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Abstract

Conservation agriculture (CA)—the simultaneous application of minimum soil disturbance, crop residue retention, and crop
diversification—is a key approach to address declining soil fertility and the adverse effects of climate change in southern Africa.
Applying the three defining principles of CA alone, however, is often not enough, and complementary practices and enablers are
required to make CA systems more functional for smallholder farmers in the short and longer term. Here, we review 11
complementary practices and enablers grouped under six topical areas to highlight their critical need for functional CA systems,
namely: (1) appropriate nutrient management to increase productivity and biomass; (2) improved stress-tolerant varieties to
overcome biotic and abiotic stresses; (3) judicious use of crop chemicals to surmount pest, diseases, and weed pressure; (4)
enhanced groundcover with alternative organic resources or diversification with green manures and agroforestry; (5) increased
efficiency of planting and mechanization to reduce labor, facilitate timely planting, and to provide farm power for seeding; and (6)
an enabling political environment and more harmonized and innovative extension approaches to streamline and foster CA
promotional efforts. We found that (1) all 11 complementary practices and enablers substantially enhance the functioning of
CA systems and some (e.g., appropriate nutrient management) are critically needed to close yield gaps; (2) practices and enablers
must be tailored to the local farmer contexts; and (3) CA systems should either be implemented in a sequential approach, or
initially at a small scale and grow from there, in order to increase feasibility for smallholder farmers. This review provides a
comprehensive overview of practices and enablers that are required to improve the productivity, profitability, and feasibility of
CA systems. Addressing these in southern Africa is expected to stimulate the adoption of CA by smallholders, with positive
outcomes for soil health and resilience to climate change.
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1 Introduction
1.1 Food security in southern Africa

Global food production needs to increase (Ray et al. 2013) to
keep pace with the ever-growing population (Godfray et al.
2010) and to counter increased impact of climate change
(Wheeler and von Braun 2013). Agricultural productivity of
two major food crops (maize and wheat) will be highly affect-
ed by biotic and abiotic stresses (Lobell et al. 2008) if no
improved and adaptive measures are implemented, thereby
highlighting the need for sustainable and productive agricul-
tural systems (Fig. 1).

Social wellbeing and economic growth in southern Africa
largely depend on agriculture (Blein and Bwalya 2013). The
majority of farming systems in Malawi, Tanzania, Zambia,
Zimbabwe, and Mozambique are cereal-based mixed
crop/livestock systems applied by smallholders with maize
(Zea mays L.) as the dominant crop (Dowswell et al. 1996;
Kassie et al. 2012; Dixon et al. 2001). Rainfall regimes in
these areas vary from 500 to 1600 mm per annum. Other
countries of southern Africa (e.g., Namibia, Botswana, and
South Africa) are either too dry to sustainably grow maize or
produce mainly in large-scale commercial farms. Livestock is
an important component of the farming systems and consists
mainly of cattle and goats, as well as chicken (Rufino et al.
2011; Rusinamhodzi et al. 2013). In large areas of southern

Zimbabwe and Zambia, where crop production is marginal,
cattle rearing is dominant, often in free-grazing arrangements
(Zingore et al. 2007). The majority of farmers in southern
Africa are smallholders who cultivate less than 5 ha. In
Malawi for example, the average landholding size ranges be-
tween 0.2 and 3 ha (Ellis et al. 2003) while it is larger in
Zambia and Zimbabwe, where cropping is more extensive
(Gambiza and Nyama 2006; Aregheore 2009).

Multiple threats to productivity and sustainability are com-
mon throughout smallholder agricultural systems in southern
Africa. The soils are often derived from granitic parent mate-
rial and are thus sandy in texture (e.g., in Zimbabwe and
Zambia) (Twomlow et al. 2006b). Most soils are low in inher-
ent soil fertility and organic carbon (Fig. 2). They are acidic in
some regions, leading to nutrient deficiencies (e.g., in northern
Zambia). Many soils in southern Africa are also prone to ero-
sion and other forms of degradation (Sanchez 2002; Sanginga
and Woomer 2009).

Cropping is only practiced during a single cropping season,
which lasts from November to April, while the rest of the year
is dry with very low and variable rainfalls (Whitbread et al.
2004). The unimodal rainfall season of short duration has
consequences on and implications for the ability of smallhold-
er farmers to grow crops and produce sufficient biomass for
groundcover and feed (Mupangwa and Thierfelder 2014).
Where livestock rearing is common, cropping systems are
confronted with intensive crop/livestock interactions and ma-
jor tradeoffs (Valbuena et al. 2012; Baudron et al. 2015a;
Romney et al. 2003).

Southern Africa is heavily affected by climate variability
and change (Masih et al. 2014), and projections suggest that
the impact of climate change will be even more severe in the
next decades (Cairns et al. 2013; Lobell et al. 2008). The most
influential consequence of climate change will be: (a) the in-
crease in temperature, leading to increased heat stress for
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Fig. 2 The importance of timely
planting, fertilization and weed
control in conservation
agriculture systems (left) and
integration of agroforestry species
(Faidherbia albida (Delile) A.
Chev.) into conservation
agriculture fields (right) to
increase diversification, making
use of leaf fall and gradually
improving soil fertility, eastern
Zambia

crops; (b) change in rainfall patterns, resulting in more erratic
rainfall events of high intensity, leading to floods in some
areas and more frequent dry spells; (c) delayed onset of the
rainy season; and (d) earlier tailing off of the cropping season
(Cairns et al. 2012).

1.2 Rationale of conservation agriculture

The advent of the moldboard plow in Zambia and Zimbabwe
in the 1920s, and the ridge-tillage systems in Malawi from the
1930s onwards, have progressively reduced the productivity
and resilience of farming systems (Kumwenda et al. 1998),
especially if ridges were established against the contour.

Conservation agriculture (CA) systems were identified in
the 1980s and proposed as an alternative to tillage-based ag-
riculture, first on commercial farms in Zimbabwe (Vowles
1989) and later on smallholder farmers’ fields (Wall et al.
2014; Oldrieve 1993). Conservation agriculture is based on
three principles: (a) minimum soil disturbance, (b) crop resi-
due retention through living or dead plant material, and (c)
diversification through crop rotations and associations
(Kassam et al. 2009; Hobbs 2007). In addition to these three
core principles, there is a range of good agricultural practices
and approaches needed to support short- and longer-term pro-
ductivity and profitability of the system. There is general
agreement that these good agriculture practices are essential
for CA to function in the longer term (Vanlauwe et al. 2014;
Sommer et al. 2014).

The performance of CA practices on agronomic productiv-
ity and economic profitability in southern Africa has been the
focus of a series of studies in recent years and has been sum-
marized by various scholars (Thierfelder et al. 2016a; Wall
et al. 2014; Nyamangara et al. 2014b; Mafongoya et al.
2016; Brouder and Gomez-Macpherson 2014). The benefits
of CA on soil moisture and infiltration have been investigated
in long-term trials in Zambia and Zimbabwe (Thierfelder and
Wall 2009). Effects of CA on soil biological activity were
reported by Thierfelder and Wall (2010a), and changes in
weed dynamics were highlighted by Muoni et al. (2014) and
Mhlanga et al. (2015a). Contradicting results were found on
carbon sequestration (Rusinamhodzi et al. 2011; Cheesman

et al. 2016; Powlson et al. 2016). The three studies found that
effects on soil carbon are dependent on the quality of CA
implementation, such as the type of seeding system, the level
of diversification, the type of rotation systems used, the
amount of biomass that could be retained, and the inclusion
of tree-based elements. Different CA systems often had site-
specific responses, making it difficult to draw general conclu-
sions (Nyamangara et al. 2013, 2014a; Thierfelder et al.
2016a; Mupangwa et al. 2016a; Thierfelder et al. 2015a, b;
Baudron et al. 2012b). Most studies agree there are yield ben-
efits in the medium to long term which are more pronounced
in lower rainfall environments (Pittelkow et al. 2015;
Thierfelder et al. 2014; Steward et al. 2018).

