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Abstract

We give a general theory on well-posedness and time asymptot-
ics for growth fragmentation equations. These linear kinetic (integro-
di¤erential) equations arise in the modeling of various physical or bi-
ological phenomena involving concentration of agregates which expe-
rience both growth and fragmentation. We prove �rst generation of
C0-semigroups (V (t))t�0 governing them for unbounded total fragmen-
tation rate and fragmentation kernel b(:; :) such that

R y
0
xb(x; y)dx =

y��(y)y (0 � �(y) � 1 expresses the mass loss) and continuous growth
rate r(:) such that

R1
0

1
r(�)d� = +1: This is done in three natural func-

tional spaces L1 (R+; �(dx)) (�(dx) = dx; xdx or (1 + x) dx) which
correspond respectively to �nite number of agregates, �nite mass or
�nite mass and number of agregates. The mass loss or death assump-
tions are needed only in the vicinity of points where the total fragmen-
tation rate gets in�nite. The analysis relies on unbounded perturbation
theory peculiar to positive semigroups in L1 spaces. Secondly, we show
when the resolvent of the generator is compact and the semigroup has
a spectral gap, i.e. ress(V (t)) < r�(V (t)) (ress is the essential spectral
radius), and an asynchronous exponential growth. The analysis relies
on weak compactness tools and Frobenius theory of positive operators.
A systematic functional analytic construction is provided.
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1 Introduction

This paper provides a general theory on well-posedness (in the sense of C0-
semigroups) and time asymptotics of growth-fragmentation equations

@

@t
u(x; t) +

@

@x
(r(x)u(x; t)) + (a(x) + d(x))u(x; t)

=

Z +1

x
a(y)b(x; y)u(y; t)dy; u(x; 0) = u0(x); x; t > 0 (1)
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with measurable nonnegative fragmentation kernel b(:; :) and positive growth
rate r(:) satisfying the general structural assumptionsZ y

0
xb(x; y)dx = y (1� �(y)) ; 0 � �(y) � 1 (y � 0) (2)

b(x; y) > 0 if 0 � x < y (3)

r(:) 2 C (0;+1) ;
Z 1

0

1

r(�)
d� = +1; (4)

while the total fragmentation rate a(:) and the death (or degradation) rate
d(:) are measurable nonnegative and

� := a+ d 2 L1loc(0;+1): (5)

Among the physical examples of growth rates we can �nd in the literature,
note for instance the typical ones

r(x) = 1 or r(x) = x; (x > 0) : (6)

The kinetic equations (1) arise in the modeling of various physical or bi-
ological phenomena involving concentration of agregates which experience
both growth and fragmentation. Typical biological examples are provided
by phytoplankton dynamics [1][2] or by prions dynamics [15]; we refer to [16]
and references therein for a lot of contexts where these equations arise; see
also the monographs [20][5][34] for more information. The unknown u(x; t)
represents the concentration at time t of �agregates� with mass x > 0 while
b(x; y) (x < y) describes the distribution of mass x agregates, called daugh-
ter agregates, spawned by the fragmentation of a mass y agregates. The
local mass conservation in the fragmentation process corresponds to

1

y

Z y

0
xb(x; y)dx = 1

i.e. to �(:) = 0: In this case, we say that the kernel b(:; :) is conservative.
Most of the literature is concerned with conservative fragmentation kernels.
On the other hand

�(:) 6= 0 (7)

amounts to saying that a mass loss takes place in the fragmentation process,
i.e.

1

y

Z y

0
xb(x; y)dx � 1
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where

�(y) = 1� 1
y

Z y

0
xb(x; y)dx (8)

quanti�es this mass loss ([3] Chapter 9).
Notice that these fragmentation kernels contain for example homoge-

neous kernels

b(x; y) =
1

y
h(
x

y
) with

Z 1

0
zh(z)dz � 1 (9)

(for some h 2 L1+ ((0; 1) ;xdx)) sinceZ y

0
xb(x; y)dx =

Z y

0

x

y
h(
x

y
)dx = y

Z 1

0
zh(z)dz = y (1� �)

where

� = 1�
Z 1

0
zh(z)dz:

More generally, for any conservative fragmentation kernel bb(x; y) and
0 � �(x; y) � 1; (10)

the kernel
b(x; y) := �(x; y)bb(x; y) (11)

satis�es (2) with

�(y) =
1

y

Z y

0
x (1� �(x; y))bb(x; y)dx: (12)

Conversely, any fragmentation kernel b(:; :) satisfying (2) is of the form (11)
with

�(x; y) =
1

y

Z y

0
xb(x; y)dx and bb(x; y) = b(x; y)

�(x; y)
:

We have thus a full description of the fragmentation kernels considered in
this paper by means of conservative kernels.

We point out that for a given concentration u(:; :),Z +1

0
u(x; t)xdx and

Z +1

0
u(x; t)dx

are respectively the total mass and the total number of agregates at time
t � 0. Thus, three natural functional spaces are of particular interest: the
"�nite mass" space
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X1 := L
1(R+; xdx) with norm kkX1 ,

the "�nite agregates number" space

X0 := L
1(R+; dx) with norm kkX0

and the "�nite mass and agregates number" space

X0;1 := L
1(R+; (1 + x) dx) with norm kkX0;1 :

Because of their physical relevance and for the sake of completeness, we
consider the growth-fragmentation equations in each of the functional spaces
above and for the di¤erent types of divergence (4) (see (21)(22) below). The
technical details (and assumptions) may vary a bit from one context to
another but overall the general mathematical arguments are similar.

We recall that semigroup generation for growth (i.e. transport) equations

@

@t
u(x; t) +

@

@x
(r(x)u(x; t)) + �(x)u(x; t) = 0 (13)

is known in various functional settings and under various assumptions on
the growth rate r (see e.g. [5][7][8] for a resolvent approach via Hille-Yosida
theory). The �rst object of this paper is well-posedness of (1) in the sense of
C0-semigroups. To this end, we give �rst a direct and systematic construc-
tion of explicit growth semigroups (U(t))t�0 governing (13) with continuous
growth rates r(:) in the functional spaces above under "optimal" (i.e. suf-
�cient and "necessary") assumptions. We consider then the fragmentation
operator

B : ' 2 D(T )!
Z +1

x
a(y)b(x; y)'(y)dy (14)

(T is the generator of (U(t))t�0) as a perturbation and show a generation
of a C0-semigroup (V (t))t�0 by T +B with domain

D(T +B) = D(T ) (15)

under suitable assumptions depending on the functional space we consider.
To this end, we use a perturbation theorem peculiar to positive C0-semigroups
in L1-spaces by W. Desch [13]:

Theorem 1 ([13]; see also [36] or [23] Chapter 8) Let (U(t))t�0 be a posi-
tive C0-semigroup with generator T on some L1(�)-space and let

B : ' 2 D(T ) � L1(�)! L1(�)
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be continuous on D(T ) (endowed with the graph norm) and positive (i.e.
B : D(T ) \ L1+(�)! L1+(�)). Then

T +B : D(T ) � L1(�)! L1(�)

generates a positive C0-semigroup on L1(�) if and only if

lim
�!+1

r�

�
B (�� T )�1

�
< 1:

Based on a systematic use of weak compactness arguments, the second
object of this paper is to analyze, in each of the above functional spaces and
for di¤erent types of divergence (4) (see (21)(22) below), the existence of a
spectral gap

ress(V (t)) < r�(V (t)) (16)

