒊);
				𝑬𝒏𝒅	𝑭𝒐𝒓
5: 𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵 	

𝑴[𝒊] 	= 	𝒏/(𝒙𝒊𝒚𝒊); 	
𝑵[𝒊] 	= 	𝑴[𝒊](𝒙𝒊 − 𝟏)(𝒚𝒊 − 𝟏) − 𝟏	𝒎𝒐𝒅	(𝒙𝒊𝒚𝒊); 	

				𝑬𝒏𝒅	𝑭𝒐𝒓 	
6: 𝒆𝑴 	= 	𝟎; 	
7:	𝑭𝒐𝒓	𝒊	 = 	𝟏	𝒕𝒐	𝑵 	

𝒆𝑴 	= 	 (𝒆𝑴 	+	(𝒆𝒊 	× 𝑴[𝒊] 	× 	𝑵[𝒊])); 	
				𝑬𝒏𝒅	𝑭𝒐𝒓 	

Algorithm 2 Master Token Generation MTokenGen
Inputs: Number of user r, Time T, 𝐞𝑴, S
Output: 𝑴𝑻𝑲Master Token of 𝑼𝑮𝑲 and list 𝑺𝑲
1:	𝐞𝑴𝑲 = 𝐞𝑴 ;
2:	𝑪𝒐𝒎𝒑	 = 𝟎;		
3:	𝑺𝑲 =	 {	};			
					//	 Select a list of slave keys for	𝑼𝑮𝑲,
					𝑺𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	}.
					//𝒆𝒊𝟏𝑲 =	𝒆𝒊 assigned to user in 𝑼𝑮𝑲
4: While (Comp	<r) do
 Select a random (𝒆𝒊, 𝒅𝒊) from 𝑺 = {(𝒆𝒊, 𝒅𝒊)	|	𝟏 ≤ 𝐢 ≤ 𝐍}
5: If 𝒇((𝒆𝒊, 𝒅𝒊)) 	== 	𝟎	

Then
𝑺𝑲 = 𝑺𝑲 	+	 {(𝒆𝒊, 𝒅𝒊)};
𝒇((𝒆𝒊, 𝒅𝒊)) 	= 	𝟏;	
𝒄𝒐𝒎𝒑	 + +;

 End if
 End while
6: For i = 1 to N

If 𝒆𝒊 	 ∉ 	 𝑺𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	}
Then

𝐞𝑴𝑲 = 𝐞𝑴𝒌 	− 𝐞𝒊	𝐌[𝐢]	𝑵[𝒊] ;
End if

 End For
7:	𝑴𝑻𝑲 =	 �𝒆𝑴𝑲 + 	𝑻�

Algorithm 3 JoKeyUpdate
Inputs:	𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and (𝒆𝑴, 𝑺).
Output: updated	𝑴𝑻3𝑲,	𝑺′𝑲,	𝒓′𝑲, 𝒆′𝑴 and 𝑺′.
A new user joins the UGK
1: Find 𝒆𝒊 from 𝑺 = {(𝒆𝒊, 𝒅𝒊)	|	𝟏 ≤ 𝐢 ≤ 𝐍} where 𝒇((𝒆𝒊, 𝒅𝒊)) = 𝟎
//𝒆𝒊{𝒋𝒐𝒊𝒏}𝑲 = 𝒆𝒊, 𝐢𝐬	𝐚𝐝𝐝𝐞𝐝	𝐭𝐨	𝑺𝑲
2:𝑺′𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	} + $𝒆𝒊{𝒋𝒐𝒊𝒏}𝑲2	
3:𝒓′𝑲 = 𝒓𝑲 + 𝟏;
4:𝒆𝑴𝑲 =	(𝑴𝑻𝑲 − 	𝑻);
5:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 + 𝒆𝒊

{𝒋𝒐𝒊𝒏}𝑲	𝐌[𝐢]	𝑵[𝒊]	;
6:𝑴𝑻′𝑲 =	�𝒆′𝑴𝑲 + 	𝑻�;

 8

a multicast message, to update TEKj by using a hash function.
Consequently, old users update TEKj to minimize the
communication overhead in the system. Hence, the new user
cannot access to previous exchanged data. Finally, SKDC sends
the updated keys to the new user Ujoin through a unicast
message, including his ST key.

Suppose a user U4 wants to get access to DG1, DG2, and
DG4, as shown in Fig.4, meanwhile U4 needs to get these
traffic keys TEK1, TEK2, TEK4. For that, U4 requests to join
UG1 after being authenticated and authorized. First, SKDC
creates a shared secret key UK4 with U4; then, it multicasts a
notification based on the identities of user groups subscribed to
the same device group to update TEK1, TEK2, TEK4, so that the
new user cannot access to previous exchanged data.

 Besides, SKDC updates the group key MT1’ of UG1 as
mentioned in JoKeyUpdate algorithm to protect previous
communications between users and SKDC from intruders, and
generates a new ST for U4, while existing users of UG1 still be
able to decrypt data of new group key MT1’. Moreover, devices
of DG1, DG2, and DG3 update TEK’1=h(TEK1),
TEK’2=h(TEK2), TEK’4=h(TEK4). Finally, ST and updated
TEK’1, TEK’2, TEK’4 keys are sent, in unicast, to the new user
U4 by the SKDC. The protocol steps are given in the
JoKeyDistribute algorithm.

ii. When a user leaves a group:
In this phase, assume that a user Uleave leaves a group UGK.