Variable results were also found on profitability of different
CA cropping systems (Mazvimavi 2011; Mazvimavi and
Twomlow 2009; Thierfelder et al. 2016a, b; Mupangwa et al.
2016a; Mafongoya et al. 2016; Baudron et al. 2015c). The eco-
nomic performance of conservation agriculture systems is sig-
nificantly affected by mechanization level (e.g., manual, animal
traction, or tractor-drawn), the type of rotation or intercropping,
the practices used as controls in the comparison, and other fac-
tors. Generally, it is difficult to assess the profitability of a farm-
ing system in cash-constrained environments where the oppor-
tunity cost for labor is low (unless it is in peak season, or farmers
engage in growing high value crops such as tobacco). In south-
ern Africa, farmers generally use family labor, which is often not
costed, instead of hiring labor for land preparation or weed con-
trol (Andersson and D’Souza 2014; Baudron et al. 2012a). This
makes an objective assessment of the economic performance of
CA systems under smallholder farming situations difficult
(Corbeels et al. 2014; Andersson and D’Souza 2014).

While there are several reported benefits of CA systems, a
range of challenges and barriers to adoption have been discov-
ered and summarized in recent reviews (Thierfelder et al.
2016b; Giller et al. 2015; Andersson and D’Souza 2014;
Dougill et al. 2016; Glover et al. 2016). Among them are (a)
limited knowledge and capacity of farmers to implement CA
systems at a certain standard; (b) lack of sufficient biomass
(e.g., crop residues) to retain on the soil surface in intensive
crop/livestock systems (Valbuena et al. 2012); (c) lack of prof-
itable rotation systems; (d) lack of access to critical CA inputs
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(e.g., specialized machinery, seed, fertilizer, and herbicides);
(e) high costs of inputs (e.g., for specific seed, fertilizer, and
herbicides); (f) cash constraints and lack of access to credit for
initial investments; (g) lack of functional output markets for
rotational crops; and (h) tradition and different prioritization
by farmers. Many of these barriers are not unique to CA
systems and are general constraints to smallholder farming
in southern Africa.

Baudron et al. (2015c) proposed that, depending on site and
farmer situation, the entry points for CA adoption in southern
Africa would be in situations where: (a) there is limited avail-
ability of power for crop establishment and/or it is costly (this
includes labor and draft power); (b) a delay in planting will lead
to significant yield decline; (c) soil moisture limits or co-limits
crop productivity; and/or (d) severe erosion and other forms of
degradation affect short-term yields. Supported by better
targeting to different farm typologies and the evidence from
an ex-ante impact assessment, the adoptability and potential
future adoption of CA could be enhanced.

1.3 Objectives of this study

While the three principles of CA have wide applicability on
different rainfall and soil moisture regimes, soil types, and
crops (Wall et al. 2014; Wall 2007), there is little understand-
ing on how good agricultural practices and supporting en-
ablers can improve the performance of CA systems under
different circumstances. The objectives of this study are there-
fore to determine what the important enabling factors that
improve the benefits of CA for smallholder farmers in south-
ern Africa are and how do these enabling factors enhance the
feasibility of CA implementation for such farmers?

The paper leaves out other practices that are either embed-
ded in the CA system itself (e.g., legume rotation or
intercropping) or are not practiced in southern Africa (e.g.,
the use of perennial cereals, flaming or solarization of weeds,
etc.). We will describe commonly known supporting agricul-
tural practices used in southern African agriculture and en-
abling factors, highlight their role and importance in various
agro-ecologies and socio-economic environments, and discuss
some of the challenges in the implementation of CA systems.

2 Supporting complementary practices

Good agricultural practices are not unique to CA cropping
systems and improvements in agricultural practices have been
sought throughout history. This review focuses on how these
good agricultural practices enhance the functioning of CA
systems specifically and what contributions they make to
overcome limitations in the system.

Genetic gains in maize varieties adapted for southern Africa
have been steady, with current potential maize grain yields (i.e.,
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grown in unlimited water and nutrient situations with no loss
due to weeds, pests, and diseases) above 10 tons ha™! (Setimela
et al. 2017; Masuka et al. 2016). However, yields obtained by
smallholder farmers in the region are only a fraction of this and
range between 0.5 and 2.5 t ha !, with no increasing trend, for
example, in Zimbabwe, Mozambique, and Malawi (Ngwira
et al. 2013; FAOSTAT 2017).

The difference between potential (expected under optimal
conditions) and actual (reported by the farmer in field condi-
tions) yields is referred to as the “yield gap” (Lobell et al.
2009; van Ittersum et al. 2013). Yield gaps are attributed to a
combination of untimely and/or poor crop establishment; wa-
ter, soil, and nutrient limitations; and other losses due to
weeds, pests, and diseases (Tittonell and Giller 2013; Van
Ittersum and Rabbinge 1997). The attainable yield refers to
the maximum yield a farmer can achieve under rainfed con-
ditions and is important to understand yield gaps.

The principles of CA and good agricultural practices may
impact potential, attainable, and actual yields (Fig. 3) through
synergistic effects. The figure illustrates how agricultural
practices presented in this paper may complement CA princi-
ples in closing the yield gap (e.g., through improved seeds,
soil, and water conservation) and/or support CA principles
(e.g., through agroforestry species, fodder crops, and cover
crops providing alternative biomass for residue cover) to ob-
tain more ground cover, achieve greater carbon sequestration,
or improve soil fertility.

Two approaches have been proposed in the past as to how
CA systems could effectively be integrated into farming systems
and how good agricultural practices could support this integra-
tion. One approach follows the logic of the so-called ladder
approach (Sommer et al. 2013), originally developed by re-
searchers working on integrated soil fertility management
(ISFM). This theory assumes that different good agricultural
practices are adopted by farmers in a sequential manner depend-
ing on their level of development and resource endowment
(Vanlauwe et al. 2010, 2011; Sanginga and Woomer 2009).
Indeed, sustainable intensification often hinges on farmers’
(physical and financial) access to inputs (fertilizers, herbicides,
improved varieties), and their willingness to adopt these at a
pace that they feel comfortable with in their own environment.
Conservation agriculture principles and practices, including
mechanization, could potentially feature at the higher end of this
ladder and would be added one by one depending on the
farmer’s ability to integrate those principles. Basic good agricul-
tural practices, e.g., improved varieties, good fertilization (min-
eral and organic), and local adaptation would, therefore, have to
be implemented first, gradually followed by the principles of
CA (Sommer et al. 2013). The advantage of this approach
would be that CA principles could be implemented in stages
depending on the farmer’s ability. The disadvantage would be
that incomplete CA systems (e.g., adoption of minimum tillage
only) can lead to more negative effects (e.g., soil crusting or
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Fig. 3 The importance and contribution of good agriculture practices to
the functioning of conservation agriculture, as displayed in a web of
interactions with good agriculture practices. The green arrows show
generally positive effects on the processes while red dotted arrows

sealing) than gains (Giller et al. 2015; Baudron et al. 2012b),
potentially discouraging farmers in the adoption process.

Other CA practitioners agree that basic good agricultural
practices are necessary for the successful implementation of
CA but propose an integration of all CA principles at once,
starting from a small and manageable land area in the farm
(e.g., 10% of the farm) where the CA systems can be expand-
ed from (Thierfelder et al. 2013c; Wall 2007). The advantage
of this strategy would be that the full benefits of CA could be
reaped quickly, although the increased knowledge require-
ments to master the full CA system at once could hamper
faster adoption (Giller et al. 2009). In addition, farmers may
not be able to expand beyond plot level for some time using
this approach.