(ress and r� refer respectively to the essential spectral radius and the spectral
radius) or equivalently

!ess(V ) < !(V )

where !ess(V ) and !(V ) denote respectively the essential type and the type
of (V (t))t�0, (see e.g. [23] Chapter 2). This property is related to stability
of essential type under suitable perturbations, (see below). Note that the
expression "spectral gap" is widely used in the mathematical literature but
has not always a univocal meaning; we use it here in the sense above. The
combination of (16) with some irreducibility condition implies the so-called
asynchronous exponential growth of (V (t))t�0e��tV (t)� P = O(e�"t) (17)

(for some " > 0) where P is a one-dimensional spectral projection relative
to the leading isolated algebraically simple dominant eigenvalue � (Malthus
parameter) of the generator, (see e.g. [37]). More precisely

P' =

�Z +1

0
'(x)u�(x)�(dx)

�
u

where �(dx) = dx; xdx or (1 + x) dx (depending on the choice of X0; X1 or
X0;1), u is the nonnegative eigenfunction associated to the leading isolated
eigenvalue � of the generator and u� is the dual nonnegative eigenfunction
(associated to the leading isolated eigenvalue �) with a normalizationZ +1

0
u(x)u�(x)�(dx) = 1:
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We point out that the existence of such Perron eigenelements is a conse-
quence of the spectral gap (16).

The existence of Perron eigenvectors, regardless of the occurence of a
spectral gap, and their asymptotic stability in weighted L1 spaces (the
weight being the dual eigenvector) rely on di¤erent tools and have been the
subject of rich works in the last decade. Without pretense to completeness,
we refer e.g. to [18][15][21][16][22][7][8][9][10] where some results combine
relative entropy techniques; see also [11] for a probabilistic approach. We
refer to the introductions of [22][16][8][10] for a comprehensive review of
the existing tools and results. In particular, we point out that asymptotic
stability need not be uniform with respect to initial data and, at least in
suitable weighted spaces, we cannot expect the existence of a spectral gap
for bounded total fragmentation rates a(:) even if Perron eigenvectors can
exist [7]. (We do not comment here on the case of bounded state spaces
which goes back to the pioneer paper [14]; see [4] and references therein for
more recent works in this direction.)

Our paper is rather in the same spirit as [8]. The latter deals with
asynchronous exponential growth (17) under the divergence (22) below in
higher moment spaces

L1(R+; (1 + x)� dx) (� > ��) (18)

for a suitable threshold �� � 1 (see also [22][10]). We deal here with the
asynchronous exponential growth (17) in the natural spaces X0, X1; X0;1
under the general divergence (4) but at the expense of the additional as-
sumption

�(:) 6= 0 or d(:) 6= 0 (19)

(mass loss or death) which does not occur in the literature on the subject.
Assumption (19) opens new mathematical perspectives and allows a sys-

tematic functional analytic construction which is the object of this paper.
This general theory is based on few structural assumptions only. Besides
the main results on spectral gaps, many preliminary results of independent
interest are also given and the role of unboundedness of total fragmentation
rates a(:) is fully highlighted.

Our construction, inspired by recent contributions to other structured
models [29][30][31], relies on three key mathematical ingredients:

(i) The weak compactness tools, for absorption semigroups in L1 spaces,
introduced in [28].

(ii) The convex (weak) compactness property of the strong operator
topology in Banach spaces [35] (see also [24] for an elementary proof in
L1(�) spaces).
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(iii) Strict comparison of spectral radii in Frobenius theory [19].
Among linear kinetic equations, growth-fragmentation equations present

a very particular trait: the state-variable is one-dimensional. This gives
them a local regularizing e¤ect that does not exist in usual kinetic theory,
e.g. in neutron transport, where the transport part has no local regularizing
e¤ect and the perturbation (the collision operator) is non-local with respect
to another (velocity) v-variable; this second state variable has a regulariz-
ing (local compactness) e¤ect with respect to space x-variable and induces
the stability of the essential type [25][26]. On the other hand, for growth-
fragmentation equations, the compactness results (i.e. the key point behind
the spectral gap property) are consequences of the local regularizing e¤ect
we alluded to and of the con�ning role of singular absorptions [28], hence the
key role, in our construction, of unboundedness of total fragmentation rates
a(:). We point out that (19) is needed only in the vicinity of points where
a(:) gets in�nite. Finally, we note that for bounded total fragmentation
rates, no spectral gap can exist in the weighted spaces

L1(R+; (1 + x)� dx) (� < 1); (20)

see [7]; we conjecture that we cannot expect spectral gaps in X1, X0 or X0;1
if the total fragmentation rate is bounded.

Our paper is organized as follows:
We provide �rst an explicit construction of growth C0-semigroups gov-

erning (13) by the method of characteristics. Two di¤erent growth C0-
semigroups occur according asZ 1

0

1

r(�)
d� = +1;

Z 1

1

1

r(�)
d� = +1 (21)

or Z 1

0

1

r(�)
d� < +1,

Z 1

1

1

r(�)
d� = +1 (22)

to cover e.g. the examples (6). (For the sake of simplicity, we ignore the
case

R 1
0

1
r(�)d� = +1;

R1
1

1
r(�)d� < +1:) Note that (22) is complemented

by a boundary condition, see (31) below. Our main results in the spaces X1
and X0;1 under Assumption (21) are the following:

A transport C0-semigroup (U(t))t�0 governing (13) exists in X1 (resp.
in X0;1) and is given by

U(t)f = e
�
R y
X(y;t)

�(p)
r(p)

dp
f(X(y; t))

@X(y; t)

@y

8



(X(y; t) is de�ned by
R y
X(y;t)

1
r(�)d� = t) provided that

� := sup
z>0

r(z)

z
< +1 (resp. sup

z>1

r(z)

z
< +1); (23)

(see Proposition 11 and Proposition 32). In addition, the assumptions (23)
are "necessary" to a generation theory, (see Proposition 6 and Remark 26).
Note that under (21), the generation theory in X0;1 needs no condition on
the growth rate at the origin. Note also that the C0-semigroup (U0(t))t�0
corresponding to � = 0 is not contractive, (see Remarks 5 and 27).

We also "compute" the spectral bound

s(T ) := sup fRe �; � 2 �(T )g

of its generator T ; (see Proposition 13 and Proposition 34). We recall that
s(T ) coincides with the type of (U(t))t�0; (this is a general property of
positive semigroups in Lebesgue spaces, see e.g. [38]). The resolvent of T is
given by

�
(�� T )�1f

�
(y) =

1

r(y)

Z y

0
e
�
R y
x
�+�(�)
r(�)

d�
f(x)dx (Re� > s(T ))

in both spaces X1 and X0;1; (see Proposition 12 and Proposition 33). Note
the domination

U(t) � U0(t) (t � 0) and (�� T )�1 � (�� T0)�1 (� > s(T0))

where T0 is the generator of (U0(t))t�0 : We show the pointwise a priori
estimate in X1��(�� T0)�1f �� (y) � 1

yr(y)
kfkX1 (f 2 X1) (� > �);

(see Lemma 10).
In X0;1, if we replace the natural condition supz>1

r(z)
z < +1 by the

stronger one

C := sup
z>0

r(z)

1 + z
< +1; (24)

we show the pointwise a priori estimate in X0;1��(�� T0)�1f �� (y) � 1

(1 + y) r(y)
kfkX0;1 (f 2 X0;1) (� > C);
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(see Lemma 30). Note that by domination, the pointwise estimates above
are inherited by (�� T )�1:

We show that T has a smoothing e¤ect in X1 for � > �Z +1

0

��(�� T )�1f �� (y)�(y)ydy � Z +1

0
jf(y)j ydy (f 2 X1);

(see Lemma 14).
In X0;1, if we replace the natural condition supz>1

r(z)
z < +1 by the

stronger one (24), we show the smoothing e¤ect for � > CZ +1

0

��(�� T )�1f �� (y)�(y)(1 + y)dy � Z +1

0
jf(y)j (1 + y)dy (f 2 X0;1);

(see Lemma 35). The above estimates, combined to the general theory [28]
on compactness properties in L1 spaces induced by the con�ning e¤ect of
singular absorptions, show that if the sublevel sets of �


c = fx > 0;�(x) < cg (c > 0)

are "thin near zero and near in�nity relatively to r" in the senseZ +1

0

1
c(�)

r(�)
d� < +1 (c > 0) (25)

where 1
c is the indicator function of 
c (note that
1
r(z) =2 L

1(0;+1)) then
T is resolvent compact in both spaces X1 and X0;1, i.e. (��T )�1 is compact
in X1 and X0;1; (see Theorem 20 and Theorem 42). This occurs for instance
if

lim
y!0+

�(y) = +1; lim
y!+1

�(y) = +1:

Note that if 
c has �nite Lebesgue measure then
R +1
1

1
c (�)
r(�) d� < +1 pro-

vided that 1
r(�) 2 L

p(1;+1) for some p > 1:
One shows that the fragmentation operator B given par (14) is T -

bounded in X1 and

lim
�!+1

B(�� T )�1L(X1) � lim sup
a(y)!+1

1� �(y)
1 + d(y)

a(y)

;

in particular, by W. Desch�s perturbation theorem (Theorem 1),

T +B : D(T ) � X1 ! X1

10



generates a positive C0-semigroup (V (t))t�0 on X1 provided that

 := lim sup
a(y)!+1

1� �(y)
1 + d(y)

a(y)

< 1; (26)

(see Theorem 16). Note that (26) is satis�ed e.g. if lim infa(y)!+1
d(y)
a(y) > 0

or if
lim inf

a(y)!+1
�(y) > 0: (27)

This explains why we need mass loss or death assumptions and why these
are needed only in the vicinity of points where a(:) gets in�nite. We note
that for homogeneous kernels (9), the condition (27) amounts toZ 1

0
zh(z)dz < 1:

More generally, in the case (11), the condition (27) holds if

lim sup
a(y)!+1

�(x; y) < 1;

(see Remark 18).
Under (26),

T +B : D(T ) � X1 ! X1

is resolvent compact provided that T : D(T ) ! X1 is; (see Corollary 21).

We build a C0-semigroup
�bV (t)�

t�0
on X1 such that

U(t) � bV (t) � V (t) (t � 0):
By using the convex (weak) compactness property of the strong operator

topology [35][24] (see below), we show that
�bV (t)�

t�0
and (V (t))t�0 have

the same essential type
!ess(bV ) = !ess(V ):

The resolvent compactness of their generators and the strict comparison
results of spectral radii of positive compact operators in domination contexts
[19] imply the strict comparison of the types

!(bV ) < !(V )
11



and consequently (V (t))t�0 has a spectral gap (16) and exhibits the asyn-
chronous exponential growth (17) in X1 provided that the support of a(:) is
not bounded; (see Theorem 23).

The analysis in X0;1 is similar but needs a di¤erent assumption. Indeed,
one shows that the fragmentation operator (14) is T -bounded in X0;1 and

lim
�!+1

B(�� T )�1L(X1) � lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

�
provided that

n(y) :=

Z y

0
b(x; y)dx;

(the expected number of daughter agregates spawned by a mother agregates
of mass y) is such that

sup
y>0

n(y)

1 + y
< +1:

By appealing again to W. Desch�s perturbation theorem,

T +B : D(T ) � X0;1 ! X0;1

generates a positive C0-semigroup (V (t))t�0 on X0;1 provided that

lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� < 1; (28)

(see Theorem 38). As previously, mass loss or death are needed only in the
vicinity of points where a(:) gets in�nite. Note that

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� =

h
y + n(y)

(1��(y))

i
(y + 1)

(1� �(y))
1 + d(y)

a(y)

so (28) occurs provided that

lim sup
a(y)!+1

h
y + n(y)

(1��(y))

i
(y + 1)

< �1:

In particular, if  < 1 (i.e. under the generation criterion in X1) and if
a(:) is unbounded at zero and at in�nity only, then (28) (i.e. the generation
criterion in X0;1) occurs provided that

max

�
lim sup

y!0

n(y)

(1� �(y)) ; 1 + lim sup
y!+1

n(y)

y (1� �(y))

�
< �1;

12



(see Corollary 39). This is the case e.g. if �(:) = 0 and

max

�
lim sup

y!0
n(y); 1 + lim sup

y!+1

n(y)

y

�
< 1 + lim inf

a(y)!+1

d(y)

a(y)

or if d(:) = 0 and

max

�
lim sup

y!0

n(y)

(1� �(y)) ; 1 + lim sup
y!+1

n(y)

y (1� �(y))

�
<

�
1� lim inf

a(y)!+1
�(y)

��1
: (29)

We note that for homogeneous kernels (9),

n(y) =

Z y

0

1

y
h(
x

y
)dx =

Z 1

0
h(z)dz

and the condition (29) amounts toZ 1

0
h(z)dz < 1:

More generally, in the case (11), the condition (29) holds if �+1 < 1 and

lim sup
y!0

bn(y) < ��1�
�+1
�2 and lim sup

y!+1

bn(y)
y

<

�
1� �+1

�
��1�

�+1
�2

where bn(y) = R y0 bb(x; y)dx and
��1 = lim inf

a(y)!+1
�(x; v) and �+1 = lim sup

a(y)!+1
�(x; v); (30)

(see Proposition 41).
Under Assumption (28),

T +B : D(T ) � X0;1 ! X0;1 is resolvent compact

provided that T : D(T ) ! X0;1 is; (see Corollary 43). As previously, we
deduce that (V (t))t�0 has a spectral gap (16) and exhibits the asynchro-
nous exponential growth (17) in X0;1 provided that the support of a(:) is
not bounded; (see Theorem 45). We conjecture that in X0;1, the results
hold under the natural assumption supz>1

r(z)
z < +1 instead of (24), (see

Remark 46).
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Let us describe now very brie�y the situation under Assumption (22);
(see Section 3 for the di¤erent statements). First of all, we cannot expect
a generation theory in X1 under (22), (see Remark 51). A growth C0-
semigroup (U(t))t�0 governing (13) with boundary condition

lim
x!0

r(x)u(x; t) = 0 (31)

exists in the space X0;1 and is given by

U(t)f = �nR y
0

1
r(�)

d�>t
oe� R yX(y;t) �(p)r(p)

dp
f(X(y; t))

@X(y; t)

@y
(32)

(X(y; t) is de�ned by
R y
X(y;t)

1
r(�)d� = t for

R y
0

1
r(�)d� > t) provided that (24)

is satis�ed. This su¢ cient condition for a generation theory in X0;1 under
(22) is "partly necessary", (see Remark 50). The mathematical analysis is
the same as in the previous case (21) in X0;1. The only di¤erent result is
that the resolvent compactness of T holds once the sublevel sets of �


c = fx > 0;�(x) < cg (c > 0)

are "thin near in�nity relatively to r" in the senseZ +1

1

1
c(�)

r(�)
d� < +1 (c > 0);

e.g. if limy!+1 �(y) = +1; (no condition at y = 0 is needed). In particu-
lar, (V (t))t�0 has a spectral gap and exhibits the asynchronous exponential
growth (17) in X0;1 provided that the support of a(:) is not bounded; (see
Theorem 64).