Thus, he is not allowed to obtain the exchanged messages after
revocation to ensure the forward secrecy. Hence, SKDC
conducts the LeKeUpdate algorithm to update the group key
MTK, eM, and user group information. Otherwise, the updating
of the master key MTK is ensured by deleting the ST of the
leaving user, while the remaining slave tokens are valid to
decrypt data of the new MTK. After that, SKDC runs the
algorithm LeKeyDistribute to distribute the necessary
rekeying message in the whole network when user Uleave leaves
UGK. Firstly, a user Uleave announces his willing to leave the
system to SKDC, which verifies the request and unicasts a
message to KDC to signal a leave event. Then, KDC updates all
TEKj to which Uleave was subscribed according to the group
identity	𝐼𝐷/0# by generating new TEKj based on the updating

method (TEKj |random processes of KDC), and then, KDC
broadcasts the new TEKs to SKDCs. At that point, SKDC
enforces an access control level for the user group using its
IDUG; b𝑇𝐸𝐾)4&5 , ∀	𝑗	e𝐴),2 = 1	𝑜𝑓𝑈𝐺3]. Thus, according to
IDUG, SKDC encrypts the updated 𝑇𝐸𝐾)4&5 using the
corresponding MT of UG and encrypts the results with the
master key of SKDC. Consequently, the message is broadcasted
to all corresponding users. Notice that only users with a valid
ST can decrypt the new 𝑇𝐸𝐾)4&5.

Suppose a user U3 leaves the group UG1, as shown in Fig.5.

Thus, she/he unsubscribes from DG1, DG2, and DG4, which
leads to losing the access privilege to those DGs. Since the data
of DG1, DG2, and DG4 should not be visible to this user
anymore, TEK1, TEK2, TEK4 should be updated to meet the
requirements of the forward secrecy [5].

First, SKDC updates MT1’’ of the UG1, while all users of
this left group still get access to their previous STs. Then, KDC
broadcasts the newly generated TEKs via encrypted message
(TEKi, DKj’|update methods, i=1,2,4)MK to SKDCs. After,
SKDC transmits TEK1’, TEK2’, TEK4’ via an encrypted
message with MT1’’ securely to UG, based on the user group
identity. The remaining users decrypt, with their STs, the
message to handle the updated information. Finally, devices in
groups DG1, DG2, and DG4 get the new TEKs keys encrypted
with KEK and GK, sent in multicast by the KDC, to prevent a
leaving user from obtaining additional data. The steps are
defined in the LeKeyDistribute algorithm.

Algorithm 4 JoKeyDistribute
Inputs: TEKs, DKs, MT
Output: new and updated keys ST, Ui, MT’, TEKs’, DKs’
1: SKDC

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯� User i: establish a shared secret key with user i Ui

2: SKDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� All: Notify KDC, old users of the joined group

and other user groups which subscribed to the same DG to update
TEK’=h(TEK).
3: KDC

𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯�Devices: update their key DK’=h(DK)

4: SKDC: update MT of this group joined
5: SKDC

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯� User: [STi, DKs, TEK]UKi

Algorithm 6 LeKeyDistribute
Inputs: TEKs, DKs, MT
Output: new generated keys MT’, TEKs’, DKs’
1: SKDC updates MT of the group UG has been left
2: SKDC

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯�KDC: notify that UG has been left

3: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� SKDCs: (TEK’| DK’)MK

4: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� Devices: (TEK’)GK

5: SKDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯� user groups UG: ((TEK’)MT)MK

Fig.4. Structure inside UG1 when U4 joins

Fig.5. structure inside UG1 when U3 leaves

Algorithm 5 LeKeyUpdate
Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and system
information(𝒆𝑴, 𝑺).
Output: updated	𝑴𝑻3𝑲,	𝑺′𝑲and	𝒓′𝑲.
The ith user leaves the UGK
1:𝒇�𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲� = 𝟎
2:𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲𝐢𝐬	𝐫𝐞𝐯𝐨𝐤𝐞𝐝	𝐟𝐫𝐨𝐦	𝑺𝑲
3:𝑺′𝑲 = {𝒆𝒊𝟏𝑲, 𝒆𝒊𝟐𝑲, … , 𝒆𝒊𝒓𝑲	} ∖ $𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲2	
4:𝒓′𝑲 = 𝒓𝑲 − 𝟏;
5:𝐞′𝒊 = 𝒆𝒊{𝒍𝒆𝒂𝒗𝒆}𝑲 = 	𝟒 × 𝑹𝒂𝒏𝒅𝒐𝒎+ 𝟏	;
6:𝒆𝑴𝑲 =	(𝑴𝑻𝑲 − 	𝑻);
7:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 	− 𝒆𝒊

{𝒍𝒆𝒂𝒗𝒆}𝑲	𝐌[𝐢]	𝑵[𝒊]	;
8:𝐞′𝑴 = 𝐞𝑴 	− 𝐞𝒊	𝐌[𝐢]	𝑵[𝒊] + 𝐞3𝒊	𝐌[𝐢]	𝑵[𝒊];
9:𝑴𝑻′𝑲 =	�𝒆′𝑴𝑲 + 	𝑻�;

 9

e. IoT device membership changes (join/leave)
In order to describe the update key process of DLGKM-AC

during IoT device join/leave events, we consider the case of the
device group DG1, which publishes data to the user groups
UG1, UG3, UG4, UG6 based on their group identity.

i. When an IoT device joins a group:
Consider the update procedure of an IoT device Djoin joining a
DG. Therefore, the KDC runs the DeJoKeUpdate algorithm.
First, KDC shares a secret key with Djoin that joins the device
group DGy. Then, KDC updates the necessary part of the LKH
tree in which the device resides, multicasts to the existing
devices a notification to upgrade the group key GK. Finally,
KDC sends to Djoin the PKt and TEK of the DGy through unicast.
Suppose a new device D4 joining the system. D4 is assigned to
the device group DG1 as shown in Fig.6.