This paper therefore aims at understanding how adequately
supportive agricultural practices complement CA systems in
their biophysical functioning and why they are needed under

show negative effects. Black arrows show yield-limiting and yield-
reducing factors. The overall effects are directed towards actual,
attainable, and potential yields based on Van Ittersum and Rabbinge
(1997)

the conditions of southern Africa. We start with fertilizers and
manures, followed by seed and plant population, before
highlighting the importance of crop chemicals, alternative
sources of mulch and diversification strategies, tools and ma-
chinery, and the importance of timely planting. We end the
paper with a summary of enabling factors—both political and
institutional—that are required to scale CA systems more
effectively.

2.1 Appropriate nutrient management

2.1.1 Mineral fertilizer

The use of mineral fertilizers is a major component of
modern agriculture and has been promoted since the the-

oretical background was provided by Justus Liebig and
Carl Sprengel in the nineteenth century (van der Ploeg

IN?A @ Springer

SCIENCE & IMPACT




16 Page 6 of 22

Agron. Sustain. Dev. (2018) 38: 16

Fig. 4 Total annual nitrogen, N “S:SL" 'fg hat .

phosphate (P,O5 equivalent) and

potassium (K,O equivalent) 300 1

fertilizer consumption (kg ha ") 250

from 1961 to 2012 for various 200

regions of the world (source IFA 150 1

(2013), as cited by Sommer et al. Burope

(2013) and land use data from 100 1

FAOSTAT (2017)) 50 - Africa
0 ——

1960 1970 1980 1990 2000 2010

et al. 1999). In fact, there is widespread consensus that
good and balanced nutrient supply is of vital importance
to sustain any agricultural system. Adequate crop nutri-
tion can be provided by mineral fertilizers, compost, or
manure. Under nutrient-limited conditions in southern
Africa, good fertilization, especially with nitrogen
(Vanlauwe et al. 2011), is essential for CA systems to
produce sufficient crop residues for surface mulching.

Crop residues that are commonly retained as soil cover
in CA systems are mostly cereal derived, and thus have,
unlike leguminous residues, a wide C/N ratio (Sakala
et al. 2000; Gentile et al. 2009). A wider C/N ratio means
that the organic resource contains a higher level of carbon
units as compared with nitrogen units, which generally
defines a lower-quality resource. A wider C/N ratio may
lead to nitrogen immobilization (also called N lock-up) in
the short term (Gentile et al. 2011), which calls for a
different fertilization strategy under CA. This strategy
may require a larger N dose or better fertilizer placement
during crop establishment while less would be required at
a later stage. The effect of N immobilization in maize has
been tested with a Minolta Chlorophyll meter in southern
Zimbabwe and shows that CA systems have an initially
lower chlorophyll content (i.e., insufficient available N for
the plant), which is later reverted, providing sufficient N
for the plant (Baudron et al. 2015¢).

Mineral fertilization in Africa has been promoted for de-
cades, and although its benefits are widely known and ac-
knowledged by farmers, its use has remained low (Fig. 4)
(Morris 2007; Sommer et al. 2013), like many other technical
innovations in Africa. In 2012, the average smallholder in
Africa used only 17 kg ha™' of mineral NPK fertilizer, the
lowest rate on all continents, despite it being hailed as one of
the most effective yield-enhancing technologies.

However, where CA systems performed well around the
globe (e.g., in the Americas and Australia), it has often been
associated with the need for high mechanization and good
access to and use of mineral fertilizer (Bolliger et al. 2006;
Kassam et al. 2009). This led to calls for building in a fourth
principle, “appropriate use of fertilizer,” to improve the feasi-
bility and functioning of CA systems (Vanlauwe et al. 2014),
although others disagreed (Sommer et al. 2014).

@ Springer

== INRA

T~ SCIENCE & IMPACT

P,0; use in kg ha! K,O use in kg ha'!

150 4 100 -
. East Asia
120 - East Asia 80 -
90 - 60 -
60 - 40 Europe
Europe
30 20 -
Africa Africa
—_—
0 T t t T T 0 —

1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010

The challenge for widespread mineral fertilizer use in CA
systems in Africa is that smallholders are cash-constrained
and struggle to acquire the necessary inputs at the onset of
the planting season. Yet, this is only valid for farmers who
are not recipients of a fertilizer support or subsidy program,
such as the ones in Zambia or Malawi (Mhango and Dick
2011; Dorward and Chirwa 2011). Legumes in the rotation
in CA systems are traditionally not fertilized, despite showing
great response to phosphorous fertilization (Zingore et al.
2007; Waddington et al. 2007). Improving the access to
phosphorous-based fertilizers could therefore help farmers
reap additional benefits from legume rotations which could
be measured through higher maize yields in cereal-legume
rotations (Thierfelder and Wall 2010b).

Conservation agriculture systems may overcome the sole
dependency on mineral fertilizers over time as diversification
and residue retention will gradually improve soil nutrient
stocks and crop productivity, allowing for a reduction in min-
eral fertilizer use in the long term. In summary, the use of
sufficient nutrient supply is critical to generate enough bio-
mass in CA systems and to overcome nutrient deficiencies.

2.1.2 Organic manures and compost

Organic manures and composts are traditional amendments
(Ouédraogo et al. 2001) often used in combination with min-
eral fertilizers in smallholder farming systems, including CA
(Ito et al. 2007; Rusinamhodzi et al. 2013). Because many
smallholder farms in southern Africa are mixed crop-
livestock systems (Murwira 1995; Valbuena et al. 2012), ma-
nure from cattle or other livestock that accumulates in the
fields or in enclosures (locally called kraals: the South
African word for fenced enclosure), provides an important
source of organic fertilizer (Rusinamhodzi et al. 2013). For
African smallholders, manure is a supplement to mineral fer-
tilizer and an important source of nutrients (Bekunda et al.
2010), despite being variable in its quality (Lekasi et al.
2003; Harris 2002).

However, limited biomass regrowth and a long dry season
set the limits for widespread use of manure in CA systems as
cattle do not “produce” fertilizer but reallocate nutrients in the
landscape. Approximately 1 ton (dry weight) of manure is
produced every year by a fully grown head of cattle, which
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needs to be raised and fed with at least 1.8 t of biomass dry
weight year ' (Baudron et al. 2015b). Unless smallholder
farmers have access to extensive grazing land, crop residues
are not enough to feed such high amounts of biomass to cattle,
even using the most efficient management.

Challenges with manure use in CA systems are that: (a) it is
not plowed in with a moldboard plow as in conventional sys-
tems—it has to be applied either in basins or rip-lines and/or
needs to be applied after direct seeding as basins and rip-lines
do not incorporate the manure, which may lead to partial in-
efficiencies in the mobilization, access, uptake, and cycling of
nutrients from manure (Powell et al. 2004; Rufino et al. 2006);
(b) large quantities of nitrogen are excreted through urine and
are lost through volatilization unless livestock are kept in
kraals, which increases pH and P availability (Powell et al.
2004); (c) the N/P ratio of livestock manure is often different
from the N/P requirement of plants leading to shortfalls in N
and surplus in P (Powell et al. 2004). Manure handling and
prevention of N loss are, therefore, important and often
neglected interventions to improve the quality of manure
and increase the efficiency of its use (Rufino et al. 2006).

Another organic resource available for use under CA and
accessible for smallholders is compost, which is frequently
produced by smallholders on a small scale and used for horti-
cultural crops. However, with few exceptions, the amounts of
nutrient-rich biomass with a narrow C/N ratio (e.g., from le-
gumes) available for composting are usually small. This often
limits the use of compost for field crops on a large scale, as
compost making is very labor intensive. The most abundant
organic materials available are cereal residues with a wide
C/N ratio and low nitrogen content (Gentile et al. 2011), which
often leads to minimal response by the crops if not enriched by
animal manure, nitrogen, or leguminous residues.

In summary, organic manures and compost are a viable
alternative to mineral fertilizer but availability and variability
in their quality are major constraints to their widespread adop-
tion by smallholder farmers in southern Africa.

