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ABSTRACT

Policy gradient algorithms have proven to be successful in diverse decision making
and control tasks. However, these methods suffer from high sample complexity and
instability issues. In this paper, we address these challenges by providing a different
approach for training the critic in the actor-critic framework. Our work builds on
recent studies indicating that traditional actor-critic algorithms do not succeed in
fitting the true value function, calling for the need to identify a better objective
for the critic. In our method, the critic uses a new state-value (resp. state-action-
value) function approximation that learns the value of the states (resp. state-action
pairs) relative to their mean value rather than the absolute value as in conventional
actor-critic. We prove the theoretical consistency of the new gradient estimator and
observe dramatic empirical improvement across a variety of continuous control
tasks and algorithms. Furthermore, we validate our method in tasks with sparse
rewards, where we provide experimental evidence and theoretical insights.

1 INTRODUCTION

Model-free deep reinforcement learning (RL) has been successfully used in a wide range of prob-
lem domains, ranging from teaching computers to control robots to playing sophisticated strategy
games (Silver et al., 2014; Schulman et al., 2016; Lillicrap et al., 2016; Mnih et al., 2016). State-
of-the-art policy gradient algorithms currently combine ingenious learning schemes with neural
networks as function approximators in the so-called actor-critic framework (Sutton et al., 2000;
Schulman et al., 2017; Haarnoja et al., 2018). While such methods demonstrate great performance
in continuous control tasks, several discrepancies persist between what motivates the conceptual
framework of these algorithms and what is implemented in practice to obtain maximum gains.

For instance, research aimed at improving the learning of value functions often restricts the class of
function approximators through different assumptions, then propose a critic formulation that allows
for a more stable policy gradient. However, new studies (Tucker et al., 2018; Ilyas et al., 2020)
indicate that state-of-the-art policy gradient methods (Schulman et al., 2015; 2017) fail to fit the true
value function and that recently proposed state-action-dependent baselines (Gu et al., 2016; Liu et al.,
2018; Wu et al., 2018) do not reduce gradient variance more than state-dependent ones.

These findings leave the reader skeptical about actor-critic algorithms, suggesting that recent research
tends to improve performance by introducing a bias rather than stabilizing the learning. Consequently,
attempting to find a better baseline is questionable, as critics would typically fail to fit it (Ilyas et al.,
2020). In Tucker et al. (2018), the authors argue that “much larger gains could be achieved by instead
improving the accuracy of the value function”. Following this line of thought, we are interested in
ways to better approximate the value function. One approach addressing this issue is to put more
focus on relative state-action values, an idea introduced in the literature on advantage reinforcement

∗Equal contribution.

1



Published as a conference paper at ICLR 2021

learning (Harmon & Baird III) followed by works on dueling (Wang et al., 2016) neural networks.
More recent work (Lin & Zhou, 2020) also suggests that considering the relative action values, or
more precisely the ranking of actions in a state leads to better policies. The main argument behind
this intuition is that it suffices to identify the optimal actions to solve a task. We extend this principle
of relative action value with respect to the mean value to cover both state and state-action-value
functions with a new objective for the critic: minimizing the variance of residual errors.

In essence, this modified loss function puts more focus on the values of states (resp. state-actions)
relative to their mean value rather than their absolute values, with the intuition that solving a task
corresponds to identifying the optimal action(s) rather than estimating the exact value of each state.
In summary, this paper:

• Introduces Actor with Variance Estimated Critic (AVEC), an actor-critic method providing a
new training objective for the critic based on the residual variance.

• Provides evidence for the improvement of the value function approximation as well as
theoretical consistency of the modified gradient estimator.

• Demonstrates experimentally that AVEC, when coupled with state-of-the-art policy gradient
algorithms, yields a significant performance boost on a set of challenging tasks, including
environments with sparse rewards.

• Provides empirical evidence supporting a better fit of the true value function and a substantial
stabilization of the gradient.

2 RELATED WORK

Our approach builds on three lines of research, of which we give a quick overview: policy gradient
algorithms, regularization in policy gradient methods, and exploration in RL.

Policy gradient methods use stochastic gradient ascent to compute a policy gradient estimator. This
was originally formulated as the REINFORCE algorithm (Williams, 1992). Kakade & Langford
(2002) later created conservative policy iteration and provided lower bounds for the minimum
objective improvement. Peters et al. (2010) replaced regularization by a trust region constraint to
stabilize training. In addition, extensive research investigated methods to improve the stability of
gradient updates, and although it is possible to obtain an unbiased estimate of the policy gradient from
empirical trajectories, the corresponding variance can be extremely high. To improve stability, Weaver
& Tao (2001) show that subtracting a baseline (Williams, 1992) from the value function in the policy
gradient can be very beneficial in reducing variance without damaging the bias. However, in practice,
these modifications on the actor-critic framework usually result in improved performance without
a significant variance reduction (Tucker et al., 2018; Ilyas et al., 2020). Currently, one of the
most dominant on-policy methods are proximal policy optimization (PPO) (Schulman et al., 2017)
and trust region policy optimization (TRPO) (Schulman et al., 2015), both of which require new
samples to be collected for each gradient step. Another direction of research that overcomes this
limitation is off-policy algorithms, which therefore benefit from all sample transitions; soft actor-critic
(SAC) (Haarnoja et al., 2018) is one such approach achieving state-of-the-art performance.

