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Abstract—SPIKE, an induction-based theorem prover built
to reason on conditional theories with equality, is one of the
few formal tools able to perform automatically mutual and
lazy induction. Designed at the beginning of 1990s, it has been
successfully used in many non-trivial applications and served as
a prototype for different proof experiments and extensions. The
first paper introducing SPIKE is [14], published shortly after the
tool was created. The goal of this paper is to highlight and bring
together in one spot the major changes supported by SPIKE since
then.

1) Introduction: Historically, SPIKE was built during a
period when several formula-based Noetherian induction meth-
ods issued from Musser’s completion-based inductionless in-
duction (or proof-by-consistency) technique [33] have been
designed. Some of them have been implemented into theorem
provers, for example, RRL [30] integrated the test-set induction
method [29], and Focus [20] a generalization of the term-
rewriting induction [21] for conditional theories. Inspired by
the rewriting techniques previously tested with the ORME
system [32], SPIKE [14] implemented a different induction
method [15], [31] that combines features from explicit induc-
tion and inductive completion techniques.

As time went by, SPIKE was continuously considered
among the ‘active’ automatic induction-based provers; it
mainly served as a prototype for testing several extensions of
conditional theories and induction-based reasoning techniques
that led to many successful proof experiments on non-trivial
applications. The goal of the paper is to highlight the major
changes supported by SPIKE since the publication of [14],
which gave rise to its current version. The source code,
examples of specification files, and papers related to different
applications and extensions are available online [43].

In the rest of the paper, we set the theoretical backgrounds
of the reasoning by induction on equational clauses, then we
introduce the inference system of SPIKE and the layout of a
standard specification file. In the end, we show how to prove
conjectures and interact with the tool.

2) The SPIKE Prover:

a) The ‘reasoning by induction’ setting: SPIKE im-
plements an instance of the Noetherian induction principle
applied on a Noetherian poset of equational clauses (or just
clauses). Compared to other instances adapted for first-order
reasoning, several clauses can be simultaneously tested to
verify whether they are consequences of a given set of axioms
Ax written as conditional equalities. SPIKE can reason on
sorted and constructor-based specifications that should satisfy
some properties, like the ground convergence and (strongly
sufficient) completeness. These constraints guarantee the ex-
istence of the initial model for Ax. Formally, assuming that

M is the initial model of Az, we denote by ® | ¢ the
fact that the clause ¢ is an initial M-consequence (or just
consequence) of a set of conditional equalities ®. ¢ is initially
M-valid (or just valid) and is denoted by =g ¢ iff it is
a consequence of Axz. In general, given (£, <) a non-empty
poset of formulas that is wellfounded (or Noetherian), i.e.,
any strictly decreasing sequence of formulas from £ is finite,
the formula-based instance [38] of the Noetherian induction
principle states that if {v | v € £,7 < §} Em d, for any
formula 6 € &, then for all p € £, =g p. Put it in a simpler
way for our logical context, during the proof of a clause,
smaller clauses can be used in terms of induction hypotheses
(IHs). This makes it a natural choice for reasoning on proofs
requiring lazy induction, when the IHs are generated by need,
and mutual induction, when different clauses need each other
to cross fertilize for making the induction reasoning successful.
The induction proof method used by SPIKE, called implicit
induction, is an application of this principle using reductive
techniques as rewriting. It was firstly suggested in [31] and
formally presented in [21]. The mutual induction feature
helped SPIKE to prove the Gilbreath Card trick problem [28],
firstly with 5 lemmas [16] then with only 2 lemmas [17], while
other provers using different proof techniques succeeded with
significantly more lemmas (see [17] for a comparison).