2.2 Improved stress-tolerant varieties and plant
population

2.2.1 Stress-tolerant varieties

Seed is a crucial agricultural input whose genetic potential
determines the upper yield limit in crop performance and pro-
ductivity (Cromwell 1990). Genetics determine the ability of
varieties to resist both biotic and abiotic stresses (Almekinders
and Louwaars 1999). Varieties with resistance to biotic and
abiotic stresses are particularly relevant for CA systems.
Through crop residue retention (which leads to a more humid
micro-climate at the soil surface) a range of foliar diseases,
enhanced by fungi and bacteria, become an important factor
potentially affecting crop yields. The use of tolerant or

resistant varieties provides the most effective and economical
ways of controlling diseases, which can help control foliar
diseases in CA systems (Thierfelder et al. 2015¢). Resistant
varieties are more durable, reduce crop losses and require
limited use of chemicals (pesticides) that could negatively
affect human health and the environment (Nelson et al. 2011).

Other stresses that affect crop production in southern
Africa, where CA can make a positive impact, are abiotic
stresses, which include drought, salinity, and poor soil fertility.
For example, the 2015/2016 El Nifio-induced drought was the
most severe on record in eastern and southern Africa. The El
Nifo left many farmers food insecure as their major staple
crop was affected by drought and the late onset of rains.
This also severely affected the price of grain (FAO 2016;
OCHA 2017). Improved stress-tolerant seed, when used in
combination with CA, can mitigate yield loss and improve
the resilience of agriculture systems (Arslan et al. 2014). In a
study across 13 communities in Mozambique (Table 1), the
response of different varieties (e.g., local variety without fer-
tilizer, local variety with fertilizer, improved open pollinated
varieties, and hybrids with fertilizer) was tested under two
different cropping systems (conventional agriculture and
CA). Variety response showed significant yield benefits to
growing each type of variety under the different cropping
systems. Yield gains of 330% or 3527 kg ha™' were recorded
between the local variety without fertilizer under conventional
agriculture and the improved hybrid with fertilizer under CA.

Beside stress tolerance, breeders have also developed vari-
eties that are more efficient in using nitrogen. These varieties
can capture more N from the soil and utilize the absorbed N
more efficiently (Good et al. 2004), thereby reducing the cost
and application of N fertilizers (Rengel 2002). More N-
efficient varieties can be beneficial in CA systems in which
early season N-uptake is an issue.

In summary, the availability of stress-tolerant seed with
various traits is essential for achieving high crop productivity
and will help farmers in a wide range of environments and CA
cropping systems to increase productivity, reduce risks of crop
failure caused by pests and drought, and increase overall farm
income. The combined use of drought-tolerant varieties with
more “climate-smart” CA systems can lead to greater benefits
under a changing climate than practicing each technology in
isolation.

2.2.2 Plant stand and population

Plant stand and population are critical components in success-
ful crop establishment and final yields of a crop. When CA
systems are seeded with animal traction or tractor-powered
seeding systems, the placement of the seed through mulch is
critical and shows how effective and well-adapted a seeding
system is to a specific CA system with crop residues, stubbles
or living mulch in the field. The desired plant population is
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Table 1 Yield response of

different types of maize varieties Cropping system Fertilization Variety Type Grain yield (kg ha-1)
to cropping system and
fertilization in 13 on-farm target Conventional agriculture — fert Matuba Local 1070 h
communities (N = 286) + fert Matuba Local 3002 f
Mozambique 2013-2015 + fert ZM309 OPV 3274 of
+ fert ZM401 OPV 3110 wf
+ fert ZM523 OPV 3260 ef
+ fert ZM625 OPV 3502 de
+ fert PANS53 Hybrid 3715d
+ fert Pristine601 Hybrid 3466 de
Conservation agriculture — fert Matuba Local 1601 g
+ fert Matuba Local 3830 cd
+ fert ZM309 OPV 4289 ab
+ fert ZM401 OPV 4221 abc
+ fert ZM523 OPV 4177 be
+ fert ZM625 OPV 4406 ab
+ fert PANS3 Hybrid 4597 a
+ fert Pristine601 Hybrid 4430 ab
LSD (P<0.05) 459

Means followed by the same letters in a column are not significantly different at P < 0.05 LSD test. Adapted from

Thierfelder et al. (2016b)

fert, fertilizer; local, local open-pollinated variety; OPV, improved stress-tolerant open-pollinated variety; Hybrid,

improved stress-tolerant hybrid.

largely dependent on agro-ecology (e.g., rainfall, soil type)
and the cropping systems used. Traditionally, farmers in
Mozambique have been planting in crop spacings of 1 m x

1 m and planting bushels of five to eight seeds per hill (Diaz
2012, personal communication). The rationale is that farmers
find it easier to weed in such fields with greater spacing at the
expense of lower crop yields. One of the interventions by
Sasakawa Global 2000 in Malawi and Mozambique was the
introduction of row planting with a high population density of
75 cm between rows and 25 cm within row (Ito et al. 2007,
Valencia et al. 2002). This intervention, implemented in com-
bination with CA, was later referred to as the “Sasakawa spac-
ing” which led to an increase in yield, especially in Malawi,
and is now the dominant plant spacing countrywide (Ngwira
etal. 2013). The use of improved plant spacing for any crop is,

therefore, a key step towards enhancing yields for any given
agro-ecology.

Planting spacing under CA can also be more advantageous
for legume crops, such as in the example from Malawi, where
farmers traditionally grow crops on annually dug ridges
(Thierfelder et al. 2013b) with a fixed row spacing of 75 to
90 cm. Several leguminous crops (e.g., groundnuts and soy-
beans), however, achieve greater productivity under higher
plant population. Under CA, crops are not planted in annual
ridges but on the flat, allowing for more flexible row spacing.
For groundnuts, the recommended row spacing has therefore
been reduced to 37.5 cm, doubling the plant population
(Bunderson et al. 2017). This increased yield (Table 2), re-
duced rosette disease, which is more common in convention-
ally ridged groundnuts, and gave more groundcover, thereby

Table 2 Mean groundnut yield
planted under conventional ridge
tillage and two conservation
agriculture cropping systems with

improved plant spacing

Treatments Harvest year

2012 2013 2014 Average
Conventional ridge tillage, groundnut-maize 1453 b 639 b 824 b 821 b
Conservation agriculture, groundnut-maize 2126 a 1476 a 1457 a 1536 a
Conservation agriculture groundnut-maize/legume 2196 a 1524 a 1496 a 1586 a
LSD (P<0.05) 412 263 225 206

Notes: means followed by the same letters in column are not significantly different at P < 0.05 LSD test. Adapted
from Bunderson et al. (2017). The first two treatments are implemented with a continuing maize-groundnut
rotation while the third treatment also has a legume intercrop in the maize phase
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conserving more soil moisture and reducing erosion
(Bunderson et al. 2017).

Increasing plant population also plays a significant role in
controlling weeds using crop competition as a management
practice (Mhlanga et al. 2016a). The use of a denser plant
spacing encourages faster canopy cover and hence controls
weeds more effectively (Teasdale 1995). This may also stim-
ulate maize productivity, lead to greater yields (Anderson
2000), and is particularly important under CA, where initial
weed control is critical as the soil is not plowed (Mhlanga et al.
2016a). In summary, adjustments to plant spacing are an effi-
cient way to increase crop yields and offer additional benefits
under CA when legume crops can be planted under more
optimal plant spacings.

2.3 Crop chemicals
2.3.1 Pest and disease control under CA

The use of agricultural chemicals in crop production (e.g.,
foliar chemicals) and for crop protection (e.g., insecticides
and fungicides) is sometimes inevitable to support CA sys-
tems. Their judicious use forms part of an integrated pest
management (IPM) strategy (Ehler 2006). Crop chemicals
may be needed in CA systems to control carry-over of pests
in the residues, to manage specific pests attracted to no-tillage
conditions, and to reduce foliar diseases.