KDC notifies devices of DG1 to update GK’1=h(GK1) and
creates a shared secret key D4 with device 4 to send necessary
information TEK’1, GK’1, KEK2 encrypted with the secret key
of D4 through a unicast communication. Finally, KDC sends
KEK2 to D3. The protocol steps are defined in the
DeJoKeUpdate Algorithm.

ii. When an IoT device leaves a group:
When a device Dleave leaves a DG, the KDC rearranges the

LKH tree structure in the group and runs the DeLeKeUpdate
algorithm. Thus, KDC multicasts an updated group key GK’ to
the remaining devices encrypted with KEKs, which defines the
LKH tree of the leaved DG. Then, KDC broadcasts a message
to announce that Dleave is no longer a valid device.

As shown in Fig.6, when device D2 leaves the group DG1,
KDC makes a new device group key (GK’1|update method) and
multicasts it to D1 and D3. The protocol steps are defined in the
DeLeKeUpdate Algorithm.

Algorithm 8 DeLeKeUpdate
Inputs: KEKs, GK
Output: new keys KEKs’, GK.’
1: KDC

𝐛𝐫𝐨𝐚𝐝𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯�All: “leaving device j is no longer available.”

2: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯�DG: update GK’ and KEK’s.

VI. SECURITY ANALYSIS
In this section, we analyze the proposed scheme

effectiveness in terms of forward and backward secrecy and
resistance to the collusion attack.
A. Forward Security

In this section, we analyze the forward security property of
the proposed protocol.

Theorem 1: The proposed group key management scheme
between SKDC and users provides forward security against an
adversary. In other words, the revoked user cannot get access
to the ongoing communication.

Proof: Consider the case that the key pair <𝑒)	, 𝑑)= should be
revoked when user Uj leaves the group UGK. The SKDC
updates 𝑒$	and	𝑒$#. Thus, the master key of UGK satisfies (1)
and (2):

𝑃&!#
$
	≡ 	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%)	 (1)

	𝐶'!#
$
	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%);	∀	𝑖	𝜖	[1, 𝑟3], 𝑖 ≠ 𝑗 (2)

At the data source, the plaintext P is encrypted
as	𝑃J$%

&
		𝑚𝑜𝑑	(∏ ∅(𝑝K𝑞K)L

KM!N%) = 𝐶∗. After receiving the new
ciphertext	𝐶∗, each user in the group can decrypt it with its
individual private key	𝐶∗P' 	𝑚𝑜𝑑	(𝑝K𝑞K) = 𝑃	, ∀	𝑖 ≠ 𝑗. Although
the left user from UGK knows the old keys	�𝑒!	, 𝑑!�, he/she
cannot obtain the correct plaintext from the ciphertext
𝐶∗through the old keys	𝐶∗P(𝑚𝑜𝑑	(𝑝!𝑞!) = 𝑃∗ ≠ 𝑃.

Theorem 2: The proposed group key management scheme
between KDC and IoT devices provides forward security
against an adversary. In other words, the revoked IoT device
cannot get access to the current communication.

Proof: This theorem is analyzed through the game	𝐺!. Let 𝐴!
be an adversary by colluding with the left IoT device Dj in the
device group DGK. It is worth that	𝐴!obtains all information
stored in left IoT device <𝐷𝐾) , 𝐺𝐾3 , 𝑇𝐸𝐾,𝐾𝐸𝐾𝑠= and wants to
derive the current group key, 𝐺𝐾38 . After the IoT device is
revoked, KDC is responsible for updating the LKH tree of DGk,
likewise updating the path key from the revoked leaf node to
the root node {𝐾𝐸𝐾% 	𝜖	𝑃𝐾9	𝑜𝑓	𝐷)} which are used to encrypt
and broadcast the	𝐺𝐾38 to the remaining devices. Thus,	𝐴!
cannot decrypt the keying message and get	𝐺𝐾38 . Therefore, our
protocol provides forward secrecy in DG.
B. Backward Security

In this section, we analyze the backward security property of
the proposed protocol.

Theorem 3: The proposed group key management scheme
between SKDC and users provides backward security against
an adversary. In other words, the newly joined user cannot get
access to previous communications.
Proof: Suppose a new user Uj joining a group UGK with the key
pair <𝑒)	, 𝑑)=. The previous data source P is encrypted as
𝑃&!# 	𝑚𝑜𝑑	<∏ ∅(𝑝%𝑞%)#

%:)(! = = 𝐶, and the master key of UGK
satisfies ∀	𝑖	𝜖	[1, 𝑟3]	𝑎𝑛𝑑	𝑖 ≠ 𝑗:
 𝑃&!# ≡	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%), 𝐶'!# 	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%);	

The SKDC updates 𝑒$	and	𝑒$# such that the master key of
UGK satisfies ∀	𝑖	𝜖	[1, 𝑟3]	𝑎𝑛𝑑	𝑖 = 𝑗:

𝑃&!#
$

≡	𝑃&" 	𝑚𝑜𝑑	(𝑝%𝑞%), 𝐶
'!#
$
	≡ 	𝐶'" 	𝑚𝑜𝑑	(𝑝%𝑞%);	

Thus, the user joining the group UGK with the pairs
keys	<𝑒)	, 𝑑)=, cannot obtain the correct previous plaintext from

Algorithm 7 DeJoKeUpdate
Inputs: KEKs, GK
Output: new and updated keys DK, Dj, KEKs’, GK’
1: KDC → device Dj: establish a shared secret key with the new
device (Dj)

2: KDC
𝐦𝐮𝐥𝐭𝐢𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯⎯⎯⎯�old devices in DG: update group key GK’=

h(GK)
3: KDC

𝐮𝐧𝐢𝐜𝐚𝐬𝐭
�⎯⎯⎯�devices: update KEK’ encrypted either by secret

keys or shared KEK

Fig.6. Examples of structure updates for device join/leave.