The ground convergence and completeness properties of a
specification can be checked more easily, by using syntactic
criteria, if the specification is many sorted and the set of
function symbols is split into constructor and defined function
symbols. SPIKE was initially designed to deal with free
constructors such that there is no equality relation between
any two different constructor symbols. Several extensions
have been introduced in SPIKE since [14] in order to deal
with: 1) non-free constructors [13], ii) parameterized speci-
fications [9], [10], iii) associative-commutative theories [6],
iv) observational proofs [7], [18], and v) simultaneous check
of the completeness and ground convergence properties of a
specification [12]. Most of them led to distinct proof systems
that are no longer maintained in spite of their theoretical and
practical interests.

b) The inference system: In [14], the inference rules and
the proof strategy implementing the implicit induction method
were built-in. Each rule is a transition between pairs (E, H),
where E are conjectures and H are premises consisting of
previously processed conjectures that do not have minimal
counterexamples, i.e., minimal ground clauses that are not
valid. By applying a rule, a conjecture from the current proof
state is replaced by a potentially empty set of new conjectures,
and may be added as a premise in order to participate to further
inference steps. Proof derivations are built by successively
applying inference rules starting from an initial state. They



may finish with i) success, if they end with an empty set of
conjectures, ii) error, if a counterexample is detected, and iii)
failure, if none of the previous cases is encountered and no
rule can be applied. A proof is a successful derivation that
starts with an empty set of premises.

Later on, different proof needs led to hardcode into the
system several variants of a same rule. More flexibility has
been achieved with the addition of a strategy language [1]
allowing to define new proof strategies by the user. It has
been combined later with a methodology for building modular
inference rules using contextual cover sets (CCSs) [36]. The
core of the methodology is an abstract inference system made
of two rules: ADDPREMISE and SIMPLIFY, defined as:

ADDPREMISE: (EU {¢}, H)Fa (FU®, HU{¢}),
if, for any counterexample (ctx.) ¢7 of ¢, it is a ctx. ¥ in
i) E U ® such that ¢ < ¢7, or
ii) H such that ¢ < ¢7.

SIMPLIFY: (EU{¢}, H)Fa (EU®, H),
if, for any ctx. ¢ of ¢, there is a ctx. ¢ in
E U ® U H such that ¢ < ¢r.

Each inference rule replaces a conjecture ¢ with a poten-
tially empty set of new conjectures ®. @ is built in two steps
as a CCS of ¢, thanks to the compositional properties of CCSs.
Firstly, an intermediate CCS of the replaced conjecture is built,
then for each intermediate clause another CCS is built and
stored as new conjectures. The set of IHs allowed by a rule
to be used when building a CCS is referred to as context.
ADDPREMISE adds ¢ as a premise and SIMPLIFY allows
bigger contexts. It has been shown in [36] that i) the abstract
inference system is sound, i.e., one can conclude from a proof
that its initial conjectures are valid, and ii) the inference rules
define the biggest contexts compared to similar abstract rules
proposed in the literature. For practical reasons, the abstract
system was extended with a third rule, DELETE, that is a
particular case of SIMPLIFY when ® is empty.

Any SPIKE inference rule instantiates one of the abstract
rules by implementing its elementary CCSs, i.e. the CCSs that
are not built using composition operations, by the means of
reasoning modules. A reasoning module can produce a CCS
with a particular reasoning technique using in terms of IHs
clauses from the context defined by the instantiated abstract
rule. The main reasoning techniques are based on rewriting,
case analysis and variable instantiations.

We give as example the definition of a rewriting-based
inference operation implemented as an instance of SIMPLIFY:

rewriting rule =
simplify (id, [rewriting (rewrite,L|RI|C,*)1]1);

In the first step, the identity reasoning module id builds
{¢} as the intermediate CCS for ¢. The application of the
rule succeeds if, in the second step, the rewriting module
succeeds to rewrite once, due to the rewrite argument and
at any position (*), the only clause ¢ of {¢} with conditional
rewrite rules from the lemmas (1), axioms (R) and current
context (C). The resulting clause is the unique clause of ®.

