M. Brini, D. Ottolini, T. Cali, and E. Carafoli, Calcium in health and disease. Metal ions in life sciences, vol.13, 2013.

D. E. Clapham and . Signaling, Cell, vol.131, pp.1047-1058, 2007.

R. Yamanaka, Y. Shindo, and K. Oka, Magnesium Is a Key Player in Neuronal Maturation and Neuropathology, Int. J. Mol. Sci, p.3439, 2019.

A. M. Romani, Magnesium in Health and Disease, Interrelations between Essential Metal Ions and Human Diseases, pp.49-79, 2013.

J. H. De-baaij, J. G. Hoenderop, and R. J. Bindels, Magnesium in man: Implications for health and disease, Physiol. Rev, vol.95, pp.1-46, 2015.

J. E. Coleman, Zinc Proteins : Enzymes , Storage Replication Proteins, Annu. Rev. Biochem, vol.61, pp.897-946, 1992.

S. Frassinetti, G. L. Bronzetti, L. Caltavuturo, M. Cini, C. Croce et al., The Role of Zinc in Life: A Review, J. Environ. Pathol. Toxicol. Oncol, vol.25, pp.597-610, 2006.

J. L. Gifford, M. P. Walsh, and H. J. Vogel, Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs, Biochem. J, vol.405, pp.199-221, 2007.

A. Klug and J. W. Schwabe, Zinc fingers, FASEB J, vol.9, pp.597-604, 1995.

C. Hsiao and L. D. Williams, A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center, Nucleic Acids Res, vol.37, pp.3134-3142, 2009.

P. E. Mason, P. Jungwirth, and E. Duboué-dijon, Quantifying the Strength of a Salt Bridge by Neutron Scattering and Molecular Dynamics, J. Phys. Chem. Lett, vol.10, pp.3254-3259, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02151287

A. E. Martell and R. M. Smith, Critical Stability Constants 3: other organic ligands, 1977.

J. Bunting and K. M. Thong, Stability constants for some 1:1 metal carboxylate complexes, Can. J. Chem, p.1654, 1970.

F. Stumpff and J. A. Mcguigan, Measuring Ca2+ binding to short chain fatty acids and gluconate with a Ca2+ electrode: Role of the reference electrode, Anal. Biochem, vol.459, pp.46-52, 2014.

C. Bretti, K. Majlesi, C. De-stefano, and S. Sammartano, Thermodynamic Study on the Protonation and Complexation of GLDA with Ca2+ and Mg2+ at Different Ionic Strengths and Ionic Media at 298.15 K, J. Chem. Eng. Data, vol.61, pp.1895-1903, 2016.

J. A. Mcguigan, J. W. Kay, and H. Y. Elder, Ionised concentrations in calcium and magnesium buffers: Standards and precise measurement are mandatory, Prog. Biophys. Mol. Biol, vol.121, pp.195-211, 2016.

M. Emara, A. Farid, and A. Wasfi, Thermodynamics of Ionic Association in Aqueous Solutions of Ca and Mg organic salts using ion-selective electrode technique, Electrochim. Acta, vol.26, pp.1705-1708, 1980.

M. Wallace, T. Hicks, Y. Z. Khimyak, and J. Angulo, Self-Correcting Method for the Measurement of Free Calcium and Magnesium Concentrations by 1H NMR, Anal. Chem, vol.91, pp.14442-14450, 2019.

J. E. Tackett, FT-IR characterization of metal acetates in aqueous solution, Appl. Spectrosc, vol.43, pp.483-489, 1989.

F. Quilès and A. Burneau, Infrared and Raman spectra of alkaline-earth and copper(II) / acetates in aqueous solutions, Vib. Spectrosc, vol.16, pp.105-117, 1998.

W. W. Rudolph, G. Irmer, and . Raman, Spectroscopic Study of Aqueous La, vol.3, issue.2, p.3

L. Solutions, CH3CO2)3·1.5 H2O(cr), J. Solution Chem, vol.46, pp.190-214, 2017.

C. Y. Tang, Z. Huang, and H. C. Allen, Binding of Mg2+ and Ca2+ to Palmitic Acid and Deprotonation of the COOH Headgroup Studied by Vibrational Sum Frequency Generation Spectroscopy, J. Phys. Chem. B, vol.114, pp.17068-17076, 2010.

J. K. Denton, Molecular-level origin of the carboxylate head group response to divalent metal ion complexation at the air-water interface, Proc. Natl. Acad. Sci, vol.116, pp.14874-14880, 2019.

A. Wahab, Ultrasonic velocities, densities, viscosities, electrical conductivities, raman spectra, and molecular dynamics simulations of aqueous solutions of, Mg

, Mg(NO3)2: Hofmeister effects and ion pair formation, J. Phys. Chem. B, vol.109, pp.24108-24120, 2005.