Several works also investigate regularization effects on the policy gradient (Jaderberg et al., 2016;
Namkoong & Duchi, 2017; Kartal et al., 2019; Flet-Berliac & Preux, 2019; 2020); it is often used to
shift the bias-variance trade-off towards reducing the variance while introducing a small bias. In RL,
regularization is often used to encourage exploration and takes the form of an entropy term (Williams
& Peng, 1991; Schulman et al., 2017). Moreover, while regularization in machine learning generally
consists in smoothing over the observation space, in the RL setting, Thodoroff et al. (2018) show that it
is possible to smooth over the temporal dimension as well. Furthermore, Zhao et al. (2016) analyze the
effects of a regularization using the variance of the policy gradient (the idea is reminiscent of SVRG
descent (Johnson & Zhang, 2013)) which proves to provide more consistent policy improvements
at the expense of reduced performance. In contrast, as we will see later, AVEC does not change the
policy network optimization procedure nor involves any additional computational cost.

Exploration has been studied under different angles in RL, one common strategy is ε-greedy, where
the agent explores with probability ε by taking a random action. This method, just like entropy
regularization, enforces uniform exploration and has achieved recent success in game playing en-
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vironments (Mnih et al., 2013; Van Hasselt et al., 2015; Mnih et al., 2016). On the other hand, for
most policy-based RL, exploration is a natural component of any algorithm following a stochastic
policy, choosing sub-optimal actions with non-zero probability. Furthermore, policy gradient lit-
erature contains exploration methods based on uncertainty estimates of values (Kaelbling, 1993;
Tokic, 2010), and algorithms which provide intrinsic exploration or curiosity bonus to encourage
exploration (Schmidhuber, 2006; Bellemare et al., 2016; Flet-Berliac et al., 2021).

While existing research may share some motivations with our method, no previous work in RL
applies the variance of residual errors as an objective loss function. In the context of linear regression,
Brown (1947) considers a median-unbiased estimator minimizing the risk with respect to the absolute-
deviation loss function (Pham-Gia & Hung, 2001) (similar in spirit to the variance of residual errors),
their motivation is nonetheless different to ours. Indeed, they seek to be robust to outliers whereas,
when considering noiseless RL problems, one usually seeks to capture those (sometimes rare) signals
corresponding to the rewards.

3 PRELIMINARIES

3.1 BACKGROUND AND NOTATIONS

We consider an infinite-horizon Markov Decision Problem (MDP) with continuous states s ∈ S,
continuous actions a ∈ A, transition distribution st+1 ∼ P(st, at) and reward function rt ∼
R(st, at). Let πθ(a|s) denote a stochastic policy with parameter θ, we restrict policies to being
Gaussian distributions. In the following, π and πθ denote the same object. The agent repeatedly
interacts with the environment by sampling action at ∼ π(.|st), receives reward rt and transitions to
a new state st+1. The objective is to maximize the expected sum of discounted rewards:

J(π) , Eτ∼π

[ ∞∑
t=0

γtr (st, at)

]
, (1)

where γ ∈ [0, 1) is a discount factor (Puterman, 1994), and τ = (s0, a0, r0, s1, a1, r1, . . . ) is a
trajectory sampled from the environment using policy π. We denote the value of a state s in the MDP
framework while following a policy π by V π(s) , Eτ∼π [

∑∞
t=0 γ

tr (st, at) |s0 = s] and the value
of a state-action pair of performing action a in state s and then following policy π by Qπ(s, a) ,
Eτ∼π [

∑∞
t=0 γ

tr (st, at) |s0 = s, a0 = a]. Finally, the advantage function which quantifies how an
action a is better than the average action in state s is denoted Aπ(s, a) , Qπ(s, a)− V π(s).

3.2 CRITICS IN DEEP POLICY GRADIENTS

In this section, we consider the case where the value functions are learned using function estimators
and then used in an approximation of the gradient. Without loss of generality, we consider the
algorithms that approximate the state-value function V . The analysis holds for algorithms that
approximate the state-action-value function Q. Let fφ : S → R be an estimator of V̂ π with φ its
parameter. fφ is traditionally learned through minimizing the mean squared error (MSE) against V̂ π .
At iteration k, the critic minimizes:

LAC = Es
[(
fφ(s)− V̂ πθk (s)

)2]
, (2)

where the states s are collected under policy πθk , and V̂ πθk (s) is an empirical estimate of V (see
Section 4.3 for details). Similarly, using fφ : S ×A → R instead, one can fit an empirical target Q̂π .

4 METHOD: ACTOR WITH VARIANCE ESTIMATED CRITIC

In this section, we introduce AVEC and discuss its correctness, motivations and implementation.

4.1 DEFINING AN ALTERNATIVE CRITIC

Recent work (Ilyas et al., 2020) empirically demonstrates that while the value network succeeds in
the supervised learning task of fitting V̂ π (resp. Q̂π), it does not fit V π (resp. Qπ). We address this
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deficiency in the estimation of the critic by introducing an alternative value network loss. Following
empirical evidence indicating that the problem is the approximation error and not the estimator per
se, AVEC adopts a loss that can provide a better approximation error, and yields better estimators of
the value function (as will be shown in Section 5.3). At update k:

LAVEC = Es

[(
(fφ(s)− V̂ πθk (s))− Es

[
fφ(s)− V̂ πθk (s)

])2
]
, (3)

with states s collected using πθk . Note that the gradient flows in fφ twice using Eq. 3. Then, we
define our bias-corrected estimator: gφ : S → R such that gφ(s) = fφ(s) + Es[V̂ πθk (s) − fφ(s)].
Analogously to Eq. 3, we define an alternative critic for the estimation of Qπ by replacing V̂ π by Q̂π
and fφ(s) by fφ(s, a).