Most cropping systems in the tropics and subtropics are
invaded by phytophagous insects and disease-causing fungi
and bacteria, and these need to be controlled if they exceed an
economic threshold. Positive and negative (Knogge 1996)
shifts in incidences of pest and disease attack, damage and
effects on crop yields have been reported under CA
(Howard et al. 2003; Gourdji et al. 2013). Hobbs et al.
(2008), among other scholars, mentioned an increase in ben-
eficial insects in south Asia such as large and predatory bee-
tles, spiders, ants, wasps and earwigs under CA due to ground
cover and reduced tillage, as the micro- and meso-
environment can harbor those beneficial insects.

Decreased disease incidences due to breaking of disease
cycles through rotations and antagonistic effect of a diverse
microbial community on soil pathogens have also been
reported by Hobbs et al. (2008) and Mupangwa (2009).
However, as mentioned above, studies also reported the in-
crease in foliar diseases in cereals under reduced or no-tillage
and residue retention (Bailey 1996) as well as emergence of
new pathogens (Howard et al. 2003).

This suggests that the implementation of CA principles
alone is not sufficient for the control of pests and diseases,
and this calls for an IPM approach, which includes the com-
bined use of resistant varieties, judicious use of agrochemi-
cals, biological control methods, and agronomic practices
(Ehler 2006; Owenya et al. 2011).

Increasing environmental concerns and bans on some of
the chemical products have facilitated research on biological
control of pest through intercropping, hedgerows, and push-
pull systems (Hassanali et al. 2008; Cook et al. 2007), which
are very compatible with CA systems and often cheaper than
chemicals. By nature, CA systems foster biodiversity that may
lead to increases in pests but also the proliferation of natural
enemies of pests (Jaipal et al. 2002) that potentially lead to
increased biocontrol (Chenu et al. 2011). However, there are
also risks that pupae of specific pests can multiply more rap-
idly in soils that are not tilled (Jobbagy and Jackson 2000) or
are attracted by abundant decaying organic material, such as in
the case of the white grub (larvae of Phyllophaga ssp. and
Heteronychus spp.), which has been highlighted as a potential
pest under CA (Thierfelder et al. 2015c¢). Biological control is
slow, and depends largely on the populations of both predators
and the pests, which may be too imbalanced to suppress pest
populations (Howard et al. 2003). In crisis situations, the use
of crop chemicals is often inevitable to control pests and
diseases.

In seasons of excessive rainfall, some soils under CA are
prone to waterlogging (Thierfelder and Wall 2009). Due to
excessive moisture, the proliferation of diseases increases
(Linn and Doran 1984). In such conditions, most legumes that
are integrated in CA systems for diversification of plant asso-
ciations suffer fungal attacks, thus requiring the use of fungi-
cides to control disease. Furthermore, legumes (e.g., cowpeas)
are more frequently attacked by leaf eaters and aphids; hence,
it may be important to spray insecticides to control them
(Jackai and Adalla 1997).

In summary, and in the absence of alternative ecological
control measures practiced in more holistic farming systems,
crop chemicals form a necessary part of crop protection in all
farming systems, including CA. However, these have to be
used with great caution as misuse may result in harm to crops,
livestock, humans, and other untargeted faunal species
(Bussiere and Cellier 1994). Attention needs to be placed on
the correct timing and dosage, as well as the mode of action
for effective pest control and spraying of chemicals, which
requires significant training and support by the extension ser-
vices available to farmers.

2.3.2 Weed management and their control

Weed management is an essential agronomic practice as
weeds can lead to crop yield reductions of up to 90% (Nair
et al. 2009). Shifting to CA is associated with changes in the
microenvironment, which in turn affects the spectrum of
weeds that will emerge (Grant et al. 1989). Weed biomass
and spectrum are mostly affected by soil fertility and fertiliza-
tion, although mulching under CA can also suppress weeds
(Mtambanengwe et al. 2015). However, providing a range of
organic amendments of different qualities may also reduce the
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competition between crops and weeds through “niche differ-
entiation” (Radosevich et al. 1997). The uncertainties associ-
ated with weed dynamics in CA systems highlights the need
for more research on weed control in southern Africa (Lee and
Thierfelder 2017).

In southern Africa, weed management is mainly based on
the use of the hand hoe (Vogel 1994), and, although widely
used, it is labor intensive (Muoni et al. 2013), places greater
burdens on women and youth, and is often untimely imple-
mented (Thierfelder et al. 2015¢). Alternatively, the integra-
tion of green manure cover crops (GMCCs) either as rotation-
al or relay crops has been reported to be effective in weed
control, although an understanding of the mechanisms by
which they suppress weeds is necessary (Mhlanga et al.
2016b, a). In southern Africa, the use of GMCCs in weed
control is limited by land holding size, availability of
GMCC seeds and their markets, and available soil moisture
to grow the crops, among other reasons (Thierfelder et al.
2013a).

An integrated weed management program under CA can be
effective and the use of herbicides is viewed as an important
component of it, despite the efforts by many organizations to
reduce their use (Swanton and Murphy 1996). When used
properly, herbicides are the most effective way of controlling
weeds as compared with other methods (Chhokar et al. 2007;
Muoni et al. 2013, 2014). Herbicides have different modes of
action in controlling weeds (e.g., contact, systemic, soil ster-
ilizing) and may be either selective or non-selective. An un-
derstanding of herbicides is essential for their successful ap-
plication to ultimately lead to a reduction in weed populations
under CA. For example, the application of a contact herbicide
is not as effective when controlling weeds that propagate
through rhizomes with a stoloniferous growth habit, such as
couch grass (Cynodon dactylon L), since contact between her-
bicide and underground rhizomes is limited (Varshney et al.
2012).

Herbicide use in CA systems of southern Africa has be-
come more frequent (Ito et al. 2007), although access to her-
bicides and information on how to use them remains a chal-
lenge (Muoni et al. 2013). If farmers use herbicides in south-
e Africa, they often apply glyphosate [ N-(phosphono-meth-
yl) glycine] as a weed post-emergent application to kill off all
weeds at the beginning of the season (Ngwira et al. 2013).
This practice is effective but there are suggestions that this
should be coupled with the use of selective herbicides as
post-emergent applications to achieve an all-season weed-free
environment. Muoni et al. (2013) have shown that simulta-
neous mixing of several herbicides in a knapsack sprayer with
different modes of action and selectivity is more effective and
economic in controlling weeds as compared to using individ-
ual herbicides and hand hoe weeding alone.

In Malawi, the use of herbicides was an important entry
point for farmers to adopt CA (Ngwira et al. 2013, b;
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Thierfelder et al. 2013b). However, herbicides only address
a critical need to reduce farm labor by women and children
and are not a prerequisite for successful application of CA on
smallholder farmers’ fields. Studies in Malawi, for example,
showed that herbicide-assisted weed control had equally high
yields than plots without herbicides as long as the manual
weed control was done in a timely manner (Nyagumbo et al.
2016). Other observations from Malawi showed a reduction in
the parasitic weed striga (Striga asiatica (L.) Kuntze) on CA
fields, which was partially due to an increase in soil fertility
and complete control by herbicides. The decrease in weed
pressure has been shown on trials in Zimbabwe where weed
pressure was reduced over a period of four cropping seasons
(Muoni et al. 2014).

In summary, judicious use of herbicides can support
farmers in the initial stages of conversion from conven-
tional systems to CA. However, it is important that
farmers receive adequate training on safe use and han-
dling of these products. Once weed pressure decreases,
the use of herbicides can be scaled down (Mhlanga
et al. 2015a; Skora Neto 1993).

2.4 Increased groundcover and diversification
2.4.1 Groundcover with alternative material

Soil cover is critical for CA (Thierfelder and Wall 2009)
although the amount of biomass that farmers can retain is
often limiting. No-tillage without soil cover can be more
detrimental in some circumstances than the traditional
practice as this may lead to soil crusting and sealing; the
more the soil can be covered, the better the performance
of CA will be in the longer term (Govaerts et al. 2005).
Cereal residues, left on the field after harvesting or ap-
plied at the beginning of the cropping season after tem-
porary removal, are the predominant source of soil cover
for CA systems practiced in southern Africa (Thierfelder
et al. 2015b). However, challenges of free grazing during
the dry season, low biomass production in the cropping
systems, and the multi-purpose use of crop residues on
smallholder farms, lead to the scarcity of residues in
southern Africa for all desired uses with significant
trade-offs involved (Duncan et al. 2013; Mupangwa and
Thierfelder 2014; Valbuena et al. 2012).