A. Y. Mehandzhiyski, E. Riccardi, T. S. Van-erp, T. T. Trinh, and B. A. Grimes, Ab Initio Molecular Dynamics Study on the Interactions between Carboxylate Ions and Metal Ions in Water, J. Phys. Chem. B, vol.119, pp.10710-10719, 2015.

T. Martinek, Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering, J. Chem. Phys, p.222813, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104559

E. Duboué-dijon, P. E. Mason, H. E. Fischer, and P. Jungwirth, Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations, J. Phys. Chem. B, vol.122, pp.3296-3306, 2017.

Y. Marcus and G. Hefter, Ion pairing, Chem. Rev, vol.106, pp.4585-4621, 2006.

R. Caminiti, P. Cucca, M. Monduzzi, G. Saba, and G. Crisponi, Divalent metal-acetate complexes in concentrated aqueous solutions. An X-ray diffraction and NMR spectroscopy study, J. Chem. Phys, vol.81, pp.543-551, 1984.

J. Semmler, D. E. Irish, and T. Ozeki, Vibrational spectral studies of solutions at elevated temperatures and pressures. 12. Magnesium acetate, Geochim. Cosmochim. Acta, vol.54, pp.947-954, 1990.

L. Y. Wang, Y. H. Zhang, and L. J. Zhao, Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate, J. Phys. Chem. A, vol.109, pp.609-614, 2005.

H. Einspahr and C. E. Bugg, The geometry of calcium carboxylate interactions in crystalline complexes, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem, vol.37, pp.1044-1052, 1981.

M. M. Yang, D. A. Crerar, and D. E. Irish, A Raman spectroscopic study of lead and zinc acetate complexes in hydrothermal solutions, Geochim. Cosmochim. Acta, vol.53, pp.319-326, 1989.

A. K. Katz, J. P. Glusker, G. D. Markham, and C. W. Bock, Deprotonation of water in the presence of carboxylate and magnesium ions, J. Phys. Chem. B, vol.102, pp.6342-6350, 1998.

T. Dudev and C. Lim, Monodentate versus Bidentate Carboxylate Binding in Magnesium and Calcium Proteins: What Are the Basic Principles?, J. Phys. Chem. B, vol.108, pp.4546-4557, 2004.

T. Dudev and C. Lim, Principles governing Mg, Ca, and Zn binding and selectivity in proteins, Chem. Rev, vol.103, pp.773-787, 2003.

T. Dudev and C. Lim, Effect of Carboxylate-Binding Mode on Metal Binding / Selectivity, Acc Chem Res, vol.40, pp.53-56, 2007.

U. Ryde, Carboxylate Binding Modes in Zinc Proteins: A Theoretical Study, Biophys. J, vol.77, pp.2777-2787, 1999.

J. Paterova, Microhydration of the magnesium(II) acetate cation in the gas phase, J. Phys. Chem. A, vol.115, pp.6813-6819, 2011.

W. Humphrey, A. Dalke, and K. Schulten, VMD -Visual Molecular Dynamics, J. Molec. Graph, vol.14, pp.33-38, 1996.

J. G. Davis, K. P. Gierszal, P. Wang, and D. Ben-amotz, Water structural transformation at molecular hydrophobic interfaces, Nature, vol.491, pp.582-587, 2012.

K. P. Gierszal, ?-Hydrogen Bonding in Liquid Water, J. Phys. Chem. Lett, vol.2, pp.2930-2933, 2011.

W. H. Lawton and E. A. Sylvestre, Self Modeling Curve Resolution, Technometrics, vol.13, pp.617-633, 1971.

P. N. Perera, B. Browder, and D. Ben-amotz, Perturbations of water by alkali halide ions measured using multivariate raman curve resolution, J. Phys. Chem. B, vol.113, pp.1805-1809, 2009.

C. W. Davies, The extent of dissociation of salts in water. Part VIII. An equation for the mean ionic activity coefficient of an electrolyte in water, and a revision of the dissociation constants of some sulphates, J. Chem. Soc, pp.2093-2098, 1938.

M. S. Sun, D. K. Harriss, and R. Magnuson, Activity corrections for ionic equilibria in aqueous solutions, Can. J. Chem, vol.58, pp.1253-1257, 1980.

D. Van-der-spoel, GROMACS: Fast, flexible, and free, J. Comput. Chem, vol.26, pp.1701-1718, 2005.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys, vol.52, pp.7182-7190, 1981.

G. Bussi, D. Donadio, and M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys, p.14101, 2007.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, pp.10089-10092, 1993.