Some of the reasoning techniques have been changed
since [14]. For example, the technique for instantiating vari-
ables with elements of a test-set, based on the depth of the
lhs of the axioms [17], was replaced by a narrowing technique
involving only the axioms defining the head symbol of some
(sub)term including the variables to be instantiated [5].

New reasoning techniques have been added to deal with
non-trivial applications. The implementation of a combination
between a decision procedure for linear arithmetic and a
congruence closure algorithm [3], [35] allowed to validate the
MIRTY algorithm [19] using a lemma proposed by N. Shankar
(according to [27]); also, more than 60% of the conjectures
required to certify the conformity algorithm for a telecom-
munication protocol [34] have been automatically proved.
This implementation, as well as the ‘black-box’ integration
schema of the Z3 [22] SMT solver as a reasoning module,
are described in [39]. SPIKE also includes several decision
procedures for proving inductive theorems without induction
reasoning [2]. They help to decide the inductive validity of
equations involving natural numbers and lists.

The validation of the JavaCard platform [5] was the most
challenging case study ever experienced by SPIKE. The infer-
ence system has been adapted to manage variables of parame-
terized sorts as well as existential variables. New inference
rules have been designed to better handle the information
from the conditional part of (conditional) conjectures, like
i) the auto simplification rule in order to rewrite with an
equality condition other parts of the conjecture, and ii) the
augmentation rule which adds new conditions issued from the
conclusion of a conditional equality given as lemma if the
conditions of the lemma are proved from the conditions of
the conjecture. The efficiency of the implementation has been
improved for dealing with specifications counting more than
400 defined function symbols and 2200 axioms, for example
by recording the failure context at the conjecture level in order
to avoid useless computation.

As shown in [21], the implicit induction method is based
on a unique induction ordering, globally defined over the set of
clauses derived during a proof. It is implemented by reductive
inference systems such that, at the ground level, the new con-
jectures from any proof step are smaller than (and sometimes
equal to) the replaced conjecture. The reductive techniques,
as rewriting, introduce new ordering constraints to be satisfied
by the specification as well as the conjectures from the proof
derivation. The induction ordering is the multiset extension
of the mpo ordering [4] over terms using a precedence over
the function symbols provided by the user. The mpo ordering
also serves to orient the axioms into rewrite rules. Since some
reasoning techniques, like the instantiation of variables from
the current conjecture, require the reduction of the instances
by rewriting, SPIKE warns the user if the mpo ordering built
from the input precedence cannot orient the axioms into rewrite
rules. If no precedence is provided by the user, SPIKE analyses
the axioms and tries to infer a successful precedence.

The inference system of SPIKE has been extended to
implement for the first time reductive-free cyclic proofs [38],
by keeping the best features of explicit and implicit induction
reasoning. A cycle consists of a circular linked list of proof
derivation chunks, called history chunks. Each link symbolises
the application of an instance of the head conjecture from a



history chunk as IH in the proof of the conjecture ending the
previous history chunk in the list. By following a particular
proof strategy, referred to as the DRaCulLa strategy, the cycle
can discharge its linking IHs by checking ordering constraints
involving only instances of the conjectures starting the history
chunks. Therefore, the cyclic induction reasoning allows to
use non-reductive proof techniques along history chunks and
axioms not orientable into rewrite rules as long as the ordering
constraints are satisfied.

A useful property for an inference system is the refutational
soundness which guarantees that, whenever a counterexample
is detected at the current step, the initial conjectures are
refuted. Very few inference rules implemented by SPIKE may
add new counterexamples during the proof derivation, e.g., by
the generalisation of existential into universal variables [5]. By
attaching history information to each conjecture, the detected
counterexamples can lead to particular ground instances of the
initial conjectures that can be further checked for validity.