Proposition (AVEC Policy Gradient). If fφ : S × A → R satisfies the parameterization assump-
tion (Sutton et al., 2000) then gφ provides an unbiased policy gradient:

∇θJ (πθ) = E(s,a)∼πθ [∇θ log(πθ(s, a))gφ(s, a)] .

Proof. See Appendix A. This result also holds for the estimation of V πθ with fφ : S → R.

4.2 BUILDING MOTIVATION

Here, we present the intuition behind using AVEC for actor-critic algorithms. Tucker et al. (2018)
and Ilyas et al. (2020) indicate that the approximation error ‖V̂ π − V π‖ is problematic, suggesting
that the variance of the empirical targets V̂ π(st) is high. Using LAVEC, our approach reduces the
variance term of the MSE (or distance to V π) but mechanistically also increases the bias. Our
intuition is that since the bias is already quite substantial (Ilyas et al., 2020), it may be possible to
reduce the variance enough so that even though the bias increases, the total MSE reduces.

State-value function estimation. In this case, optimizing the critic with LAVEC can be interpreted
as fitting V̂ ′π(s) = V̂ π(s) − Es′ [V̂ π(s′)] using the MSE. We show that the targets V̂ ′π are better
estimations of V ′π(s) = V π(s) − Es′ [V π(s′)] than V̂ π are of V π. To illustrate this, consider T
independent random variables (Xi)i∈{1,...,T}. We denote X ′i = Xi − 1

T

∑T
j=1Xj and V(X) the

variance of X . Then, V (X ′i) = V (Xi) − 2
T V (Xi) + 1

T 2

∑T
j=1 V (Xj) and V(X ′i) < V(Xi)

as long as ∀i 1
T

∑T
j=1 V(Xj) < 2V(Xi), or more generally when state-values are not strongly

negatively correlated1 and not very discordant. This entails that V̂ ′π has a more compact span, and is
consequently easier to fit. This analysis shows that the variance term of the MSE is reduced compared
to traditional actor-critic algorithms, but does not guarantee it counterbalances the bias increase.
Nevertheless, in practice, the bias is so high that the difference due to learning with AVEC is only
marginal and the total MSE decreases. We empirically demonstrate this claim in Section 5.3.

0 2 4 6 8
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Figure 1: Comparison of simple models de-
rived when LAVEC is used instead of the MSE.

State-action-value function estimation. In this
case, Eq. 3 translates into replacing V̂ π(s) by
Q̂π(s, a) and fφ(s) by fφ(s, a) and the rationale for
optimizing the residual variance of the value func-
tion instead of the full MSE becomes more straight-
forward: the practical use of the Q-function is to
disentangle the relative values of actions for each
state (Sutton et al., 2000). AVEC’s effect on relative
values is illustrated in a didactic regression with one
variable example in Fig. 1 where grey markers are ob-
servations and the blue line is our current estimation.
Minimizing the MSE, the line is expected to move
towards the orange one in order to reduce errors uniformly. Minimizing the residual variance, it

1Greensmith et al. (2004) analyze the dependent case: in general, weakly dependent variables tend to
concentrate more than independent ones.
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is expected to move near the red one. In fact, LAVEC tends to further penalize observations that are
far away from the mean, implying that AVEC allows a better recovery of the “shape” of the target
near extrema. In particular, we see in the figure that the maximum and minimum observation values
are quickly identified. Would the approximators be linear and the target state-values independent,
the two losses become equivalent since ordinary least squares would provide minimum-variance
mean-unbiased estimation.

It should be noted that, as in all the works related to ours, we consider noiseless tasks, i.e. the
transition matrix is deterministic. As such, there are no outliers and extreme state-action values
correspond to learning signals. In this context, high estimation errors indicate where (in the state or
action-state space) the training of the value function should be improved.

4.3 IMPLEMENTATION

We apply this new formulation to three of the most dominant deep policy gradient methods to study
whether it results in a better estimation of the value function. A better estimation of the value
function implies better policy improvements. We now describe how AVEC incorporates its residual
variance objective into the critics of PPO (Schulman et al., 2017), TRPO (Schulman et al., 2015) and
SAC (Haarnoja et al., 2018). Let B be a batch of transitions. In PPO and TRPO, AVEC modifies the
learning of Vφ (line 12 of Algorithm 1) using:

L1
AVEC (φ) = Es∼B

[
(fφ (s)− V̂ π (s))− Es∼B

[
fφ (s)− V̂ π (s)

] ]2

,

then Vφ = fφ(s) + Es∼B[V̂ π(s) − fφ(s)], where V̂ π (st) = fφold(st) + At such that fφold(st) are
the estimates given by the last value function and At is the advantage of the policy, i.e. the returns
minus the expected values (At is often estimated using generalized advantage estimation (Schulman
et al., 2016). In SAC, AVEC modifies the objective function of (Qφi)i=1,2 (line 13 of Algorithm 2 in
Appendix C) using:

L2
AVEC (φi) = E(s,a)∼B

[
(fφi(s, a)− Q̂π(s, a))− E(s,a)∼B

[
fφi(s, a)− Q̂π(s, a)