Section 4 is devoted to the "�nite agregates number" space

X0 = L
1(R+; dx)

under Assumption (22); (a similar construction could also be done under
Assumption (21)). For simplicity, we restrict ourselves to

d(:) = 0:

A growth C0-semigroup (U(t))t�0 governing (13) with boundary condition
(31) exists in the space X0 and is given by (32) but without any further
condition on the growth rate r(:): As in X1 or X0;1; its generator T satis�es

14



a smoothing e¤ect and the pointwise estimate and its resolvent is compact
if the sublevel sets of a(:) are "thin near in�nity relatively to r", e.g. if

lim
y!+1

a(y) = +1;

(see Theorem 67). We show also that the fragmentation operator (14) is
T -bounded in X0 and

lim
�!+1

B(�� T )�1L(X0) � lim sup
a(y)!+1

n(y)

provided that

n(:) :=

Z y

0
b(x; :)dx 2 L1(0;+1):

In particular, by W. Desch�s perturbation theorem again,

T +B : D(T ) � X0 ! X0

generates a positive C0-semigroup (V (t))t�0 on X0 provided that

lim sup
a(y)!+1

n(y) < 1; (33)

(see Theorem 68). Note that (33) cannot hold for conservative fragmentation
kernels, hence the necessity of the mass loss condition. In particular, for
homogeneous kernels (9), it amounts to

R 1
0 h(z)dz < 1: More generally, in

the case (11), the condition (33) is satis�ed if

lim sup
a(y)!+1

bn(y) < 1

�+1
;

(see Remark 70).
We show that (V (t))t�0 has a spectral gap and exhibits the asynchro-

nous exponential growth (17) in X0 provided that the support of a(:) is not
bounded; (see Theorem 71). If a(:) is unbounded at zero or at in�nity only,
then (33) expresses a smallness condition on n(:) at zero or at in�nity.

As far as we know, our results are new and appear here for the �rst
time. The role of mass loss or death assumptions appears in the spaces
X = X1; X0 or X0;1 at two key places : In the proof that

T +B : D(T )! X (34)

is a generator via W. Desch�s perturbation theorem and (consequently) in
the fact that the resolvent compactness of T implies the resolvent compact-
ness of T + B. A priori, we can overcome the �rst point. Indeed, if we

15



consider for instance the space X1, by adapting honesty theory (see e.g.
[27]), without mass loss or death assumptions (i.e. �(:) = d(:) = 0), (34)
need not be a generator but there exists a unique extension

TB � T +B

of (34) which generates a positive C0-semigroup (V (t))t�0 in X1. Unfortu-
nately, even in the honest case (i.e. TB = T +B), if T + B is not closed,
a priori we cannot infer that TB is resolvent compact when T is. This is
the main obstruction to build a general theory of asynchronous exponential
growth in X1 without mass loss or death conditions. The same observation
can also be made for the other spaces.

In [8], under Assumption (22), where no mass loss or death condition
is assumed and where TB = T +B (and a priori TB 6= T + B), the asyn-
chronous exponential growth is not obtained in the natural space X0;1 but
in higher moment spaces (18) ([8] Theorem 1.2): We note that a general
construction similar to the present one holds without mass loss or death
assumptions provided the growth-fragmentation equations are considered in
higher moment spaces

L1(R+; (1 + x)� dx); L1(R+; x�dx) (� > ��)

for a suitable threshold �� � 1 depending on the functional space [32]; (this
is due to the fact that W. Desch�s perturbation theorem can apply in higher
moment spaces without resorting to mass loss or death assumptions [6]).
This strongly suggests the conjecture that we cannot expect the asynchro-
nous exponential growth (17) in X1, X0 or X0;1 without mass loss or death
assumptions.

2 The �rst construction

We deal �rst with the caseZ 1

0

1

r(�)
d� = +1 and

Z 1

1

1

r(�)
d� = +1 (35)

and start with:

Proposition 2 Let (35) be satis�ed. The partial di¤erential equation

@

@t
u(x; t) +

@

@x
[r(x)u(x; t)] = 0; (x; t > 0)

16



with initial condition u(x; 0) = f(x) has a unique solution given by

u(y; t) =
r(X(y; t))f(X(y; t))

r(y)

where X(y; t) > 0 is de�ned byZ y

X(y;t)

1

r(�)
d� = t (t > 0): (36)

Proof. We solve
@

@t
u(x; t) +

@

@x
[r(x)u(x; t)] = 0

with intial data u(x; 0) = f(x) by the method of characteristics. Making
the change

r(x)u(x; t) = '(x; t)

this amounts to solving

1

r(x)

@

@t
'(x; t) +

@

@x
['(x; t)] = 0; '(x; 0) = r(x)f(x):

We introduce the characteristic equations

dt

ds
=

1

r(x(s))
;
dx

ds
= 1

with "initial" conditions

x(0) = x; t(0) = 0 (x > 0)

i.e. x(s) = s+ x and

t(s) =

Z s

0

1

r(� + x)
d� =

Z s+x

x

1

r(�)
d� (s > 0):

Thus

[0;+1) 3 s! r(s+ x)u(s+ x;

Z s+x

x

1

r(�)
d�) is constant

and then

r(s+ x)u(s+ x;

Z s+x

x

1

r(�)
d�) = r(x)u(x; 0) = r(x)f(x) 8s > 0:

17



For t > 0 and y > 0 given, we setZ s+x

x

1

r(�)
d� = t; s+ x = y

i.e.
R y
x

1
r(�)d� = t: Since x 2 [0; y] !

R y
x

1
r(�)d� is (a continuous function)

strictly decreasing from +1 to 0, then we denote by X(y; t) the unique
x 2 (0; y) such that

R y
x

1
r(�)d� = t: Thus r(y)u(y; t) = r(X(y; t))f(X(y; t))

which ends the proof.

2.1 Theory in the space X1

Within assumption (35), we �rst develop a general theory on well-posedness
and spectral analysis in the "�nite mass" space

X1 := L
1(R+; xdx):

2.1.1 An unperturbed semigroup (U0(t))t>0

We put now the solution given in Proposition 2 in the functional space X1.
Let

(U0(t)f) (y) :=
r(X(y; t))f(X(y; t))

r(y)

where X(y; t) (t > 0) is de�ned by (36).

Theorem 3 Let (35) be satis�ed. Then

(U0(t)f) (y) = f(X(y; t))
@X(y; t)

@y

and (U0(t))t>0 is a positive C0-semigroup on the space X1 if and only if
supx>0

y(x;t)
x < +1 8t > 0 and

[0;+1) 3 t! sup
x>0

y(x; t)

x
is locally bounded (37)

where y(x; t) is de�ned byZ y(x;t)

x

1

r(�)
d� = t (t > 0): (38)

If

� := sup
z>0

r(z)

z
< +1 (39)

then (37) is satis�ed; more precisely y(x;t)
x � e�t.