Alternative mulching strategies are critical for the future of
smallholder CA systems in order to derive the full benefits of
the three pillars of CA. However, intensifying livestock pro-
duction and closing the maize yield gap, as suggested by
Baudron et al. (2014), can also reduce the amount of fodder
needed and increase the overall available biomass, thus en-
abling more retention of generally lower-quality cereal resi-
dues on the soil surface. Residues of other plant species found
in the forests, on contour strips or rangeland around
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smallholder farms can also be utilized as soil cover, although
the labor burden to import residues makes it an unattractive
option to some farmers. Smallholders in southern Africa apply
residues of different grass species, litter (mixture of leaves and
twigs) from the indigenous trees, and litter from fruit trees
planted around homesteads (Nyamangara et al. 2009; Nyathi
and Campbell 1993; Mtambanengwe and Kirchmann 1995;
Musvoto et al. 2000). Litter derived from Uapaca kirkiana
(Benth), Brachystegia spiciformis (Benth), and Julbernardia
globiflora (Benth) trees, and thatching grass (Hyparrhenia
filipendula (Hochst (Stapf)) are commonly used by small-
holders for soil fertility restoration and mulching in southern
Africa (Nyathi and Campbell 1993; Mupangwa et al. 2016b).
Fully mature thatching grass is often not completely grazed by
livestock because of its high lignin content, making it avail-
able for other purposes, including construction and mulching
on the farm. Residues can also be availed from leguminous
species, such as pigeonpea (Cajanus cajan (L.) Millsp.),
sunnhemp (Crotalaria juncea L.), common rattlepod
(Crotalaria grahamiana L.), and fish bean (Tephrosia vogelii
L.), whose stover can be slashed and left on the soil surface
after they have senesced (Sakala et al. 2000; Nyamangara and
Nyagumbo 2010; Mupangwa et al. 2016b).

Alternatively, living mulches derived from herbaceous and
non-herbaceous cover crop species, relay intercropped into
cereal-dominated cropping systems, are a promising solution
for CA systems in southern Africa (Mupangwa and Thierfelder
2014; Mhlanga et al. 2016b). Common herbaceous cover crop
species adapted to southern Africa include velvet bean (Mucuna
pruriens (L.) DC.), lablab (Lablab purpureus (L.) Sweet) and
jack bean (Canavalia ensiformis (L.) DC.), all of which provide
soil cover during the cropping period and beyond (Waddington
2003; Mhlanga et al. 2015b; Odhiambo et al. 2010).

2.4.2 Agroforestry

Conservation agriculture cropping systems benefit from the ad-
dition of tree-based elements, which support the system’s func-
tioning, diversification, and resilience (Garrity et al. 2010; Mutua
et al. 2014). Residue retention, one of the key principles of CA,
can be improved by trees and shrubs which provide additional
biomass for surface retention. In addition, the nutrient status of
field crops can be enhanced through trees in the landscape
(Baudron et al. 2017). The same applies for the principle of crop
diversification as trees provide a more variable and diverse hab-
itat. A range of tree species have been shown to integrate well
into CA farming systems (ICRAF 2009). These systems have
been promoted under the umbrella of evergreen agriculture as
well as a system labeled as “CA with trees” (Lahmar et al. 2012;
Garrity et al. 2010; ICRAF 2009). Here, the supporting elements
are leaves, shade and additional groundcover from tree prunings
that can overcome the shortcomings of CA systems based on
maize residue retention alone.

Two species have been tried extensively by various orga-
nizations. The integration of the winterthorn tree (Faidherbia
albida Delile A. Chev.) is seen as a successful example on
how both crops and trees can coexist. Faidherbia trees have
areverse phenology and shed their leaves during the cropping
season while they have their full canopy during the dry winter
season. Systematic integration of Faidherbia into CA farming
systems shows that cereal yields can be enhanced while min-
eral fertilizer rates can be reduced (Bunderson et al. 2002;
Garrity et al. 2010). The deep rooting trees start to benefit
the soils after 9—10 years and recycle nutrients from deeper
layers to the soil surface. However, the reverse phenology
only happens when trees have access to groundwater and
when they are not pruned excessively. This may lead to com-
petition between trees and crops for some years. An invest-
ment into planting trees requires secure land-use rights and
tenure systems as otherwise, this investment will not be attrac-
tive to farmers.

Another good example of integration of agroforestry
species is the use of Gliricidia (Gliricidia sepium (Jacq.)
Walp.) in CA systems in eastern Zambia (Lewis et al.
2011). There Gliricidia is planted in rows 5 m apart with
a close in-row spacing (about 1 m), and the trees are
pruned every year to make use of the nutrients in the
leaves (Lewis et al. 2011). This provides the necessary
soil fertility, ground cover and supports cattle feeding.
Like Faidherbia, Gliricidia is a leguminous tree and its
leaves are rich in N content (Mafongoya et al. 2011).
Maize or groundnuts that can be planted in the 5 m
inter-row space and will benefit from the pruned leaves
to an extent that NPK fertilizer can be reduced.

In the last decade, there has been renewed interest in south-
ermn Africa to invest in these greener technologies given the
high price of mineral fertilizer and/or lack of access to it.
However, critical lessons have to be learned from West
Africa where alley cropping was promoted for more than
40 years (Kang et al. 1990; Sanchez 1995) with documented
increases in productivity and profitability (Buresh and Tian
1997; Ehui et al. 1990) but disappointingly low adoption rates
of the technology (Adesina 1999). Constraints identified were
insecure property rights (over land and trees), increased labor
demands, a long lag time between the establishment and the
accrual of benefits, competition for production resources
(light, water, and nutrients) above- and below ground, and
difficulties to adapt some of the species (trees and shrubs) with
food crops (Atta-Krah and Sumberg 1988; Carter 1995;
Sanchez and Hailu 1996).

In summary, CA systems can significantly benefit from
the biomass contributions of tree-based components. Yet,
agroforestry systems are more likely to be adopted in sit-
uations of high soil fertility decline, with erosion prob-
lems, and where fuelwood and fodder are scarce and in
high demand (Adesina 1999).
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2.5 Increased efficiency of planting
and mechanization

2.5.1 Timely operations

The use of modern CA seeding systems and technologies
often allows for timely planting as the land does not have to
be plowed beforehand. In addition, the weak condition of draft
animals at the onset of the cropping season after a long dry
season with inadequate feeding results in more difficult and
time-consuming primary land preparation with a moldboard
plow until the soil has been softened by the rains and/or the
animals have gained some strength. The limited availability of
draft animals also means that non-draft power owners have to
wait to rent oxen from their neighbors. This results in farmers
delaying planting until the draft animal owners have finished
their own fields.

Yield losses in maize of circa 5% week ' of delayed plant-
ing have been reported from Zimbabwe (Elliott 1989). In oth-
er studies at Mangwende Communal Lands of Zimbabwe,
delayed planting for more than 21 days reduced maize grain
yields by 32% (Shumba et al. 1989). Ox-drawn ripping sys-
tems combined with herbicides were found to be more effec-
tive in enabling timely planting in Mangwende, which result-
ed in increased grain yields on 13 out of 18 sites compared
with the conventional farmer practices (Shumba et al. 1992). It
is clear from the aforementioned results that the time of plant-
ing makes a significant contribution to ultimate yields under
rainfed conditions. Similar results were also reported from a
semi-arid region of Zimbabwe (Fig. 5), where simulated
maize yields showed the highest yield reductions due to de-
layed planting in fertilized maize treatments (Mugabe and
Banga 2001).