 10

the ciphertext 𝐶 through the new keys because
	𝐶'% 	𝑚𝑜𝑑	(𝑝)𝑞)) = 𝑃∗ ≠ 𝑃.

Theorem 4: The proposed group key management scheme
between KDC and IoT device provides backward security
against an adversary. In other words, the joined IoT device
cannot get access to the previous communication.

Proof: Suppose a new IoT device Dj joins the device group
DGK and has <𝐷𝐾) , 𝐺𝐾3 , 𝑇𝐸𝐾,𝐾𝐸𝐾𝑠= new keys. Thus, the
group key GK cannot be derived by Dj. Meanwhile, knowing
the secret key and the new	𝐺𝐾38 , the newly joined device cannot
learn anything about the previous group keys.

C. Resistance to Collusion Attack
In this section, we analyze the resistance to the collusion

attack using the Random Oracle Model (ROM) standard [25].
Theorem 5: The proposed GKM is collusion resistance

secure.
Proof: Let 𝐺;<be the adversarial game for collusion resistance.
This game is played between two adversaries; one acts as the
challenger 𝐶;< who interacts with the adversary 𝐴;< trying to
win 𝐶;<. It is worth noting that 𝐶;< has the ability to simulate
all the oracles	𝑂)=%4, 𝑂>&?@&, 𝑂;%AB&<9C&9and 𝑂'&;<DA9 functions
and output signed messages as a real signer. 𝐺;<	consists of the
following phases:
Setup: 𝐶;<runs the MTokenGen algorithm for a random choice
of ID by 𝐴;<. Rekeying operation is simulated after that, and the
timeline is started (t=0).
Queries: It is allowed to query the oracle	𝑂)=%4, 𝑂>&?@&,
𝑂;%AB&<9C&9 and 𝑂'&;<DA9 to control group dynamicity.
Challenge: 𝐴;<	issues one challenge query to 𝐶;< at time
𝑡;B?>>&4E& (which is the choice of the 𝐴;<). Before responding
to the challenge, 𝐶;< retrieves the set challenge Schallenge from
the list Ls, and forms the list of leaving members Lg, for all ID	
∉ Schallenge. Then, for each identity ID	∉ Schallenge,	𝐶;<issues the
query 𝑂&C9<?;9(ID) to obtain SID. Besides, 𝐶;<encrypts (TEK,
ST, Schallenge) to get (Ai,b’, TEK’), where Ai,b’ defines the
authorized receivers of TEK challenged with 𝐶;<. After, 𝐶;<
chooses a bit b ∈ {0, 1} at random and sets Kb to TEK’ and Kb-

1 to a random TEK from the key space. Finally, it challenges
with (Ai,b’, K0, K1).
Guess: 𝐴;<outputs a bit b’ ∈ {0,1} as its guess. 𝐶;<passes on b’
as its guess to 𝐴;<.
The adversary advantage in winning the game is defined as
𝐴𝑑𝑣03$;< = r𝑝𝑟[𝑏8 = 𝑏] − !

"
r; hence, we can see that the

advantage that 𝐴;< breaks the collision resistance of GKM is
the same that 𝐶;<breaks chosen-ciphertext attack (CCA),
meanwhile, breaks the encrypted messages (Ex. AES). Thus, if
there exists no adversary who can break CCA security with
non-negligible advantage, then there cannot be any adversary
𝐴;<, who can break the collision resistance of GKM with non-
negligible probability.

VII. PERFORMANCE ANALYSIS AND EVALUATION
In this section, we analyze the performance of the proposed

scheme in terms of storage overhead, computation overhead,
and communication overhead. Then, we compare the results
with existing methods. We also discuss the time complexity to
renew the master token and revoke the slave token that we
proposed for the communication with users in the same group.

A. Performance Analysis
This subsection presents the performance analysis of

DLGKM-AC. In order to guarantee generality, we assume that
IoT devices are equally distributed in each device group, and
the LKH structures are all balanced binary trees.
a. Storage overhead

Storage overhead can be considered as the memory
capacity required to maintain the keys. In this section, the
storage overhead is formulated, both at each user in UGx and
each device in DGy. A user belonging to UGx has a slave token
ST, which is an asymmetric key AK, and as many symmetric
keys (SK) TEKs as the number of DGs for which UGx is
subscribed. Moreover, it has his secret key shared with SKDC.
We can calculate the storage of keys for each user in UGx as
follow using Eq (5):

𝑆𝑂Q∈QS) = 𝐴𝐾 + �∑ 𝐴K,#T
KN% + 1�𝑆𝐾 (5)

The analysis of a single d-degree key tree accommodating n
member requires the tree depth denoted by 𝑓'(𝑛). It is known
that 𝑓'(𝑛) is either L0 or L0 +1, where 𝐿F = 𝑙𝑜𝑔'(𝑛). The
authors of [11] made useful inequality (6) in order to analyze
the storage overhead for key trees:

𝐸[𝑓'(𝑛)] ≤ 	𝐸[𝑙𝑜𝑔'(𝑛)] + 1 ≤ 𝑙𝑜𝑔'𝐸[𝑛] + 1,								 (6)
where the expectation, E[.], is taken over the distribution of n
devices and the length of the branches on the key trees.