18



Proof. Let us check that U0(t) is a bounded operator on X1: Note that (36)
shows that (for t > 0 �xed) X(y; t) is strictly increasing in y and tends to 0
as y ! 0 (because X(y; t) � y). Note that

(0;+1) 3 y ! X(y; t) 2 (0;+1)

is continuous. Since (for t > 0 �xed)

U(y; z) :=

Z y

z

1

r(�)
d� � t

is of class C1 in (y; z) with

@U(y; z)

@z
= � 1

r(z)
6= 0

then the implicit function theorem shows that X(y; t) is a C1 function in
y 2 (0;+1) so that di¤erentiating (36) in y 2 (0;+1)

1

r(y)
� 1

r(X(y; t))

@X(y; t)

@y
= 0

i.e.
@X(y; t)

@y
=
r(X(y; t))

r(y)

and

(U0(t)f) (y) = f(X(y; t))
@X(y; t)

@y
; y 2 (0;+1):

Thus

ku(:; t)kX1 =
Z +1

0
ju(y; t)j ydy =

Z +1

0
jf(X(y; t))j @X(y; t)

@y
ydy:

Note that
R y
X(y;t)

1
r(�)d� = t shows that limy!+1X(y; t) = +1: The change

of variable x = X(y; t) gives

ku(:; t)kX1 =
Z +1

0
jf(x)j y(x; t)dx

where y(x; t) is the unique y > x such that x = X(y; t); see (38). Thus

ku(:; t)kX1 =
Z +1

0

y(x; t)

x
jf(x)jxdx
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and f(:) ! u(:; t) de�nes a bounded linear operator on X1 if and only if
supx>0

y(x;t)
x < +1: Hence

U0(t) : X1 3 f !
r(X(y; t))f(X(y; t))

r(y)
2 X1

is bounded with

kU0(t)kL(X1) = sup
x>0

y(x; t)

x

and then [0;+1) 3 t! U0(t) 2 L(X1) is locally bounded if and only if

[0;+1) 3 t! sup
x>0

y(x; t)

x

is. It follows (see e.g. [12]) that (U0(t))t>0 is exponentially bounded. In
this case, to show that (U0(t))t>0 is strongly continuous on X1 it su¢ ces to
check that

U0(t)f ! f in L1(R+; xdx) as t! 0

on a dense subspace of L1(R+; xdx), e.g. for f continuous with compact
support in (0;+1): Note that (36) shows that X(y; t) ! y as t ! 0 uni-
formly on compact sets of (0;+1). Let the support of f be included in a
set
�
c; c�1

�
with 0 < c < 1: Since

X(
c

2
; t)! c

2
and X(2c�1; t)! 2c�1 as t! 0

there exists tc > 0 such that

X(
c

2
; t) < c; X(2c�1; t) > c�1

once t < tc and consequently, for t < tc;

X(y; t) < c 8y � c

2
; X(y; t) > c�1 8y > 2c�1

because y ! X(y; t) is strictly increasing. Hence

U0(t)f = 0 on (0;
c

2
) [ (2c�1;+1); t < tc:

Since X(y; t) ! y as t ! 0 uniformly on
�
c
2 ; 2c

�1�, r(X(y; t))f(X(y; t)) is
uniformly bounded in y 2

�
c
2 ; 2c

�1� as t! 0 and 1
r is integrable on

�
c
2 ; 2c

�1�
so

r(X(y; t))f(X(y; t))

r(y)
! f in L1(

h c
2
; 2c�1

i
; dx)
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as t! 0 by the dominated convergence theorem. In particular U0(t)f ! f
in L1(R+; xdx) as t! 0:

It follows from (39) that

r(z) � �z 8z > 0: (40)

We di¤erentiate (38) in t to obtain

@y(x; t)

@t
= r(y(x; t)) 8t > 0 (41)

so

y(x; t) = x+

Z t

0
r(y(x; s))ds � x+

Z t

0
�y(x; s)ds:

Gronwall�s lemma gives y(x; t) � xe�t so ku(:; t)kX1 � e
�t
R +1
0 jf(x)jxdx and

�nally kU0(t)kL(X1) � e
�t:

Summarising:

Corollary 4 Let (35)(39) be satis�ed. Let X(y; t) be de�ned by (36). Then

(U0(t)f) (y) :=
r(X(y; t))f(X(y; t))

r(y)
= f(X(y; t))

@X(y; t)

@y

de�nes a C0-semigroup (U0(t))t>0 on X1 such that kU0(t)kL(X1) � e
�t where

� = supz>0
r(z)
z :

Remark 5 Note that the fact that x < y(x; t) (for t > 0) implies that
supx

�
x�1y(x; t)

�
> 1 and then kU0(t)kL(X1) > 1 for t > 0, i.e. (U0(t))t>0 is

not contractive.

We strongly suspect that the su¢ cient condition (39) for (37) is actually
necessary. Indeed, we have:

Proposition 6 Let (35) be satis�ed. If

lim
z!0

r(z)

z
= +1 or lim

z!+1
r(z)

z
= +1

then supx>0
y(x;t)
x = +1: where y(x; t) is de�ned by (38). In particular, the

generation theory in X1 fails.
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Proof. We have
R y(x;t)
x

1
r(�)d� = t so the change of variable

�
x = s givesZ y(x;t)

x

1

xs

r(xs)

1

s
ds = t (t > 0):

Arguing by contradiction, suppose that C := supx>0
y(x;t)
x < +1: Then

0 < t �
Z C

1

xs

r(xs)

1

s
ds (x > 0): (42)

If limz!+1
r(z)
z = +1 then limz!+1 z

r(z) = 0 and consequently, for any

sequence (xn)n such that xn ! +1 there exists a positive constant bC such
that

xns

r(xns)

1

s
�
bC
s
(s 2 (1; C))

for n large enough. Since xns
r(xns)

1
s ! 0 (n ! 1) (s 2 (1; C)) then the

dominated convergence theorem impliesZ C

1

xs

r(xs)

1

s
ds! 0

which contradicts (42). We argue similarly if limz!0
r(z)
z = +1:

2.1.2 On the generator of (U0(t))t>0

We identify now the resolvent of the generator.

Proposition 7 Let (35)(39) be satis�ed. Let T0 be the generator of (U0(t))t>0
in X1: Then�

(�� T0)�1f
�
(y) =

1

r(y)

Z y

0
e
�
R y
x

�
r(s)

ds
f(x)dx; Re� > s(T0)

where s(T0) is the spectral bound of T0

Proof. We recall that the spectral bound of T0 is nothing but the type of
(U0(t))t>0, see e.g. [33]. Note �rst that

�
(�� T0)�1f

�
(y) =

Z +1

0
e��t

r(X(y; t))f(X(y; t))

r(y)
dt (Re� > s(T0)):
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Note that (36) shows that t 2 (0;+1)! x := X(y; t) is strictly decreasing
from y to 0: Di¤erentiating (36) in t we get

� 1

r(X(y; t))

@X(y; t)

@t
= 1

so the change of variable x = X(y; t) gives

dx = �r(X(y; t))dt

and Z +1

0
e��t

r(X(y; t))f(X(y; t))

r(y)
dt =

1

r(y)

Z y

0
e��X�1(y;x)f(x)dx

where X�1(y; x) is the inverse of t! x = X(y; t): Observe that this inverse
is nothing but

x! t = �
Z x

y

1

r(�)
d�

so �
(�� T0)�1f

�
(y) =

1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d�
f(x)dx

and this ends the proof.