] ]2

,

then Qφi = fφi(s, a) + E(s,a)∼B[Q̂π(s, a)− fφi(s, a)], where Q̂π(s, a) is estimated using temporal
difference (see Haarnoja et al. (2018)): Q̂π(st, at) = r(st, at) + γEst+1∼π[Vψ̄(st+1)] with ψ̄ the
value function parameter (see Algorithm 2). The reader may have noticed that L1

AVEC and L2
AVEC

slightly differ from Eq. 3. The residual variance of the value function (LAVEC) is not tractable since a
priori state-values are dependent and their joint law is unknown. Consequently, in practice, we use
the empirical variance proxy assuming independence (cf. Appendix D). Greensmith et al. (2004)
provide some support for this approximation by showing that weakly dependent variables tend to
concentrate more than independent ones. Finally, notice that AVEC does not modify any other part of
the considered algorithms whatsoever, which makes its implementation straightforward and keeps the
same computational complexity.

5 EXPERIMENTAL STUDY

In this section, we conduct experiments along four orthogonal directions. (a) We validate the
superiority of AVEC compared to the traditional actor-critic training. (b) We evaluate AVEC in
environments with sparse rewards. (c) We clarify the practical implications of using AVEC by
examining the bias in both the empirical and true value function estimations as well as the variance in
the empirical gradient. (d) We provide an ablation analysis and study the bias-variance trade-off in
the critic by considering two continuous control tasks.
We point out that a comparison to variance-reduction methods is not considered in this paper: Tucker
et al. (2018) demonstrated that their implementations diverge from the unbiased methods presented
in the respective papers and unveiled that not only do they fail to reduce the variance of the gradient,
but that their unbiased versions do not improve performance either. Note that in all experiments we
choose the hyperparameters providing the best performance for the considered methods which can
only penalyze AVEC (cf. Appendix E). In all the figures hereafter (except Fig. 3c and 3d), lines are
average performances and shaded areas represent one standard deviation.
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Task SAC AVEC-SAC PPO AVEC-PPO
Ant 3084 3650± 127 (+18%) 972 1202± 148 (+24%)
AntBullet 1193 2252± 82 (+89%) 1174 2216± 99 (+89%)
HalfCheetah 10028 11018± 102 (+10%) 1068 1403± 37 (+31%)
HalfCheetahBullet 1255 1331± 184 (+6%) 1329 2223± 62 (+67%)
Humanoid 4084 4472± 424 (+10%) 391 415± 4.6 (+6%)
Reacher −6.0 −5.0± 0.1 (+20%) −7.4 −5.9± 0.3 (+25%)
Walker2d 3452 4334± 128 (+26%) 2193 2923± 151 (+33%)

Table 1: Average total reward of the last 100 episodes over 6 runs of 106 timesteps. Comparative
evaluation of AVEC with SAC and PPO. ± corresponds to a single standard deviation over trials and
(.%) is the change in performance due to AVEC.

5.1 CONTINUOUS CONTROL

Algorithm 1 AVEC coupled with PPO or TRPO.
JALGO denotes the policy loss of either algorithm
(described in Schulman et al. (2017; 2015)).

1: Input parameters: λπ ≥ 0, λV ≥ 0
2: Initialize policy parameter θ and value func-

tion parameter φ
3: for each update step do
4: batch B ← ∅
5: for each environment step do
6: at ∼ πθ(st)
7: st+1 ∼ P (st, at)
8: B ← B ∪ {(st, at, rt, st+1)}
9: end for

10: for each gradient step do
11: θ ← θ − λπ∇̂θJALGO(πθ)

12: φ← φ− λV ∇̂φL1
AVEC (φ)

13: end for
14: end for

For ease of comparison with other methods, we
evaluate AVEC on the MuJoCo (Todorov et al.,
2012) and the PyBullet (Coumans & Bai, 2016)
continuous control benchmarks (see Appendix G
for details) using OpenAI Gym (Brockman et al.,
2016). Note that the PyBullet versions of the lo-
comotion tasks are harder than the MuJoCo equiv-
alents2. We choose a representative set of tasks
for the experimental evaluation; their action and
observation space dimensions are reported in Ap-
pendix H. We assess the benefits of AVEC when
coupled with the most prominent policy gradi-
ent algorithms, currently state-of-the-art methods:
PPO (Schulman et al., 2017) and TRPO (Schul-
man et al., 2015), both on-policy methods, and
SAC (Haarnoja et al., 2018), an off-policy maxi-
mum entropy deep RL algorithm. We provide the
list of hyperparameters and further implementa-
tion details in Appendix D and E.

Table 1 reports the results while Fig. 2 and 8 show
the total average return for SAC and PPO. TRPO results are provided in Appendix F for readability.
When coupled with SAC and PPO, AVEC brings very significant improvement (on average +26% for
SAC and +39% for PPO) in the performance of the policy gradient algorithms, improvement which
is consistent across tasks. As for TRPO, while the improvement in performance is less striking, AVEC
still manages to be more efficient in terms of sampling in all tasks. Overall, AVEC improves TRPO,
PPO and SAC in terms of performance and efficiency. This does not imply that our method would
also improve other policy gradient methods that use the traditional actor-critic framework, but since
we evaluate our method coupled with three of the best performing on- and off-policy algorithms,
we believe that these experiments are sufficient to prove the relevance of AVEC. Furthermore, in
our experiments we do not seek the best hyperparameters for the AVEC variants, we simply adopt
the parameters allowing us to optimally reproduce the baselines. Alternatively, if one seeks to
evaluate AVEC independently of a considered baseline, further hyperparameter tuning should produce
better results. Notice that since no additional calculations are needed in AVEC’s implementation,
computational complexity remains unchanged.

