Skip to Main content Skip to Navigation
Journal articles

Binding of Divalent Cations to Aqueous Acetate: Molecular Simulations Guided by Raman Spectroscopy

Abstract : In spite of the biological importance of the binding of Zn2+ , Ca2+ , and Mg2+ to the carboxylate group, cation-acetate binding affinities and binding modes remain actively debated. Here, we report the first use of Raman multivariate curve resolution (Raman-MCR) vibrational spectroscopy to obtain self-consistent free and bound metal acetate spectra and one-to-one binding constants, without the need to invoke any a priori assumptions regarding the shapes of the corresponding vibrational bands. The experimental results, combined with classical molecular dynamics simulations with a force field effectively accounting for electronic polarization via charge scaling and ab initio simulations, indicate that the measured binding constants pertain to direct (as opposed to water separated) ion pairing. The resulting binding constants do not scale with cation size, as the binding constant to Zn2+ is significantly larger than that to either Mg2+ or Ca2+, although Zn2+ and Mg2+ have similar radii that are about 25% smaller than Ca2+. Remaining uncertainties in the metal acetate binding free energies are linked to fundamental ambiguities associated with identifying the range of structures pertaining to non-covalently bound species.
Document type :
Journal articles
Complete list of metadata

Cited literature [113 references]  Display  Hide  Download
Contributor : Elise Duboué-Dijon Connect in order to contact the contributor
Submitted on : Monday, October 12, 2020 - 11:32:52 AM
Last modification on : Wednesday, February 9, 2022 - 3:46:07 AM
Long-term archiving on: : Wednesday, January 13, 2021 - 6:39:58 PM


Files produced by the author(s)



Denilson Mendes de Oliveira, Samual R Zukowski, Vladimir Palivec, Jérôme Hénin, Hector Martinez-Seara, et al.. Binding of Divalent Cations to Aqueous Acetate: Molecular Simulations Guided by Raman Spectroscopy. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2020, ⟨10.1039/D0CP02987D⟩. ⟨hal-02964203⟩



Record views


Files downloads