Remark 8 It is possible to characterize T0

D(T0) =

�
f 2 X1;

@ (rf)

@y
2 X1

�
; T0 = �

@ (rf)

@y

where @(rf)
@y is the derivative (in the sense of distributions on (0;+1)) of

the locally integrable function rf on (0;+1) ; see [5].

We characterize the spectral bound of T0.

Proposition 9 We assume that (35)(39) are satis�ed. The spectral bound
of T0 (or equivalently the type of (U0(t))t>0) is given by

s(T0) = lim
t!+1

1

t
ln

�
sup
x

�
x�1y(x; t)

��
= inf
t>0

1

t
ln

�
sup
x

�
x�1y(x; t)

��
> 0

where y(x; t) is de�ned by (38).
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Proof. In the proof of Theorem 3, kU0(t)kL(X1) = supx>0
y(x;t)
x and the

type of (U0(t))t>0 is given by limt!+1 1
t ln kU0(t)kL(X1) :

We give now a key pointwise estimate in X1.

Lemma 10 Let (35)(39) be satis�ed. Let � > �: Then��(�� T0)�1f �� (y) � 1

yr(y)
kfkX1 (f 2 X1):

Proof. Since r(x) � �x then��(�� T0)�1f �� � 1

r(y)

Z y

0
e��

R y
x

1
��
d� jf(x)j dx

=
1

r(y)

Z y

0

1

x
e��

R y
x

1
��
d� jf(x)jxdx:

On the other hand, if � > � then �
� � 1 > 0 and

1

x
e�

�
�

R y
x

1
�
d� =

1

x
e�

�
�
ln( y

x
) =

1

x
e
ln(x

y
)
�
�
=
1

x

x
�
�

y
�
�

=
x
�
�
�1

y
�
�

� y
�
�
�1

y
�
�

=
1

y
(8x � y)

so that ��(�� T0)�1f �� � 1

yr(y)

Z y

0
jf(x)jxdx � 1

yr(y)
kfkX1 :

This ends the proof.

2.1.3 A �rst perturbed semigroup (U(t))t>0

Arguing as previously, we solve

@

@t
u(x; t) +

@

@x
[r(x)u(x; t)] + �(x)u(x; t) = 0; u(x; 0) = f(x)

by the method of characteristics and get

u(y; t) =
e
�
R y
X(y;t)

�(p)
r(p)

dp
r(X(y; t))f(X(y; t))

r(y)

where X(y; t) is de�ned by (36).
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Proposition 11 Let (35)(39) be satis�ed. Let X(y; t) be de�ned by (36). Then

U(t)f : = e
�
R y
X(y;t)

�(p)
r(p)

dp r(X(y; t))f(X(y; t))

r(y)

= e
�
R y
X(y;t)

�(p)
r(p)

dp
f(X(y; t))

@X(y; t)

@y
= e

�
R y
X(y;t)

�(p)
r(p)

dp
U0(t)f

de�nes a positive C0-semigroup (U(t))t>0 on X1.

Proposition 12 Let (35)(39) be satis�ed. Let T be the generator of (U(t))t>0:
Then �

(�� T )�1f
�
(y) =

1

r(y)

Z y

0
e
�
R y
x
�+�(�)
r(�)

d�
f(x)dx:

for Re� > s(T ), where s(T ) is the spectral bound of T:

Proof. We note that for Re� > s(T )

�
(�� T )�1f

�
(y) =

Z +1

0
e��te

�
R y
X(y;t)

�(p)
r(p)

dp r(X(y; t))f(X(y; t))

r(y)
dt

where X(y; t) is de�ned by (36). Arguing as in the proof of Proposition 7,
the change of variable x = X(y; t) gives�
(�� T )�1f

�
(y) =

1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp
f(x)dx =

1

r(y)

Z y

0
e
�
R y
x
�+�(�)
r(�)

d�
f(x)dx

and ends the proof.
We study the spectral bound of T:

Proposition 13 Let (35)(39) be satis�ed. The spectral bound of T is given
by

s(T ) = lim
t!1

sup
x>0

" 
�t�1

Z y(x;t)

x

�(p)

r(p)
dp

!
+ t�1

�
ln
y(x; t)

x

�#
:

In particular

s(T ) � � lim
t!1

inf
x>0

t�1
Z y(x;t)

x

�(p)

r(p)
dp+ s(T0):

If b� := inf p�(p)r(p) > 0 (e.g. if inf � > 0) then

s(T ) � (1� b�) s(T0):
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Proof. We have

kU(t)fkX1 =
Z +1

0
e
�
R y
X(y;t)

�(p)
r(p)

dp
f(X(y; t))

@X(y; t)

@y
ydy:

The change of variable x = X(y; t) (i.e.
R y(x;t)
x

1
r(�)d� = t) gives

kU(t)fkX1 =
Z +1

0
e
�
R y(x;t)
x

�(p)
r(p)

dp
f(x)y(x; t)dx =

Z +1

0
e
�
R y(x;t)
x

�(p)
r(p)

dp y(x; t)

x
f(x)xdx

and

kU(t)kL(X1) = sup
x>0

�
e
�
R y(x;t)
x

�(p)
r(p)

dp y(x; t)

x

�
:

Hence

ln
�
kU(t)kL(X1)

�
= ln

�
sup
x>0

�
e
�
R y(x;t)
x

�(p)
r(p)

dp y(x; t)

x

��
= sup
x>0

ln

��
e
�
R y(x;t)
x

�(p)
r(p)

dp y(x; t)

x

��
= sup

x>0

" 
�
Z y(x;t)

x

�(p)

r(p)
dp

!
+

�
ln
y(x; t)

x

�#

� sup
x>0

 
�
Z y(x;t)

x

�(p)

r(p)
dp

!
+ sup
x>0

�
ln
y(x; t)

x

�
= � inf

x>0

Z y(x;t)

x

�(p)

r(p)
dp+ sup

x>0

�
ln
y(x; t)

x

�
:

This ends the �rst claim.
Note that if inf � > 0 then b� := inf p�(p)r(p) > 0 since sup

r(p)
p < +1: ThusZ y(x;t)

x

�(p)

r(p)
dp � b� Z y(x;t)

x

1

p
dp = b� ln y(x; t)

x

and

ln
�
kU(t)kL(X1)

�
� sup

x>0

�
�b� ln y(x; t)

x
+ ln

y(x; t)

x

�
= (1� b�) sup

x>0

�
ln
y(x; t)

x

�
= (1� b�) ln�sup

x>0

y(x; t)

x

�
= (1� b�) ln�kU0(t)kL(X1)�

implies

s(T ) = lim
t!+1

t�1 ln
�
kU(t)kL(X1)

�
� (1� b�) lim

t!+1
t�1 ln

�
kU0(t)kL(X1)

�
and ends the proof.
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2.1.4 A smoothing e¤ect of the perturbed resolvent

We give now another key estimate in X1.