5.2 SPARSE REWARD SIGNALS

Domains with sparse rewards are challenging to solve with uniform exploration as agents receive no
feedback on their actions before starting to collect rewards. In such conditions AVEC performs better,
suggesting that the shape of the value function is better approximated, encouraging exploration.

2Bullet Physics SDK GitHub Issue.
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Figure 2: Comparative evaluation (6 seeds) of AVEC with SAC and PPO on PyBullet (“TaskBullet”)
and MuJoCo (“Task”) tasks. X-axis: number of timesteps. Y-axis: average total reward.

The relative value estimate of an unseen state is more accurate: in Section 4.2, AVEC identifies extreme
state-values (e.g., non-zero rewards in tasks with sparse rewards) faster. In Fig. 3a and 3b, we report
the performance of AVEC in the Acrobot and MountainCar environments: both have sparse rewards.
AVEC enhances TRPO and PPO in both experiments. When PPO and AVEC-PPO both reach the best
possible performance, AVEC-PPO exhibits better sample efficiency. Fig. 3c and 3d illustrate how the
agent improves its exploration strategy in MountainCar: while the PPO agent remains stuck at the
bottom of the hill (red), the graph suggest that AVEC-PPO learns the difficult locomotion principles in
the absence of rewards and visits a much larger part of the state space (green).

This improved performance in sparse environments can be explained by the fact that AVEC is able to
pick up on experienced positive reward more easily. Moreover, the reconstructed shape of the value
function is more accurate around such rewarding states, which pushes the agent to explore further
around experienced states with high values.
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Figure 3: (a,b): Comparative evaluation (6 seeds) of AVEC in sparse reward tasks. X-axis: number
of timesteps. Y-axis: average total reward. (c,d): Respectively state visitation frequency and phase
portrait of visited states of AVEC-TRPO (green) and TRPO (red) in MountainCar.

5.3 ANALYSIS OF THE VARIANCE ESTIMATED CRITIC

In order to further validate AVEC, we evaluate the performance of the value network in more detail:
we examine (a) the estimation error (distance to the empirical target), (b) the approximation error
(distance to the true target) and (c) the empirical variance of the gradient. (a,b) should be put into
perspective with the conclusions of Ilyas et al. (2020) where it is found that the critic only fits the
empirical value function but not the true one. (c) should be placed in light of Tucker et al. (2018)
highlighting a failure of recently proposed state-action-dependent baselines to reduce the variance.

Learning the Empirical Target. In Fig. 4, we report the quality of fit (MSE) of the empiri-
cal target V̂ π in the methods PPO and AVEC-PPO in the AntBullet and HalfCheetahBullet tasks.
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Figure 4: L2 distance to V̂ π .

We observe that PPO better fits the empirical
target than when equipped with AVEC, which
is to be expected since vanilla PPO optimizes
the MSE directly. This result put aside the re-
markable improvement in the performance of
AVEC-PPO (Fig. 2) suggests that AVEC might
be a better estimator of the true value function.
We examine this claim below because if true, it
would indicate that it is indeed possible to simultaneously improve the performance of the agents and
the stability of the method.
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Figure 5: L2 distance to V π. X-axis: we run PPO
and AVEC-PPO and ∀t ∈ {1, 2, 4, 6, 9} · 105 we
stop training, use the current policy to collect 3·105

transitions and estimate V π .

Learning the True Target. A fundamental
premise of policy gradient methods is that op-
timizing the objective based on an empirical
estimation of the value function leads to a better
policy. Which is why we investigate the qual-
ity of fit of the true target. To approximate the
true value function, we fit the returns sampled
from the current policy using a large number
of transitions (3 · 105). Fig. 5 shows that gφ is
far closer to the true value function half of the
time (horizon is 106) than the estimator obtained
with MSE, then as close to it. Comparing Fig. 5 with Fig. 4, we see that the distance to the true
target is close to the estimation error for AVEC-PPO, while for PPO, it is at least two orders of
magnitude higher at all times. We further investigate these results in Fig. 9 in Appendix B.2 where
we study the variation of the squared bias and variance components of the MSE to the true target
(MSE = Var + Bias2). We find, as expected, that using AVEC reduces the variance term significantly
while slightly increasing the bias term, which Fig. 5 confirms is negligible since the total MSE is sub-
stantially reduced (‖gφ(AVEC)− V π‖2 ≤ ‖Vφ(PPO)− V π‖2) where Vφ(PPO) is the value function
estimator in PPO. For completeness, we also analyze the distance to the true target for the Q-function
estimator in SAC and AVEC-SAC in AntBullet and HalfCheetahBullet in Appendix B.3, with similar
results and interpretation. We conclude that AVEC improves the value function approximation and we
expect that the gradient is more stable.
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Figure 6: Average gradient cosine-similarity.