A device belonging to DGy, containing n devices, has a traffic
key TEK, a group device key GK, and as many symmetric keys,
including the KEKs and the individual key, as the length of the
branch. As we consider that devices are distributed in binary
trees, we can calculate the number of keys for each device in
DGy using the following Eq (7):

𝑆𝑂G∈G0& = (log" 𝑛 + 3) × 𝑆𝐾		 (7)

b. Computation overhead
The computational overhead can be measured as the total

time consumption for encryption and decryption cost and
processing requirement. This action takes place on the server,
user as well as on the device sides, after each member (user/
IoT device) joining or leaving actions. We explain the different
computation costs as follows:

i. When a user joins a subgroup x UGx:
The SKDC assigns a slave token to Ujoin and updates the

master token of UGx and its master key. The new user needs
one symmetric decryption to gain the slave token ST, new TEK,
and all DKs of the devices in the device groups to which they
are subscribed. An existing user needs to do one hash function
to update TEK. Finally, the devices need to perform one hash
function to update their TEK and another hash function to
derive their new device keys DK.

ii. When a user leaves a subgroup x UGx:
The SKDC needs to update the master token of UGx and its

master key in order to send TEK securely to users. The
remaining user groups need to perform one asymmetric
decryption and one symmetric decryption to gain the update
information. Devices to which user groups are subscribed, need
to do one symmetric decryption to obtain the update
information TEK and DK.

 11

iii. When a device joins a device group y DGy:
The old devices of the left device group require to do one

hash function to update the device group key GKy. Since the
GKM scheme of a group device based on LKH, the structure
will change, and some devices need to decrypt O(log(n)) KEK
update messages. While the new device needs only to decrypt
one message sent from KDC to obtain KEKs. Users subscribed
to the group joined by the new device require to decrypt the
message sent by KDC to gain the new device key.

iv. When a device leaves a device group:
The remaining devices execute one symmetric decryption

to gain the new group key. While users subscribed to the leaving
groups, they do not need to perform extra computation.
c. Communication overhead

This subsection evaluates the communication overhead of
the new DLGKM-AC for the IoT environment, as shown in
Table IV:

TABLE. IV: COMMUNICATION OVERHEAD

B. Performance Evaluation
In this section, we present experimental results for the DLGKM-
AC scheme developed on MATLAB. We evaluate DLGKM-
AC performances in terms of storage, computation, and
communication overheads caused by rekeying. The rekeying
transmission overhead corresponds to the additional signaling
load after each join/leave event. We compare the new proposed
DLGKM-AC scheme with two other key management
solutions designed for access control between subscribers and
publisher; a centralized scheme that support groups of
publishers(GroupIT[13]) and a decentralized scheme does not
support groups of publishers (SMGKM [17]).

a. Storage overhead

The storage overhead is formulated at both sides, user, and
IoT devices. To achieve a comparable security strength, we
assume the symmetric encryption/decryption key length to
AES-256 bits, the ECC-512 decryption key length to 512 bits.
To calculate the storage overhead at the user, we consider two
cases: case (1), where we vary the number of publishers DGs to
which users are subscribed while fixing 20 users per UG, and
case (2) where we change the number of users in each UG and
consider the number of DGs settled to 4 and the number of
devices fixed to 20 per DG.

Case (1): Through Fig.7, we notice that, unlike existing
solutions such as GroupIT [13] and SMGKM [17], our scheme
is less affected by the increase of DGs number to which users
are subscribed. This can be explained by the fact that our
scheme uses a decentralized architecture and divides IoT

devices into groups which can alleviate the storage overhead
compared to [13] and [17].

Case (2): Fig.8 shows that, in [13] [17] schemes, when the
number of users increases, the storage on users increases too.
Thus, the larger the number of users in each UG, the more these
schemes incur users’ storage overhead. In our scheme, the users
are not affected by the number of users in their UG. This is
explained by the use of the proposed MTE-based scheme for
grouping users, which is not sensitive to the number of users in
each UG. Hence, this can reduce the storage overhead per-user
more efficiently.

Fig.7: Users’ storage overhead while varying the number of devices

Fig. 8: Users’ storage overhead while varying the number of users

The storage on devices is not affected neither by the number
of users nor by the number of devices in other different DGs
because devices are considered just as data publishers. We can
notice that devices are only affected by the number of devices
of their group. Fig.9 shows that [13] and our scheme have
mainly the same storage. Otherwise, [17] does not hold the
notion of grouping the devices (publishers). Thus, storage on
devices (publisher) is not affected by the number of devices in
the same group.

Fig.9: Devices storage overhead

Events Communication cost

User leave’s
event

SKDC broadcasts the new TEK and DK to
subgroups
KDC sends log(n) messages to devices

User join’s
event

SKDC unicasts a message to the new user
SKDC notifies all users to update TEK

Device join’s KDC unicasts a message to the new device
KDC broadcasts the subscribers with the new DK

Device
leave’s event

KDC notifies the subscribers that the leaving
device is no longer available.
KDC multicasts log(n) messages for the
remaining devices to update group key.

 12

b. Computation overhead
To evaluate the computation overhead, we simulate the

cryptographic operations with Miracle Library. It is a
cryptographic library designed for use in constrained
environments in terms of computational power [26]. All
simulations are implemented on a computer with the following
features: an Intel i5-4200 CPU@ 2.5 GH with a physical
memory of 8 GB; and Ubuntu 12.04 OS over VMware
workstation 15. We provide the time cost for different
cryptographic operations. As a result, we define Th = 2,445µs
be the time for one hashing operation using SHA-256 function
on a 64-byte block. Then, TEnc=TDec=2,7µs be respectively the
time for one encryption/decryption operation using symmetric
cryptography AES-256 encryption on a 64-bytes, and
TECC=365,63µs represents the time for one elliptic curve
cryptographic operation.

Since our protocol is designed for a dynamic IoT
environment, the computational cost is measured based on
leave and join operations of both users and devices. In the
practical scenario, users frequently join or leave (subscribe or
unsubscribe) UG. Hence, we focus on user leave/join events in
the following subsection:

i. Computation overhead when a user leaves a UG:
Assume a user U of UGK leaves UGK. Thus, it is not allowed

to obtain the rekeying message. Therefore, this operation is
triggered by the server and transmitted to users and devices to
ensure forward secrecy. We compare the computation cost as
follows:
- Computation cost on the remaining users’ side: We consider
two cases. In the first case, we vary the number of publishers
DGs to which users are subscribed while fixing 20 users per
UG. Fig.10 shows that our scheme is less affected by the
number of DGs to which users are subscribed than solutions
developed in [13] [17]. The result explains that a decentralized
architecture reduces the computation overhead resulting after a
leave event. Otherwise, using SKDCs offload the computation
overhead of updating keys in such an IoT environment.