The refutational completeness is another useful property,
satisfied by previous inference systems [11], [15]. Since the
addition of a strategy language, this property is no longer
guaranteed because one of the conditions to be satisfied is
the fairness of the proof strategy. However, the user still
can use some built-in strategies known to be refutationally
complete. A classical proof strategy mainly privileges the
inference rules that are instances of DELETE, then SIMPLIFY,
and finally ADDPREMISE. We give as example the definition
of the fullind strategy.

o\

instance of Delete
autology_rule = delete (id,
instance of Simplify
total_case_rewriting rule =
simplify(id, [total_case_rewriting (
simplify_strat, R, *)1);
% instances of AddPremise
case_rewriting_rule =
add_premise (total_case_rewriting(
simplify_strat, R, =), [id]);
split_rule = add_premise (generate, [id]);
% proof strategies
stra = repeat (try (tautology_rule,
rewriting_rule,total_case_rewriting_rule
print_goals, case_rewriting rule ));
fullind = (repeat (stra, split_rule),
print_goals_with_history);
start_with: fullind

o

[tautology]) ;

o\

The reasoning module total_case_rewriting, im-
plementing the conditional rewriting technique, was used to
build instances of both SIMPLIFY and ADDPREMISE. try
and repeat take a list of rules as arguments. try visits
each rule in the list until the first succeeds. repeat executes
them repeatedly until no new conjecture is produced or a
counterexample is found. The print_  rules print the current
state of the proof. start_with points to the used strategy.

c) Layout of a specification file: The structure of a
standard SPIKE specification from the file name . spike is:

specification: name
sorts: list of sorts

constructors: list of constructor symbols

defined functions: list of defined function symbols
axioms: list of axioms for each defined function symbol
% the precedence used by the induction ordering
greater: list of precedences over the function symbols
equiv: list of equivalent function symbols

% the completeness and ground convergence properties
properties: list of properties

% the proof strategies and conjectures

strateqgy: list of inference rules and proof strategies
conjectures: list of conjectures

d) User interactions: The proofs, generated by the
command spike_bc name.spike, are highly automatic, the
user interactions mainly defining i) the precedence used by the
mpo ordering, ii) the inference rules and the proof strategy,
iii) the precedence over the head symbols of the (sub)terms to
which the new instantiation technique can be applied, and iv)
lemmas. Once a conjecture has been proved, it can participate
as lemma in the proof of further conjectures listed in the
conjectures section.

On the other hand, the generated proofs may involve many
non-trivial inference steps for which the human checking
process is tedious and error-prone. We have shown how to
i) validate SPIKE proofs [37], [41] using the certification
environment provided by the Coq system [42], and ii) define
Coq tactics that call directly SPIKE and transform the gener-
ated proofs into Coq scripts [26], according to a methodology
that automatically translates into Coq script the proof steps
performed by most of its inference rules [40].

The user can also interact with SPIKE by the means of i)
extra sections, for example use: nats;! for activating the
combination of the decision procedure for linear arithmetic
and the congruence closure procedure, and ii) command-line
arguments given to spike_bc, as:

—debug: to identify syntactic errors in the specification
file,

-maximal: to print the proof in detail,

—cogc_spec and —cogc: to generate the Coq specifi-
cation and translate the generated proof into Coq script,
respectively, and

—dracula: to generate cyclic proofs using the DRaCulLa
strategy.

3) Conclusions and Future Work: We have given an
overview of the current version of SPIKE and highlighted
the main changes and extensions since [14]. Initially written
by Adel Bouhoula during his PhD thesis [8], SPIKE has
been completely redesigned for adopting an object-oriented
paradigm along the ~ 18 500 lines of OCaml code. Some of the
original features are still missing, like the graphical interface
and the procedures for checking the completeness and ground
convergence properties. In the future, an interesting applica-
tion of SPIKE would be to the automation of the induction
reasoning during the algorithm synthesis process [23]-[25].

Acknowledgments: The author would like to thank Adel
Bouhoula and Michaél Rusinowitch, as well as the people
involved in supporting, developing and using SPIKE.

To be added just after the specification section.
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