A more recent analysis of planting dates, based on avail-
able household labor data, shows that animal traction-based
CA and winter-prepared CA basins enabled farmers to plant
earlier (Nyagumbo et al. 2017). CA is therefore a very useful
intervention for farmers whose farm power is constrained for
land preparation. The reduced labor needed for seeding with a
ripper or direct seeder helps these farmers to be more labor
efficient during seeding and effectively make use of the nar-
row planting window. In addition, for those farmers who do
not own cattle, it is also more beneficial to prepare basins
during the dry winter season and reap the full benefits of a
complete cropping season once the first effective rains occur.

The aim in CA systems is therefore to: (a) disaggregate
labor peaks for planting from the onset of the rain or (b) to
use implements that allow for fast seeding after the first rains.
The planting basins system as recommended in Zimbabwe by
Oldrieve (ZCATF 2009) and in Zambia (Aagaard 2011) fol-
lows this logic as they enable planting with the first rains,
thereby making full use of the cropping season. The second
strategy is planting with direct seeding or rip-line seeding
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Fig. 5 Simulated maize grain yields (using the CERES crop simulation
model) under different fertilizer regimes in response to delays in planting
date, Romwe, Zimbabwe, Nov 1995-Feb 1996. Adapted from Mugabe
and Banga (2001)

systems that require less labor at the onset of the rainy season,
which allows for faster crop establishment (Nyagumbo et al.
2017). However, basin-based CA systems have had major
setbacks in both countries as the adoption has been considered
more “labor intensive” by smallholders while animal traction
CA systems have started to increase (Arslan et al. 2014,
Grabowski et al. 2014a, b; Umar 2014). In summary, timely
planting is critical for successful implementation of CA
cropping systems as yields are directly affected by delays in
planting.

2.5.2 Tools and machinery

Manual CA systems—using a planting stick (dibble stick) or
planting hoes (Sims et al. 2012)—have been adopted by many
smallholders in Malawi, Zambia, and Zimbabwe, but often on
small areas due to labor constraints (Mazvimavi et al. 2009;
Ngwira et al. 2014a). As a result, there has been a major push
to introduce new tools on smallholder farms to increase pro-
ductivity and reduce farm labor throughout the last two de-
cades, (Sims et al. 2012). This started with the introduction of
hand planter systems such as jab planters, but increasingly
with animal traction planting and seeding equipment such as
the Magoye ripper, the Palabana subsoiler, and animal traction
direct seeders (Sims et al. 2012). With these interventions, the
primary interest was to modify existing tools at minimal cost
to plant under no-tillage conditions, increasing labor produc-
tivity while reducing soil disturbance. Increased maize pro-
ductivity has been measured with animal traction CA equip-
ment and documented in Zimbabwe and Zambia (Mupangwa
et al. 2016a; Thierfelder et al. 2015b). This is particularly
evident with the ripper tine attachments that can easily be



Agron. Sustain. Dev. (2018) 38: 16

Page 130f 22 16

fitted onto a traditional plow beam while requiring only a
moderate investment of approximately US$25 per attachment.
Ripper attachments can also be made out of scrap metal by a
local artisan making its access more feasible. Other animal
traction direct seeders from Brazil have been successfully test-
ed by researchers in the region (Thierfelder et al. 2015b), but
their widespread uptake has been limited by low demand of
smallholders, lack of local manufacturing and credit, and eco-
nomic crises that periodically hit southern African economies.

Draft animals to pull animal traction equipment, tend to be
concentrated in few areas, e.g., where cattle diseases are rare
(Sims and Kienzle 2006) and animals find enough fodder to
survive the winter season. In many parts of southern Africa,
diseases such as trypanosomiasis and tick-borne diseases (e.g.,
Theileriosis East Cost Fever) limit the number of draft ani-
mals. Even in areas where draught animals are common, their
numbers are in decline because of increased feed shortages,
especially during the dry winter season and droughts, and/or
due to emerging diseases (Mrema et al. 2008). Thus, many
farmers require additional available power sources.

Throughout the last 5-10 years, a quiet revolution on
smallholder mechanization has started to emerge in southern
Africa (Baudron et al. 2015b). Unlike interventions of the
1950s and 1960s, where large tractor schemes with unviable
business models and undesirable consequences on farm labor
and the environment were run by African governments, the
drive has gone towards more “appropriate-scale” mechaniza-
tion. Based on the precondition that great impediments to
practice CA are lack of farm power, labor constraints, and
water limited situations (Baudron et al. 2015c¢), the introduc-
tion of small two-wheel tractors with associated equipment
has started to happen (Baudron et al. 2015b). In summary,
more efficient seeding systems powered by two-wheel tractors
will allow farmers to practice CA on a larger scale without
being limited by manual labor or animal traction. Labor sav-
ing technologies, as offered by animal traction seeding sys-
tems and/or two-wheel tractors can address labor shortages
and critical draft power needs in farming communities.

2.6 An enabling institutional, social, and economic
environment

Unlike Latin America, where no-tillage planting systems
were developed by farmers and extended through farmer
organizations (Bolliger et al. 2006), CA promotion in
southern Africa was mostly driven by research and devel-
opment organizations and farmers’ unions (Twomlow
et al. 2006a; Mashingaidze et al. 2006; ZIMCAN 2012).
A positive and enabling institutional environment has
played a key role in southern Africa to mainstream CA
in the political development agenda although it should be
highlighted that the implementation of favorable policies
has been limited due to weaknesses and financial

constraints in local governments, thereby hampering the
process. Zambia, for example, issued a supporting policy
in 1999 (Haggblade and Tembo 2003; Baudron et al.
2007). Zimbabwe formed the first CA task force in 2003
and developed an investment framework in 2011/2012
(AMID 2012) which developed CA guidelines
(ZIMCAN 2012; ZCATF 2009). Many countries in south-
ern Africa followed with their own formation of national
CA task forces (e.g., Mozambique, Malawi, Namibia,
South Africa, Zambia, and Tanzania, among others).
Malawi officially released CA as an “approved technolo-
gy” in 2013 (Ligowe et al. 2013) and consequently, the
development of comprehensive guidelines for CA imple-
mentation followed (NCATF 2016). All these have sup-
ported the wider discussion about CA systems and its
diffusion, although its strong political backing has also
been looked at more critically in recent years as they did
not translate into widespread uptake (Dougill et al. 2016;
Whitfield et al. 2015).

Lack of functional input and output markets for various
crops and machinery has been highlighted as an impediment
to the widespread adoption of rotational crops, increased di-
versification and mechanization (Thierfelder et al. 2013a).
However, this is not unique to CA and requires a more holistic
approach to sustainable agricultural intensification at the gov-
ernment level, which has recently been formulated for Zambia
(Arslan etal. 2017). Furthermore, the lack of directives against
“free hand-outs” by different institutions and their often un-
timely distribution have been found to contribute to poor pro-
ductivity in rainfed systems in Zimbabwe (Nyagumbo and
Rurinda 2012).

Uncoordinated extension with contradicting extension
messages could be one of the reasons why CA uptake in the
region has been (s)low (Bunderson et al. 2017). Indeed, the
drive for change and enthusiasm by an extension officer plays
a critical role in behavior change among smallholder farmers.
This requires strong capacity building of existing extension
services to promote the principles and practices of CA.
Furthermore, it has become clear in the promotion of more
complex technologies, such as CA, that there is need for a
different extension approach as compared with the linear ex-
tension of a component technology, such as fertilizer or seed
(Thierfelder and Wall 2011; Ekboir 2002). In addition, CA
systems require a change in the way crops are seeded, knowl-
edge about residue retention, weed control, different crop va-
rieties, machinery, and harvesting procedures. These are crit-
ical for the success of CA cropping systems and need to be
acquired by the farmer, which often requires a different and
more participatory way of extension to enable widespread
adoption.