Fig.10: Remaining user computation overhead varying devices’ number (leave)

In the second case, we modify the number of users in each
UG and consider the number of DGs fixed to 4 and the number
of devices fixed to 20 per DG. Fig.11 shows that, unlike our
scheme, more the number of users in each UG is large, more the
computation overhead is high in [13] [17] schemes. The
proposed MTE algorithm for managing communication within
user groups is one reason that explains why our proposed
system has low computational cost while having a high number
of users in UG.

Fig. 11: Remaining user computation overhead varying users’ number (leave)

- Computation on the server-side: The group key updating time
of SKDC was considered to prove the efficiency of our group
key updating scheme based on CRT. Fig.12 shows that,
compared to traditional MKE, our solution consumes less time
for the key updating when a user is revoked.

Fig.12: Server time update on the leaving event

ii. Computation overhead when a user joins a UG:
Assume a user U joining UGK. U should not be allowed to

access previous communications. Thus, the rekeying operation
is triggered. Hence, we compare the updating overhead when a
user joins a group as follows:
- Computation cost on old users’ side: We also consider two
cases. In the first case, we vary the number of publishers DGs
to which users of UG are subscribed while fixing 20 users per
UG. Fig.13 presents a comparison of the computation cost for
old users of the joining user group UG. We note that our scheme
is less affected by the number of DGs to which users are
subscribed, than [13] [17] schemes. This outcome is explained
by using subgroup controllers SKDCs to manage the update of
keys and thus reducing computation for end-users.

Fig.13: Old user computation overhead varying the devices’ number (join)

 13

In the second case, we vary the number of users in each UG and
consider 4 DGs and 20 devices per DG. Fig.14 depicts the
comparison of the update overhead when varying the number
of users per group. We notice that our scheme is not affected by
the number of users in the group as key management for user
groups is based on MTE.

- Computation cost on new users’ side: Fig.15 presents the
update overhead on a new user who joins a user group. Our
scheme and [17] present a negligible computation overhead
compared to [13]. In fact, the new user needs only to decrypt
received messages to get information. While in [13], a new user
needs to compute the device keys to which he/she is subscribed.

- Computation cost on the server side: Fig.16 shows the average
time to update keys when there is a user joining operation. More
specifically, the time needed to execute the JoKeyUpdate
algorithm when varying the number of users per group. Unlike
the traditional MKE, the execution time of our scheme
increases slowly with the increase of the number of users per
group.

Fig.16: Server time update on the joining event

iii. Computation overhead when a device joins/leaves a DG
In this subsection, we compare the overhead update triggered

by device join and leave operations as follows:
- The computation cost when a device joins DG: Fig.17 depicts
the update overhead when a device joins a device group. The
overhead is measured on both the existing devices and the new
device sides. We notice that the computation cost of the new
device in our scheme is less than GroupIT. In contrast, the
existing devices in DG present the same cost to get the updated
keys. However, the cost in SMGKM is fixed as they do not consider
grouping devices.

Fig.17: Computation overhead: device join

- The computation cost when a device leaves DG: Fig.18
depicts the update overhead when a device leaves a DG. The
cost is measured on both the remaining devices of the group and
the users subscribed to the DG. In our scheme, the users'
computation cost is not affected by the operation of the leaving
device, while, in [17], it increases with the increase in the
number of devices. The advantage of grouping devices explains
this result. Moreover, remaining devices in our scheme have
less computation cost compared to [13] because using a
decentralized scheme reduces the reload on KDC, and thus,
KDC reduces the reload on devices.

Fig.18: Computation overhead: device leave

c. Communication overhead
To evaluate the communication overhead of the new proposed
DLGKM-AC for the IoT environment, we analyze the number
of updating keys messages transmitted when a user leaves a
UG. Fig.19 shows that [17] scheme causes many rekeying
messages when a user leaves a user group, and the number of
devices is high. Therefore, [13] incurs much less
communication overhead than [17] but still causes little more
communication overhead compared to our scheme, which is
explained by using device groups and introducing MKE for
grouping users.

Fig.14: Old user computation overhead varying the users’ number (join)

Fig.15: New user computation overhead varying devices

 14

 Fig. 19: Communication overhead: the leave event

VIII. CONCLUSION
A novel decentralized lightweight group key management

for access control in a dynamic IoT environment named
DLGKM-AC has been introduced in this paper. A hierarchical
architecture is adopted using one KDC, for managing group
keys and broadcasting update messages, and several SKDCs,
for handling direct communication links between devices and
users. Besides, a new master token encryption algorithm has
been introduced in order to ensure members’ independence in
highly dynamic group communication. In DLGKM-AC,
mobility is smoothly handled as we provide the backward and
the forward secrecy with fewer rekeying operations.
Furthermore, our protocol mitigates the 1-affects-n issue.
Indeed, users can always get access to data even if one SKDC
is affected. Extensive security analysis covering a wide range
of desired security properties has also been provided.
Additionally, performance analyses shows that our proposed
scheme offers better performances by reducing storage,
communication, and computation overheads. Finally, adopting
a decentralized architecture increases scalability and reduces
overhead for resource-constrained devices. As future work, to
put it into practice via a proof-of-concept, we are already
planning to deploy our architecture in a real-world setting, in
the context of the European project PARFAIT [28], by
constructing a physical network comprising a set of IoT devices
and smartphones as users.