B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, LINCS: A linear constraint solver for molecular simulations, J. Comput. Chem, vol.18, pp.1463-1472, 1997.

S. Miyamoto and P. A. Kollman, SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water models, J. Comput. Chem, vol.13, pp.952-962, 1992.

H. J. Berendsen, J. R. Grigera, and T. P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem, vol.91, pp.6269-6271, 1987.

I. S. Joung and T. E. Cheatham, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J. Phys. Chem. B, vol.112, pp.9020-9041, 2008.

P. Li, B. P. Roberts, D. K. Chakravorty, and K. M. Merz, Rational design of particle mesh ewald compatible lennard-jones parameters for +2 metal cations in explicit solvent

, J.Chem. Theory Comput, vol.9, pp.2733-2748, 2013.

S. Mamatkulov, M. Fyta, and R. R. Netz, Force fields for divalent cations based on singleion and ion-pair properties, J. Chem. Phys, p.24505, 2013.

K. M. Callahan, N. N. Casillas-ituarte, M. Roeselová, H. C. Allen, and D. J. Tobias, Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions, J. Phys. Chem. A, vol.114, pp.5141-5148, 2010.

R. H. Stote and M. Karplus, Zinc binding in proteins and solution: a simple but accurate nonbonded representation, Proteins, vol.23, pp.12-31, 1995.

I. V. Leontyev and A. A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations, J. Chem. Phys, p.85102, 2009.

I. Leontyev and A. Stuchebrukhov, Accounting for electronic polarization in nonpolarizable force fields, Phys. Chem. Chem. Phys, vol.13, pp.2613-2626, 2011.

B. J. Kirby and P. Jungwirth, Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations, J. Phys. Chem. Lett, vol.10, pp.7531-7536, 2019.

M. Kohagen, P. E. Mason, and P. Jungwirth, Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering, J. Phys. Chem. B, vol.120, pp.1454-1460, 2016.

M. Kohagen, P. E. Mason, and P. Jungwirth, Accurate description of calcium solvation in concentrated aqueous solutions, J. Phys. Chem. B, vol.118, pp.7902-7909, 2014.

E. Duboué-dijon, Supporting data files for 'Binding of Divalent Cations to Aqueous Acetate: Molecular Simulations Guided by Raman Spectroscopy, p.2020

W. L. Jorgensen, J. K. Buckner, S. Boudon, and J. Tirado-rives, Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water, J. Chem. Phys, vol.89, pp.3742-3746, 1988.

J. Hermans and S. Shankar, The Free Energy of Xenon Binding to Myoglobin from Molecular Dynamics Simulation, Isr. J. Chem, vol.27, pp.225-227, 1986.

S. Boresch, F. Tettinger, M. Leitgeb, and M. Karplus, Absolute Binding Free Energies: A Quantitative Approach for Their Calculation, J. Phys. Chem. B, vol.107, pp.9535-9551, 2003.

B. Roux, M. Nina, R. Pomès, and J. C. Smith, Thermodynamic stability of water molecules in the bacteriorhodopsin proton channel: A molecular dynamics free energy perturbation study, Biophys. J, vol.71, pp.670-681, 1996.

C. H. Bennett, Efficient estimation of free energy differences from Monte Carlo data, J. Comput. Phys, vol.22, pp.245-268, 1976.

S. W. De-leeuw, J. W. Perram, and E. R. Smith, Simulation of Electrostatic Systems in Periodic Boundary Conditions. I. Lattice Sums and Dielectric Constants, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.373, pp.27-56, 1980.

G. Hummer, L. R. Pratt, E. Angel, and . Garcia, On the free energy of ionic hydration, J. Chem. Phys, vol.24, pp.357-359, 1956.

T. Simonson and B. Roux, Concepts and protocols for electrostatic free energies, Mol. Simul, vol.42, pp.1090-1101, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01445477

M. Kumar, T. Simonson, G. Ohanessian, and C. Clavaguéra, Structure and thermodynamics of Mg:phosphate interactions in water: A simulation study
URL : https://hal.archives-ouvertes.fr/hal-01111619

, ChemPhysChem, vol.16, pp.658-665, 2015.

D. L. Mobley, J. D. Chodera, and K. A. Dill, On the use of orientational restraints and symmetry corrections in alchemical free energy calculations, J. Chem. Phys, p.84902, 2006.

J. Wang, Y. Deng, and B. Roux, Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials, Biophys. J, vol.91, pp.2798-2814, 2006.

J. Vandevondele, QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Comput. Phys. Comm, vol.167, pp.103-128, 2005.

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, vol.38, pp.3098-3100, 1988.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, vol.37, pp.785-789, 1988.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, p.154104, 2010.