Lemma 14 Let (35)(39) be satis�ed. Let � > �: ThenZ +1

0

���(�� T )�1f� (y)���(y)ydy � Z +1

0
j(f(y)j ydy; (f 2 X1) :

Proof. We note �rst that

e
��

R y
x

1
r(�)

d� � e�
�
�

R y
x

1
�
d� = e�

�
�
ln( y

x
) = (

x

y
)
�
�

so Z +1

0

���(�� T )�1f� (y)���(y)ydy
�

Z +1

0

�(y)y

r(y)

�Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp jf(x)j dx
�
dy

=

Z +1

0

�
1

x

Z +1

x
(
x

y
)
�
� e
�
R y
x
�(p)
r(p)

dp�(y)y

r(y)
dy

�
jf(x)jxdx

=

Z +1

0

�Z +1

x
(
x

y
)
�
�
�1e

�
R y
x
�(p)
r(p)

dp�(y)

r(y)
dy

�
jf(x)jxdx

�
Z +1

0

�Z +1

x
e
�
R y
x
�(p)
r(p)

dp�(y)

r(y)
dy

�
jf(x)jxdx:

On the other handZ +1

x
e
�
R y
x
�(p)
r(p)

dp�(y)

r(y)
dy = �

Z +1

x

d

dy

�
e
�
R y
x
�(p)
r(p)

dp
�
dy

= �
�
e
�
R y
x
�(p)
r(p)

dp
�y=+1
y=x

� 1

whence Z +1

0

���(�� T )�1f� (y)���(y)ydy � Z +1

0
jf(x)jxdx

and we are done.

Remark 15 One can deduce from Lemma 14 that

D(T ) = ff 2 D(T0); �f 2 X1g ; T f = T0f � �f:
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2.1.5 On the full perturbed semigroup (V (t))t>0

We give now a second perturbation theorem in X1.

Theorem 16 Let (35)(39) be satis�ed. Then the fragmentation operator
(14) is T -bounded in X1 and

lim
�!+1

B(�� T )�1L(X1) � lim sup
a(y)!+1

(1� �(y))
1 + d(y)

a(y)

:

In particular,
T +B : D(T ) � X1 ! X1

generates a positive semigroup (V (t))t>0 in X1 if

lim sup
a(y)!+1

(1� �(y))
1 + d(y)

a(y)

< 1: (43)

Proof. We observe that

kB'kX1 �
Z +1

0

�Z +1

x
a(y)b(x; y) j'(y)j dy

�
xdx

=

Z +1

0
a(y)

�Z y

0
xb(x; y)dx

�
j'(y)j dy

=

Z +1

0
a(y) (y � �(y)y) j'(y)j dy

=

Z +1

0
a(y) (1� �(y)) j'(y)j ydy

so B(�� T )�1f
X1

=

Z +1

0
a(y) (1� �(y))

�
(�� T )�1 jf j

�
ydy

=

Z
fa�cg

a(y) (1� �(y))
�
(�� T )�1 jf j

�
ydy

+

Z
fa>cg

a(y) (1� �(y))
�
(�� T )�1 jf j

�
ydy:

We haveZ
fa�cg

a(y) (1� �(y))
�
(�� T )�1 jf j

�
ydy � c

(�� T )�1f
X1
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and Z
fa>cg

a(y) (1� �(y))
�
(�� T )�1 jf j

�
ydy

=

Z
fa>cg

a(y) (1� �(y))
a(y) + d(y)

(a(y) + d(y))
�
(�� T )�1 jf j

�
ydy

� sup
fa>cg

a(y) (1� �(y))
a(y) + d(y)

Z +1

0
(a(y) + d(y))

�
(�� T )�1 jf j

�
ydy

= sup
fa>cg

(1� �(y))
1 + d(y)

a(y)

Z +1

0
(a(y) + d(y))

�
(�� T )�1 jf j

�
ydy:

On the other hand, according to Lemma 14, for � > �Z +1

0

���(�� T )�1f� (x)�� (a(x) + d(x))xdx � Z +1

0
jf(x)jxdx

whence B(�� T )�1L(X1) � c(�� T )�1L(X1) + sup
fa>cg

(1� �(y))
1 + d(y)

a(y)

and

lim
�!+1

B(�� T )�1L(X1) � sup
fa>cg

(1� �(y))
1 + d(y)

a(y)

(8c > 0):

Fnally

lim
�!+1

B(�� T )�1L(X1) � lim sup
a(y)!+1

(1� �(y))
1 + d(y)

a(y)

and this ends the proof by invoking W. Desch�s theorem (i.e. Theorem 1)
since T generates a positive semigroup (U(t))t>0:

Remark 17 The well posedness via W. Desch�s theorem depends on the
existence of an amount of mass loss or death in the system. For instance
(43) is satis�ed if

d = 0 and lim inf
a(y)!+1

�(y) > 0 or � = 0 and lim inf
a(y)!+1

d(y)

a(y)
> 0:

Remark 18 For homogeneous kernels (9), lim infa(y)!+1 �(y) > 0 amounts
to
R 1
0 zh(z)dz < 1: More generally, in the case (11),

lim inf
a(y)!+1

�(y) � 1� �+1
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where

�+1 = lim sup
a(y)!+1

�(x; y) := lim
m!+1

sup
f(x;v); a(y)�mg

�(x; y)

and lim infa(y)!+1 �(y) > 0 holds if �
+
1 < 1:

2.1.6 Compactness results in X1

Let

c = fx > 0;�(x) < cg (c > 0)

be the sublevel sets of �:

De�nition 19 If
R 1
0

1
r(�)d� = +1 we say that the sublevel sets of � are

thin near zero relatively to r (thin near zero for short) ifZ 1

0

1
c(�)

r(�)
d� < +1 (c > 0)

where 1
c is the indicator function of 
c: In particular, if limy!0 �(y) = +1
then the sublevel sets of � are automatically thin near zero.

Similarly, if
R1
1

1
r(�)d� = +1 we say that the sublevel sets of � are thin

near in�nity relatively to r (thin near in�nity for short) ifZ 1

1

1
c(�)

r(�)
d� < +1 (c > 0):

In particular, if limy!+1 �(y) = +1 then the sublevel sets of � are auto-
matically thin near in�nity.

The con�ning role of singular absorption potentials in compactness prop-
erties of (perturbed) positive contraction semigroups in abstract L1 spaces
has been systematically analyzed in [28]. Note that growth-semigroups are
not contractive and we provide here a direct analysis adapted to them.

Theorem 20 Let (35)(39) be satis�ed. If

the sublevel sets of � are thin near zero and in�nity (44)

then T is resolvent compact on X1:
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Proof. Let � > � and f in the unit ball of X1, i.e.Z +1

0
jf(x)jxdx � 1:

According to Lemma 14Z +1

0

���(�� T )�1f� (x)���(x)xdx � 1:
Let c > 0 and " > 0 be arbitrary. We have

1 �
Z "

0

���(�� T )�1f� (x)���(x)xdx = Z "

0
1f�<cg

���(�� T )�1f� (x)���(x)xdx
+

Z "

0
1f��cg

���(�� T )�1f� (x)���(x)xdx
so

sup
kfkX1�1

Z "

0
1f��cg

���(�� T )�1f� (x)��xdx � 1

c
:

On the other hand, according to Lemma 10,���(�� T )�1f� (x)�� � 1

xr(x)
(x > 0)

uniformly in kfkX1 � 1 soZ "

0
1f�<cg

���(�� T )�1f� (x)���(x)xdx � cZ "

0
1f�<cg

1

xr(x)
xdx = c

Z "

0
1f�<cg

1

r(x)
dx

and

sup
kfkX1�1

Z "

0

���(�� T )�1f� (x)��xdx � 1

c
+ c

Z "

0
1f�<cg

1

r(x)
dx

can be made arbitrarily small by choosing �rst c large enough and then "
small enough.