Empirical Variance Reduction. We choose
to study the gradient variance using the average
pairwise cosine similarity metric as it allows a
comparison with Ilyas et al. (2020), with which
we share the same experimental setup and scales.
Fig. 6 shows that AVEC yields a higher average
(10 batches per iteration) pairwise cosine sim-
ilarity, which means closer batch-estimates of
the gradient and, in turn, indicates smaller gradient variance. Further analysis with additional tasks is
included in Appendix B.4. The variance reduction effect observed in several environments suggests
that AVEC is the first method since the introduction of the value function baseline to further reduce
the variance of the gradient and improve performance.

5.4 ABLATION STUDY

In this section, we examine how changing the relative importance of the bias and the residual
variance in the loss of the value network affects learning. For this study, we choose difficult tasks
of PyBullet and use PPO because it is more efficient than TRPO and requires less computations
than SAC. For an estimator ŷn of (yi)i∈{1,...,n}, we write Bias = 1

n

∑n
i=1(ŷi − yi) and Var =

1
n−1

∑n
i=1(ŷi − yi −Bias)2. Consequently: MSE = Var + Bias2. We denote Lα = Var + αBias2,

with α ∈ R. In Fig. 7, Bias-α means that we use Lα and Var-α means that we use L 1
α

. We observe
that while no consistent order on the choices of α is identified, AVEC seems to outperform all other
weightings. Note that, for readability purposes, the graphs have been split and the curves of AVEC-PPO
and PPO are the same in Fig. 7a and 7c, and in Fig. 7b and 7d. A more extensive hyperparameter
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Figure 7: Sensitivity (6 seeds) of AVEC-PPO with respect to (a,b): the bias; (c,d): the variance. X-axis:
number of timesteps. Y-axis: average total reward.

study with more α values might provide even higher performances, nevertheless we believe that the
stability of an algorithm is crucial for a reliable performance. As such, the tuning of hyperparameters
to achieve good results should remain mild.

6 DISCUSSION

In this work, we introduce a new training objective for the critic in actor-critic algorithms to better
approximate the true value function. In addition to being well-motivated by recent studies on
the behaviour of deep policy gradient algorithms, we demonstrate that this modification is both
theoretically sound and intuitively supported by the need to improve the approximation error of the
critic. The application of Actor with Variance Estimated Critic (AVEC) to state-of-the-art policy
gradient methods produces considerable gains in performance (on average +26% for SAC and +39%
for PPO) over the standard actor-critic training, without any additional hyperparameter tuning.

First, for SAC-like algorithms where the critic learns a state-action-value function, our results strongly
suggest that state-actions with extreme values are identified more quickly. Second, for PPO-like
methods where the critic learns the state-values, we show that the variance of the gradient is reduced
and empirically demonstrate that this is due to a better approximation of the state-values. In sparse
reward environments, the theoretical intuition behind a variance estimated critic is more explicit and
is also supported by empirical evidence. In addition to corroborating the results in Ilyas et al. (2020)
proving that the value estimator fails to fit V π, we propose a method that succeeds in improving
both the sample complexity and the stability of prominent actor-critic algorithms. Furthermore,
AVEC benefits from its simplicity of implementation since no further assumptions are required (such
as horizon awareness Tucker et al. (2018) to remedy the deficiency of existing variance-reduction
methods) and the modification of current algorithms represents only a few lines of code.

In this paper, we have demonstrated the benefits of a more thorough analysis of the critic objective in
policy gradient methods. Despite our strongly favourable results, we do not claim that the residual
variance is the optimal loss for the state-value or the state-action-value functions, and we note that the
design of comparably superior estimators for critics in deep policy gradient methods merits further
study. In future work, further analysis of the bias-variance trade-off and extension of the results to
stochastic environments is anticipated; we consider the problem of noise separation in the latter, as
this is the first obstacle to accessing the variance and distinguishing extreme values from outliers.
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A UNBIASED AVEC POLICY GRADIENT

In this section, we consider the case in which the state-action-value function of a policy πθ is
approximated. We prove that given some assumptions on this estimator function, we can use it to
yield a valid gradient direction, i.e., we are able to prove policy improvement when following this
direction.

In this setting, the critic minimizes the following loss:

E(s,a)∼π

[
(Q̂πθ (s, a)− fφ(s, a)− E(s,a)∼π[Q̂πθ (s, a)− fφ(s, a)])2

]
.

When a local optimum is reached, the gradient of the latter expression is zero:

∇φLAVEC = E(s,a)∼π

[
(Q̂πθ (s, a)− fφ(s, a)− E(s,a)∼π[Q̂πθ (s, a)− fφ(s, a)])(

∂fφ(s, a)

∂φ
− E(s,a)∼π[

∂fφ(s, a)

∂φ
])

]
= 0.

In the expression above, the expected value of the partial derivative disappears because the term in
the first bracket is centered:

E(s,a)∼π

[
(Q̂πθ (s, a)− fφ(s, a)− E(s,a)∼π[Q̂πθ (s, a)− fφ(s, a)])E(s,a)∼π[

∂fφ(s, a)

∂φ
]

]

= E(s,a)∼π

[
∂fφ(s, a)

∂φ

]
���

���
���

���
���

���
��:= 0

E(s,a)∼π[Q̂πθ (s, a)− fφ(s, a)− E(s,a)∼π[Q̂πθ − fφ]]

= 0.