D. G. Smith, L. A. Burns, K. Patkowski, and C. D. Sherrill, Revised damping parameters for the D3 dispersion correction to density functional theory, J. Phys. Chem. Lett, vol.7, pp.2197-2203, 2016.

A. D. Becke and E. R. Johnson, A density-functional model of the dispersion interaction, J. Chem. Phys, p.154101, 2005.

S. Grimme and . Semiempirical, GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem, vol.27, pp.1787-1799, 2006.

J. Vandevondele and J. Hutter, Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases, J. Chem. Phys, p.114105, 2007.

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Phys. Rev. B, vol.54, pp.1703-1710, 1996.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, Multidimensional free-energy calculations using the weighted histogram analysis method

, J. Comput. Chem, vol.16, pp.1339-1350, 1995.

A. Grossfield, An implementation of WHAM: the weighted histogram analysis method, Analysis, vol.1, pp.1-13, 2004.

V. Palivec, Simulation of Raman and Raman optical activity of saccharides in solution, PCCP, vol.22, pp.1983-1993, 2020.

M. J. Frisch, Gaussian 16 Revision C.01, 2016.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, p.926, 1983.

S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, and M. J. Frisch, A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives, J. Mol. Struct, pp.1-21, 1999.

K. Ruud, T. Helgaker, and P. Bou?, Gauge-origin independent density-functional theory calculations of vibrational Raman optical activity, J. Phys. Chem. A, vol.106, pp.7448-7455, 2002.

J. G. Davis, S. R. Zukowski, B. M. Rankin, and D. Ben-amotz, Influence of a Neighboring Charged Group on Hydrophobic Hydration Shell Structure, J. Phys. Chem

F. Quilès, A. Burneau, and N. Gross, Vibrational spectroscopic study of the complexation of mercury(II) by substituted acetates in aqueous solutions, Appl. Spectrosc, vol.53, pp.1061-1070, 1999.

J. S. Uejio, Characterization of selective binding of alkali cations with carboxylate by X-ray absorption spectroscopy of liquid microjets, Proc. Natl. Acad. Sci, vol.105, pp.6809-6812, 2008.

G. Atkinson, M. M. Emara, and R. Fernández-prini, Ultrasonic absorption in aqueous solutions of calcium acetate and other bivalent metal acetates, J. Phys. Chem, vol.78, pp.1913-1917, 1974.

E. Duboué-dijon, Binding of divalent cations to insulin: capillary electrophoresis and molecular simulations, J. Phys. Chem. B, vol.122, pp.5640-5648, 2018.

J. W. Ponder, Current status of the AMOEBA polarizable force field, J. Phys. Chem. B, vol.114, pp.2549-2564, 2010.

F. Villa, A. D. Mackerell, B. Roux, and T. Simonson, Classical Drude Polarizable Force Field Model for Methyl Phosphate and Its Interactions with Mg2+, J. Phys. Chem. A, vol.122, pp.6147-6155, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975114

J. A. Lemkul, J. Huang, B. Roux, and A. D. Mackerell, An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications, Chem. Rev, vol.116, pp.4983-5013, 2016.

T. Simonson and P. Satpati, Simulating GTP:Mg and GDP:Mg with a simple force field: A structural and thermodynamic analysis, J. Comput. Chem, vol.34, pp.836-846, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814139

Z. R. Kann and J. L. Skinner, A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions, J. Chem. Phys, p.104507, 2014.

I. M. Zeron, J. L. Abascal, C. Vega, . Li, K. Na et al., aqueous solution based on the TIP4P / 2005 water model and scaled charges for the ions in aqueous solution based on the TIP4P / 2005 water model and scaled charges for the ions, p.134504, 2019.

R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna, X-ray diffraction study of MgCl2 aqueous solutions, J. Appl. Cryst, vol.12, pp.34-38, 1979.

A. K. Katz, J. P. Glusker, S. A. Beebe, and C. W. Bock, Calcium ion coordination: A comparison with that of beryllium, magnesium, and zinc, J. Am. Chem. Soc, vol.118, pp.5752-5763, 1996.

M. D. Daily, M. D. Baer, and C. J. Mundy, Divalent Ion Parameterization Strongly Affects Conformation and Interactions of an Anionic Biomimetic Polymer, J. Phys. Chem. B, vol.120, pp.2198-2208, 2016.

R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides, Acta Cryst. A, vol.32, pp.751-767, 1976.

R. D. Shannon and R. X. Fischer, Empirical electronic polarizabilities of ions for the prediction and interpretation of refractive indices: Oxides and oxysalts, Am. Mineral, vol.101, pp.2288-2300, 2016.

P. J. Linstrom, W. G. Mallard, . Nist-chemistry, and . Webbook, NIST Standard Reference Database Number, vol.69, 20899.