New ways of extension have been explored in innovation
systems or platforms (Misiko 2017) where multiple players
jointly work on adapting CA systems to the needs and
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Table 3

Summary of good agriculture practices and approaches to support CA cropping systems in southern Africa

Practice/technology

Beneficial effect

Challenge

Mineral fertilizer use

Farm yard manure

Organic compost

Improved
stress-tolerant seed

Plant stand and
population

Crop chemicals

Weed management and
control

Alternative
groundcover

Agroforestry

Tools and machinery

Timely operations

Enabling environment,
training, and

Boosts productivity, addresses nutrient deficiencies, and
overcomes N-lockup

Provides organic matter, in reach of farmers who own cattle,
improves granitic sandy soils, and supplies micronutrients

Beneficial for crops, improves SOM and fertility, and
improves water and nutrient-holding capacity

Essential for stable yields, resistant against major pest and
diseases, and selected under drought

Optimal plant stand makes best use of available resources,
planting on a flat field provides new options for legumes to
increase plant population

Can control pests and diseases effectively, essential to rescue a
crop during a pest outbreak, and can be part of an Integrated
Pest Management (IPM) strategy

Effective with a range of strategies, herbicide can be a
short-term solution that is especially beneficial for women
and children, and a range of products and solutions are
available

Can increase groundcover in cereal-based cropping systems

Provides shade, biomass material, soil fertility, produces
additional fodder, and provides shelter for insect predators

Labor-efficient and required to increase land area under CA,
service provider models, and can be used for off-field
activities (e.g., post-harvest operations, transport)

Enables making use of the full cropping season

Supports promotion where conflicting polices exist,
harmonizes extension messages and approaches, and

Availability and accessibility; affordability for
cash-constrained households; limited response on degraded
soils; eutrophication of streams and dams (though reduced
under CA)

Quantity is limiting; feed requirements for animals in the dry
season; manure handling and storage essential

Only possible on small scale; available biomass not sufficient
and of low quality; available plant material needs to be
enriched by animal manure

Accessibility, availability and affordability; lack of knowledge
about its benefits among smallholders

To dense plant stands limits intercropping; high population
may reduce yield due to competition for water and light

Non-targeted effects on beneficial organisms; may affect the
environment with negative spillover effects; requires cash
and a sprayer

May be harmful for humans and the environment; requires
cash and a sprayer

Degrades other landscapes through biomass transfer; labor
required to fetch litter

Labor burden to cut and carry; spatial limitations; farmer
perception about trees in agriculture fields

Requires initial capital; needs supply of spare parts and
replacement

Requires the right machinery and resources on time

Rigid extension approaches following fixed recipes; mixed
messages and lack of coordination

improved extension
necessary to adopt the principles of CA

required for farmers to acquire the knowledge and skills

environmental circumstances of the smallholder farmer.
Innovation systems are therefore recommended as one way
to achieve more sustained and widespread adoption of CA
(Thierfelder and Wall 2011). Experience from Latin America
and Southeast Asia have confirmed that the participatory in-
teraction of players in the innovation process are critical to
achieve buy-in and adaptation (Spielman et al. 2009; Ekboir
2002; Erenstein et al. 2012). Another successful extension
approach is the lead-farmer extension model, which has also
been tried and tested and led to significant adoption of CA
systems in Zambia and Malawi (Bunderson et al. 2017;
Corbeels et al. 2014). Scaling through mother and baby trials,
market led approaches, contract farming arrangements, farmer
field schools, farmer to farmer exchange, and demonstration
and field day approaches have recently been tried by various
organizations to boost adoption with variable success
(Sustainet 2010; Lewis et al. 2011; Mafongoya et al. 2016).
However, overall adoption of CA is still much lower in south-
emn Africa than in other regions of the world (Kassam et al.
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2015) which will require more research on selecting the best
diffusion mechanism and scaling approaches.

Better targeting, recommendation domains and ex ante anal-
ysis are important new tools and assessments to match CA tech-
nologies with the needs of smallholders in southern Africa (best-
fit), which operate in diverse and complex environments
(Tittonell et al. 2012). This also supports previous conclusions
that CA systems have to be tailored to farmers’ sites and circum-
stances (Knowler and Bradshaw 2007; Thierfelder et al. 2016a).

3 Conclusion

CA systems in southern Africa have been researched exten-
sively during the last three decades, and a considerable body
of knowledge has been summarized in recent years. The three
general principles are considered not sufficient to have func-
tional CA systems under the prevailing conditions of southern
Africa, as other supporting and complementary practices and
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enabling factors are required. This study sought to identify
important enabling factors that improve the benefit of CA
for smallholder farmers in southern Africa and to define how
these enabling factors enhance the feasibility of CA systems
for such farmers. We studied these factors and summarized
their beneficial effects and challenges (Table 3).

We find that CA systems require adequate fertilization
which can be achieved through mineral fertilizer, integration
of legumes, manure, or compost. However, while CA demon-
stration and trial plots have often received adequate nutrient
supply, smallholder farmers often lack the capacity to buy
sufficient amounts of mineral fertilizers and are therefore more
dependent on alternative resources and diversification
strategies.

Improved stress-tolerant varieties can support farmers prac-
ticing CA to address major crop diseases, pests, low N, and
drought, while offereing high yields. Combinations of im-
proved varieties with CA and other supporting practices lead
to incremental benefits. Row spacings under CA and new
opportunities to plant crops on flat fields allow farmers to
optimize crop yields and address specific plant population
needs by leguminous crops.

Despite environmental concerns, successful imple-
mentation of CA systems may require the use of some
crop chemicals to counter pests and diseases as part of an
IPM approach. However, judicious use of pesticides
should be stressed to avoid negative side effects on the
environment. As plowing for weed control is abandoned
under CA, there is an additional need for an integrated
weed control strategy. Weed control under CA can be
achieved through various cultural practices (e.g., manual
weeding, rotation/intercropping with competitive spe-
cies, and residue retention, among others). Chemical so-
lutions with herbicides could potentially be another op-
tion for labor-constrained smallholders, although their
use requires access, additional cash, and information on
how to use different products.

Residue retention and sufficient groundcover are required
to reap the full benefits of CA systems over time. In cereal-
based mixed crop livestock systems, this can be a great chal-
lenge as residues and other organic resources are in short
supply. Alternatives, such as leaf litter from trees, grass, green
manure cover crops, and even cuttings from agroforestry spe-
cies, can be used to enhance the level of biomass. Yet, all
resources used from other places require additional labor and
may lead to undesirable nutrient flows within the landscape,
which may cause increased degradation in some areas.

CA in southern Africa has mostly been promoted on a
small scale, leading to adoption of this system on only parts
of the farms. The introduction of appropriately scaled mecha-
nization through animal traction equipment as well as small
motorized options can overcome this bottleneck while ad-
dressing the urgently-needed increase in farm power.

Disaggregation of labor peaks through early preparation of
basins or rip-lines or faster establishment of crops through
animal traction and motorized solutions may support timely
operations and allow for utilization of a longer cropping sea-
son, which leads to greater yields.

An enabling political environment, appropriate extension,
and innovation in CA systems are essential for providing sup-
port in the promotion, dissemination of primary sources of
information, and adaptation of this relatively new cropping
system to southern African conditions. A more coordinated
extension program and updated trainings of extension services
may, however, be required in the future.

There is yet no clarity if a sequential implementation of CA
systems via a “ladder approach” would be more feasible to
farmers or an “all in one” approach, starting from a small scale
and growing from there to larger scales. Both approaches
seem to have their merits and limitations and should be more
carefully explored.

In summary, supporting good agricultural practices and
enablers are critical for making CA cropping systems more
feasible to smallholders in southern Africa. The integration of
supportive agricultural practices with CA cropping systems
should lead to narrowing the yield gap, which would define
how successful the application is. However, each of those
supportive agricultural practices has its own benefits and chal-
lenges when farmers start applying them (Table 3; Fig. 3). As
CA is a very flexible system spanning from manual planting
with a stick to tractor-drawn direct seeding, from maize
intercropping to very sophisticated rotation systems, it is a
mandatory requirement that CA systems are adapted to the
site and farmer conditions.
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