Simplifying the gradient at the local optimum becomes:

E(s,a)∼π

[
(Q̂πθ (s, a)− fφ(s, a)− E(s,a)∼π[Q̂πθ (s, a)− fφ(s, a)])(

∂fφ(s, a)

∂φ
)

]
= 0. (4)

Then, if we denote gφ = fφ(s, a)+E(s,a)∼π[Q̂π(s, a)−fφ(s, a)], and use the policy parameterization
assumption:

∂fφ(s, a)

∂φ
=
∂πθ(s, a)

∂θ

1

πθ(s, a)
, (5)

we obtain:

∇θJ = E(s,a)∼πθ [∇θ log(πθ(s, a))gφ(s, a)] . (6)

Proof. By combining the parameterization assumption in Eq. 5 with Eq. 4, we have:

E(s,a)∼πθ

[
(Q̂πθ (s, a)− gφ(s, a))

∂πθ(s, a)

∂θ

1

πθ(s, a)

]
= 0. (7)

Since the expression above is null, we have the following:

∇θJ = E(s,a)∼πθ [∇θ log(πθ(s, a))Q̂πθ (s, a)]

= E(s,a)∼πθ [∇θ log(πθ(s, a))Q̂πθ (s, a)]− E(s,a)∼πθ [(Q̂
πθ (s, a)− gφ(s, a))

∂πθ(s, a)

∂θ

1

πθ(s, a)
]

= E(s,a)∼πθ [∇θ log(πθ(s, a))gφ(s, a)].

�

Remark. While the proof seems more or less generic, the assumption in Eq. 5 is extremely constraining
to the possible approximators. Sutton et al. (2000) quotes J. Tsitsiklis who believes that a linear gφ in
the features of the policy may be the only feasible solution for this condition.
Concretely, such an assumption cannot hold since neural networks are the standard approximators
used in practice. Moreover, empirical analysis (Ilyas et al., 2020) indicates that commonly used
algorithms fail to fit the true value function. However, this does not rule out the usefulness of the
approach but rather begs for more questioning of the true effect of such biased baselines.

12



Published as a conference paper at ICLR 2021

B ADDITIONAL EXPERIMENTS

B.1 CONTINUOUS CONTROL: WALKER2D

Fig. 8 shows the total average return for AVEC coupled with SAC and PPO on the Walker2d task.
Similar to considered other continuous control tasks from MuJoCo and PyBullet, AVEC brings a
significant performance improvement (+26% for SAC and +33% for PPO), confirming the generality
of our approach.
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Figure 8: Comparative evaluation (6 seeds) of AVEC with SAC (left) and PPO (right) on the Walker2d
MuJoCo task. Lines are average performances and shaded areas represent one standard deviation.
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B.2 VARIATION OF THE BIAS AND VARIANCE TERMS: PPO

In Fig. 9, we show the variation of the bias and variance terms in the MSE between the estimators
(of AVEC-PPO and PPO) and the true target: E[‖gφ − V π‖22] = Bias(AVEC)2 + Var(AVEC) and
E[‖Vφ(PPO)− V π‖22] = Bias(PPO)2 + Var(PPO) where Vφ(PPO) is the value function estimator
in PPO. We observe that the variance reduction is more substantial than that of the bias. Using those
results and Fig. 5 showing that the distance of the estimator to V π is lower when using AVEC confirms
that the variance reduction effect counterbalances the bias increase. Note that the % Variation of
the Var term is always negative in our experiments, and that the shaded areas that suggest otherwise
are merely due to a false assumption of symmetrical deviations, itself due to the assumption of
Gaussianity needed to construct confidence intervals.
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Figure 9: % Variation of the bias and variance terms in the MSE between the estimator and the true
target: %Variation(Bias) = Bias2(AVEC-PPO)−Bias2(PPO)

Bias2(PPO)
and %Variation(Var) = Var(AVEC-PPO)−Var(PPO)

Var(PPO) .
X-axis: we run PPO and AVEC-PPO and for every t ∈ {1, 2, 4, 6, 9} · 105, we stop training, use the
current policy to interact with the environment for 3 · 105 transitions, and use these transitions to
estimate the true value function. Lines are average variations and shaded areas represent one standard
deviation (5 seeds).

B.3 LEARNING THE TRUE TARGET: SAC

In Fig. 10, we compare the error between the Q-function estimator and the true Q-function for SAC
and AVEC-SAC in AntBullet and HalfCheetahBullet. We note a modest but consistent reduction in
this error when using AVEC coupled with SAC, echoing the significant performance gains in Fig. 2.
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Figure 10: Distance to the true Q-function (SAC). X-axis: we run SAC and AVEC-SAC and for every
t ∈ {1, 2, 4, 6, 9} · 105 we stop training, use the current policy to interact with the environment for
3 · 105 transitions, and use these transitions to estimate the true value function. Lines are average
performances and shaded areas represent one standard deviation.
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B.4 VARIANCE REDUCTION

In Fig. 11, we study the empirical variance of the gradient in measuring the average pairwise cosine
similarity (10 gradient measurements) in two additional tasks: HopperBullet and Walker2DBullet.
We also vary the trajectory size used in the estimation of the gradient.
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Figure 11: Average cosine similarity between gradient measurements. AVEC empirically reduces
the variance compared to PPO or PPO without a baseline (PPO-nobaseline). Trajectory size used in
estimation of the gradient variance: 3000 (upper row), 6000 (middle row), 9000 (lower row). Lines
are average performances and shaded areas represent one standard deviation.
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C IMPLEMENTATION OF AVEC COUPLED WITH SAC

In Algorithm 2, JV is the squared residual error objective to train the soft value function. See Haarnoja
et al. (2018) for further details and notations about SAC, not directly relevant here.