ACKNOWLEDGMENT
This work is achieved as part of the European project ITEA

PARFAIT [28], which is partially funded by FEDER (European
Regional Development Fund), BPIFRANCE, and the BFC
region (Bourgogne-Franche-Comté).

ACRONYM TABLE
Acronyms Descriptions
AES
ABE
CCA
CRT
DeJoKeUpdate
DeLeKeUpdat
DG
DK
DLGKM-AC

ECC
GCRT
GK
GKM
IoT
JoKeyUpdate
JoKeyDistribute

Asymmetric Encryption Standard
Attribute-Based Encryption
Chosen-Ciphertext Attack
Chinese Remainder Theorem
Device Join Key Update
Device Leave Key Update
Device Group
Device Key
Decentralized Lightweight Group Key Management
for Access Control
Elliptic Curve Cryptographic
Group Chinese Remainder Theorem
Group Key
Group Key Management
Internet of Thing
Join Key Update
Join Key Distribute

KDC
KEK
LeKeUpdate
LeKeDistribute
LKH
MKE
MkeyGen
MT
MTE
MTokenGen
MQTT
OFT
PKt
ROM
SHA
SKDC
ST
TEK
UG
WBAN
WSN

Key Distribution Center
Key Encryption Keys
Leave Key Update
Leave Key Distribute
Logical Key Hierarchy
Master Key Encryption
Master Key Generation
Master Token
Master Token Encryption
Master Token Generation
Message Queuing Telemetry Transport
One-way Function Tree
Path key
Random Oracle Model
Secure Hash Algorithm
Sub-Key Distribution Center
Slave Token
Traffic Encryption Key
User Group
Wireless Body Area Network
Wireless Sensor Network

REFERENCES
[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, "Internet of

Things for Smart Cities," in IEEE Internet of Things Journal, vol. 1, no. 1, pp.
22-32, Feb. 2014.

[2] https://www.helpnetsecurity.com/2019/06/21/connected-iot-devices-forecast/.
[3] M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci, and C. Gransart,

"Token-Based Lightweight Authentication to Secure IoT Networks," 2019
16th IEEE Annual Consumer Communications & Networking Conference
(CCNC), Las Vegas, NV, USA, 2019, pp.1-4.

[4] Panagiotis I. Radoglou Grammatikis, Panagiotis G. Sarigiannidis, Ioannis D.
Moscholios, Securing the Internet of Things: Challenges, threats, and
solutions, Internet of Things, Volume 5, 2019.

[5] A. Banks and R. Gupta, “MQTT version 3.1. 1,” OASIS standard, 2014.
[6] AlMajed, H.N.; AlMogren, A.S. Simple and Effective Secure Group

Communications in Dynamic Wireless Sensor Networks. Sensors 2019, 19,
[7] P. Porambage, A. Braeken, C. Schmitt, A. Gurtov, M. Ylianttila, and B.Stiller,

“Group key establishment for enabling secure multicast communication in
wireless sensor networks deployed for IoT applications,” IEEE Access, vol. 3,
pp. 1503–1511, 2015.

[8] A. Mehdizadeh, F. Hashim, and M. Othman, “Lightweight decentralized
multicast–unicast key management method in wireless ipv6 networks,” Journal
of Network and Computer Applications, vol. 42, 2014.

[9] Zhu, B.; Susilo, W.; Qin, J.; Guo, F.; Zhao, Z.; Ma, J. A Secure and Efficient
Data Sharing and Searching Scheme in Wireless Sensor Networks. Sensors,
2019, 19, 2583.

[10] Tan, H.; Chung, I. A Secure and Efficient Group Key Management Protocol
with Cooperative Sensor Association in WBANs. Sensors 2018, 18, 3930

[11] M.-H. Park, Y.-H. Park, H.-Y. Jeong and S.-W. Seo, “Key management for
multiple multicast groups in wireless networks,” IEEE Transactions on Mobile
Computing, vol. 12, no. 9, pp. 1712–1723, 2013.

[12] Cheikhrouhou O. Secure Group Communication in Wireless Sensor
Networks: A survey. Journal of Network and Computer Applications.

[13] Y. Kung and H. Hsiao, "GroupIt: Lightweight Group Key Management for
Dynamic IoT Environments," in IEEE Internet of Things Journal, vol. 5, no. 6,
pp. 5155-5165, Dec. 2018.

[14] M. R. Abdmeziem, D. Tandjaoui, and I. Romdhani, “A decentralized batch-
based group key management protocol for mobile internet of things (dbgk),”
2015 IEEE International Conference on Computer and Information
Technology.

[15] H. Harney and E. Harder, “Logical key hierarchy protocol,” Internet draft,
Tech. Rep., 1999.

[16] D. Balenson, D. McGrew, and A. Sherman, “Key management for large
dynamic groups: One-way function trees and amortized initialization,”

[17] T. T. Mapoka, S. J. Shepherd and R. A. Abd-Alhameed, "A New Multiple
Service Key Management Scheme for Secure Wireless Mobile Multicast,"
in IEEE Transactions on Mobile Computing, vol. 14, no. 8, pp. 1545-1559, 1
Aug. 2015.

[18] Zhong, H., Luo, W., and Cui, J. (2017) Multiple multicast group key
management for the Internet of People. Concurrency Computat.: Pract.
Exper. 29:e3817, doi: 10.1002/cpe.3817.

 15

[19] I.-C. Tsai, C.-M. Yu, H. Yokota, and S.-Y. Kuo, “Key management in internet
of things via kronecker product,” in Dependable Computing (PRDC), 2017
IEEE 22nd Pacific Rim International Symposium on. IEEE, 2017.

[20] W. Ding et al., "An Extended Framework of Privacy-Preserving Computation
with Flexible Access Control," in IEEE Transactions on Network and Service
Management. TNSM.2019.