Algorithm 2 AVEC coupled with SAC.

1: Input parameters: β ∈ [0, 1], λV ≥ 0, λQ ≥ 0, λπ ≥ 0
2: Initialize policy parameter θ, value function parameter ψ and ψ̄ and Q-functions parameters φ1

and φ2

3: D ← ∅
4: for each iteration do
5: for each step do
6: at ∼ πθ(at|st)
7: st+1 ∼ P (st, at)
8: D ← D ∪ {(st, at, rt, st+1)}
9: end for

10: for each gradient step do
11: sample batch B from D
12: ψ ← ψ − λV ∇̂ψJV (ψ)

13: φi ← φi − λQ∇̂φiL2
AVEC (φi) for i ∈ {1, 2}

14: θ ← θ − λπ∇̂θJ(πθ)
15: ψ̄ ← βψ + (1− β)ψ̄
16: end for
17: end for

D IMPLEMENTATION DETAILS

Theoretically, LAVEC is defined as the residual variance of the value function (cf. Eq. 3). However,
state-values for a non-optimal policy are dependent and the variance is not tractable without access to
the joint law of state-values. Consequently, to implement AVEC in practice we use the best-known
proxy at hand, which is the empirical variance formula assuming independence:

LAVEC =
1

T − 1

T∑
t=1

((
fφ(st)− V̂ π(st)

)
− 1

T

T∑
t=1

(
fφ(st)− V̂ π(st)

))2

,

where T is the size of the sampled trajectory.
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E EXPERIMENT DETAILS

In all experiments we choose to use the same hyperparameter values for all tasks as the best-
performing ones reported in the literature or in their respective open source implementation docu-
mentation. We thus ensure the best performance for the conventional actor-critic framework. In other
words, since we are interested in evaluating the impact of this new critic, everything else is kept as is.
This experimental protocol may not benefit AVEC.

In Table 2, 3 and 4, we report the list of hyperparameters common to all continuous control experi-
ments.

Table 2: Hyperparameters used both in SAC and AVEC-SAC.

Parameter Value
Adam stepsize 3 · 10−4

Discount (γ) 0.99
Replay buffer size 106

Batch size 256
Nb. hidden layers 2
Nb. hidden units per layer 256
Nonlinearity ReLU
Target smoothing coefficient (τ ) 0.01
Target update interval 1
Gradient steps 1

Table 3: Hyperparameters used both in PPO and AVEC-PPO.

Parameter Value
Horizon (T ) 2048
Adam stepsize 2.5 · 10−4

Nb. epochs 10
Nb. minibatches 32
Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Clipping parameter (ε) 0.2

Table 4: Hyperparameters used both in TRPO and AVEC-TRPO.

Parameter Value
Horizon (T ) 2048
Adam stepsize 1 · 10−4

Nb. hidden layers 2
Nb. hidden units per layer 64
Nonlinearity tanh
Discount (γ) 0.99
GAE parameter (λ) 0.95
Stepsize KL 0.01
Nb. iterations for the conjugate gradient 15
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F COMPARATIVE EVALUATION OF AVEC WITH TRPO

In order to evaluate the performance gains in using AVEC instead of the usual actor-critic framework,
we produce some additional experiments with the TRPO (Schulman et al., 2015) algorithm. Fig. 12
shows the learning curves while Table 5 reports the results.
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Figure 12: Comparative evaluation of AVEC with TRPO. We run with 6 different seeds: lines are
average performances and shaded areas represent one standard deviation.

Table 5: Average total reward of the last 100 episodes over 6 runs of 106 timesteps. Comparative
evaluation of AVEC with TRPO. ± corresponds to a single standard deviation over trials and (.%) is
the change in performance due to AVEC.

Task TRPO AVEC-TRPO
Ant −50.5 −43.5± 2.2 (+16%)
AntBullet 564 970± 70 (+72%)
HCheetah 346 466± 56 (+35%)
HCBullet 1154 1281± 94 (+11%)
Humanoid 352 344± 1.2 (−3%)
Reacher −8.5 −9.9± 1.3 (−16%)
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G ENVIRONMENTS DETAILS

Table 6: Environments details.

Environment Description

Ant-v2 Make a four-legged creature walk forward as fast
as possible.

AntBulletEnv-v0 Idem. Ant is heavier, encouraging it to typically
have two or more legs on the ground (source: Py-
Bullet Guide - url).

HalfCheetah-v2 Make a 2D cheetah robot run.
HalfCheetahBulletEnv-v0 Idem.
Humanoid-v2 Make a three-dimensional bipedal robot walk for-

ward as fast as possible, without falling over.
Reacher-v2 Make a 2D robot reach to a randomly located tar-

get.
Walker2d-v2 Make a 2D robot walk forward as fast as possible.
Acrobot-v1 Swing the end of a two-joint acrobot up to a given

height.
MountainCar-v0 Get an under powered car to the top of a hill.

H DIMENSIONS OF STUDIED TASKS

Table 7: Actions and observations dimensions.

Task S A
Ant R111 R8

AntBullet R28 R8

HalfCheetah R17 R6

HalfCheetahBullet R26 R6

Humanoid R376 R17

Reacher R11 R2

Walker2d R17 R6

Acrobot R6 3
MountainCar R2 3
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