[21] M. Nabeel, N. Shang and E. Bertino, "Privacy Preserving Policy-Based
Content Sharing in Public Clouds," in IEEE Transactions on Knowledge and
Data Engineering, vol. 25, no. 11, pp. 2602-2614, Nov. 2013.

[22] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance Evaluation of
Attribute-Based Encryption: Toward Data Privacy in the IoT,” in IEEE ICC,
2014.

[23] S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi, “Key
management protocol with implicit certificates for iot systems,” in Proceedings
of the 2015 Workshop on IoT challenges in Mobile and Industrial Systems.
ACM, 2015, pp. 37–42.

[24] Y. Tseng, C. Fan and C. Wu, "FGAC-NDN: Fine-Grained Access Control for
Named Data Networks," in IEEE Transactions on Network and Service
Management, vol. 16, no. 1, pp. 143-152, March 2019.

[25] Karuturi, N. N., Gopalakrishnan, R., Srinivasan, R., & Rangan, C. P. (2008).
Foundations of Group Key Management-Framework, Security Model and a
Generic Construction. IACR Cryptology EPrint.

[26] Abdmeziem M.R., Charoy F. (2018) Fault-Tolerant and Scalable Key
Management Protocol for IoT-Based Collaborative Groups. In: Lin X.,
Ghorbani A., Ren K., Zhu S., Zhang A. (eds) Security and Privacy in
Communication Networks. SecureComm 2017.Springer

[27] https://github.com/miracl/MIRACL
[28] http://www.itea3-parfait.com/

Maissa DAMMAK received the master
engineer degrees in telecommunication from
SUPCOM (High School of Communication
in Tunis), Tunis, in 2016. She was an R&D
researcher in SAGEMCOM during 2017. She
is currently a Ph.D. student in computer
science and cybersecurity at laboratory
DRIVE EA 1859 collocated in ISAT Nevers,
France, and part of the University of
Burgundy. She has currently involved in the

European R&D projects FUI PARFAIT. Her research interests include
the security of the Internet of Things (IoT), lightweight authentication
protocols and applied cryptography, decentralized architecture design,
key management for access control. Blockchain applications with the
Internet of Things.

Sidi-Mohammed Senouci received his Ph.D.
in Computer Science in 2003 from the
University of Paris 6 and his HDR from INP
Toulouse, France. Since September 2010, he
is professor at ISAT, a major French post-
graduate school located in Nevers, France,
and part of the University of Bourgogne.
Since 2017, he is director the laboratory
DRIVE EA 1859 collocated in ISAT. He
participates to several national and European-

wide research projects. Among them FP7 FOTsis, ITEA CarCoDe,
ITEA FUSE-IT and FUI PARFAIT. He holds 7 international patents
on these topics and published his work in major IEEE conferences and
renowned journals. He was co-chair of AHSN Symposium in IEEE
Globecom 2011, co-chair of NGN Symposium in IEEE ICC of 2012
and 2017, co-chair VCT Symposium in IEEE WCMC2010, and TPC
co-chair of VehiCom2009 Workshop. He was the Chair of IEEE
ComSoc IIN Technical Committee, TCIIN (2014-2016). He was the
guest editor in Ad-hoc Networks Journal (Elsevier) in 2018, guest
editor “IEEE-Access Special Section” in 2018, guest editor of the
UBICC journal on Ubiquitous Roads, guest editor of French journal
REE in 2014. He is also a Member of IEEE and the Communications
Society and Expert Senior of the French society SEE (Society of
Electricity and Electronics).

Dr. Mohamed Ayoub MESSOUS is
currently a Senior Research Engineer/Post-
Doc at the DRIVE Research lab at
the University of Burgundy (France). He has
more than 9 years of R&D experience in the
fields of Distributed & Mobile Computing,
Computer Network and Cyber-Physical
Systems. He has been or currently is involved
in different European R&D projects (ITEA3

PARFAIT, ITEA2 FuseIT and ITEA2 CarCode) and several academic
research projects (University of Klagenfurt, University of
Burgundy, National Center for the Development of Advanced
Technologies and University of Blida). He holds a Ph.D. (2017) in
Computer Science from the University of Burgundy (France) and a
MAGISTÈRE degree (2014) in Distributed & Mobile Computing and
a Diplôme Ingénieur d’État (2010) in Computer science (Major:
Artificial Intelligence) from the University of Blida (Algeria).

Mohamed Elhoucine Elhdhili earned his
engineering and master's degrees in computer
science at the National School of Computer
Sciences (ENSI), University of Manouba,
Tunisia. Then, he received his PhD degree
from the same school. Since 2018, he has held
the position of assistant professor at the
National School of Computer Sciences.
Previously, he worked as an assistant
professor at Higher Institute of Informatics,
Ariana, Tunisia. He has been a researcher at

CRISTAL Laboratory at ENSI since 2003. His research focuses on
issues related to wireless networks: Security, Trust, Privacy, Key
Management, and quality of service (QoS).

Christophe Gransart received the Ph.D.
degree from the University of Lille,
Villeneuve d’Ascq, France, in 1995. He is
currently a Senior Researcher with the French
Institute of Science and Technology for
Transport, Development, and Networks,
Villeneuve d’Ascq, with 15 years’ experience
of participating in industrial and academic
research projects dealing with distributed
systems and middleware for trans- portation

systems, vehicle-to-vehicle and vehicle- to-infrastructure
communications, adaptive middleware, and cybersecurity. His main
research interests include computer science, distributed architecture
design, and middleware expertise. Dr. Gransart was involved in
various National and European projects. He has also participated to
Sixth Framework Programme (FP6), Seventh Framework Programme
(FP7), Horizon 2020 (H2020), and Shift2Rail programs.