Similarly,

1 �
Z +1

"�1

���(�� T )�1f� (x)���(x)xdx = Z +1

"�1
1f�<cg

���(�� T )�1f� (x)���(x)xdx
+

Z +1

"�1
1f��cg

���(�� T )�1f� (x)���(x)xdx
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so

sup
kfkX1�1

Z +1

"�1
1f��cg

���(�� T )�1f� (x)��xdx � 1

c
:

We have alsoZ +1

"�1
1f�<cg

���(�� T )�1f� (x)���(x)xdx � cZ +1

"�1
1f�<cg

1

xr(x)
xdx = c

Z +1

"�1
1f�<cg

1

r(x)
dx

and

sup
kfkX1�1

Z "

0

���(�� T )�1f� (x)��xdx � 1

c
+ c

Z "

0
1f�<cg

1

r(x)
dx

can be made arbitrarily small by choosing �rst c large enough and then "
small enough. Finally, the uniform estimate���(�� T )�1f� (x)�� � 1

xr(x)
(x > 0) (kfkX1 � 1)

gives a uniform domination by
1(";"�1)
xr(x) 2 X1

1(";"�1)
���(�� T )�1f� (x)�� � 1(";"�1)

xr(x)
(kfkX1 � 1)

so �
1(";"�1)

���(�� T )�1f��� ; kfkX1 � 1	 is relatively weakly compact.
Finally,

�
(�� T )�1f ; kfkX1 � 1

	
is as close to a relatively weakly compact

set as we want and consequently is weakly compact. Hence (� � T )�1 is
weakly compact operator and consequently (see [28] Lemma 14) (�� T )�1
is compact.

We can state:

Corollary 21 Let (35)(39)(44)(43) be satis�ed. Then

T +B : D(T ) � X1 ! X1

is resolvent compact in X1.

Proof. Theorem 16 implies
P+1
j=0(B(�� T )�1)j 2 L(X1) and

(�� T �B)�1 = (�� T )�1
+1X
j=0

(B(�� T )�1)j

so Theorem 20 ends the proof.

32



2.1.7 Spectral gap of the full semigroup (V (t))t>0 in X1

We start with:

Lemma 22 Let (35)(39) be satis�ed. We assume that the support of a(:)
is not bounded. Then (�� T �B)�1 is positivity improving, i.e.

(�� T �B)�1f > 0 a.e.

for any nontrivial nonnegative f 2 X1; or equivalently (V (t))t>0 is irre-
ducible in X1.

Proof. Note that

(�� T �B)�1f = (�� T )�1
+1X
n=0

�
B(�� T )�1

�n
f

> (�� T )�1
+1X
n=1

�
B(�� T )�1

�n
f

and �
(�� T )�1'

�
(y) =

1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp
'(x)dx:

Note also that

B(�� T )�1f

=

Z +1

0
1fx<yga(y)b(x; y)

�
1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp
f(x)dx

�
dy

=

Z +1

0

�Z +1

x

1

r(y)
1fx<yga(y)b(x; y)e

��
R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp
dy

�
f(x)dx

=

Z +1

0

�Z +1

x

1

r(y)
a(y)b(x; y)e

��
R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp
dy

�
f(x)dx

and Z +1

x

1

r(y)
a(y)b(x; y)e

��
R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp
dy > 0 8x > 0

so that B(� � T )�1f > 0 a.e. for any nontrivial nonnegative f: It follows
that

+1X
n=1

�
B(�� T )�1

�n
f > 0 a.e.
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and consequently

(�� T )�1
+1X
n=1

�
B(�� T )�1

�n
f > 0 a.e.

for any nontrivial nonnegative f . This ends the proof.
We are now ready to show the main result of Subsection 2.1.

Theorem 23 We assume that (35)(39)(43)(44) are satis�ed and that the
support of a(:) is not bounded. Then (V (t))t>0 has a spectral gap in X1, i.e.

ress(V (t)) < r�(V (t));

and satis�es the asynchronous exponential growth.

Proof. Let
k(x; y) := 1fx<yga(y)b(x; y)

be the kernel of B: Let

k(x; y) := k(x; y) ^ 1

and
kc(x; y) := k(x; y)p(x)p(y)

where p 2 C(0;+1) has a compact support in (0;+1) and 0 � p(x) � 1:
Note that k(x; y) > kc(x; y) and

k(x; y) =
�
k(x; y)� kc(x; y)

�
+ kc(x; y)

= bk(x; y) + kc(x; y)
where bk(x; y) := k(x; y) � kc(x; y): Let B be the integral operator with
kernel kc(x; y) and bB be the integral operator with kernel bk(x; y): Sincebk(x; y) � k(x; y) then bB(�� T )�1

L(X1)
�
B(�� T )�1L(X1) < 1

for � large enough so T + bB : D(T ) ! X1 generates a positive semigroup
(bV (t))t>0: Note that (V (t))t>0 is generated by�

T + bB�+B
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where B is a bounded operator on X1: Actually the kernel of B is compactly
supported in (0;+1)�(0;+1) and bounded and consequently B is a weakly
compact operator on X1: On the other hand

V (t) = bV (t) + Z t

0

bV (t� s)B bV (s)ds
and, by the convex (weak) compactness property of the strong operator
topology (see [35] or [24]), the strong integral (not a Bochner integral)Z t

0

bV (t� s)B bV (s)ds
de�ned just strongly, i.e. by

X1 3 '!
Z t

0

bV (t� s)B bV (s)'ds 2 X1;
is a weakly compact operator. It follows that bV (t) and V (t) have the same
essential spectrum [17] and therefore

ress(bV (t)) = ress(V (t)) (t > 0) (45)

or, equivalently, the identity of their essential types

!ess(bV ) = !ess(V ):
On the other hand bV (t) � V (t)

(�� T � bB)�1 � (�� T �B)�1
and

(�� T � bB)�1 6= (�� T �B)�1
because B 6= 0: Since, by Lemma 22, (�� T �B)�1 is positivity improving
(and thus irreducible) and compact (by Corollary 21) then

r�

h
(�� T � bB)�1i < r� �(�� T �B)�1�

see [19]. Moreover

r�

h
(�� T � bB)�1i = 1

�� s(T + bB) and r� �(�� T �B)�1� = 1

�� s(T +B)
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(see e.g. [33]) whence s(T + bB) < s(T +B): This implies in particular that
s(T +B) > �1:

Note that the type of a positive semigroup on L1 coincides with the spectral
bound of its generator so that

r�(bV (t)) = es(T+ bB)t < es(T+B)t = r�(V (t)):
Since ress(bV (t)) � r�(bV (t)) then (45) gives ress(V (t)) < r�(V (t)) i.e. (V (t))t>0
has a spectral gap. Finally, the asynchronous exponential growth follows
from the irreducibility of (V (t))t>0:

Remark 24 Note that if the sublevel sets of a(:) are thin at in�nity then
the support of a(:) is not bounded.

2.2 Theory in the space X0;1

Within assumption (35), we develop now a general theory on well-posedness
and spectral analysis in the "�nite mass and number of agregates" space

X0;1 := L
1 (R+; (1 + x)dx) :

2.2.1 First generation result in X0;1

We put now the solution given in Proposition 2 in the functional space X0;1.

Theorem 25 Let (35) be satis�ed and X(y; t) be given by (36). Then

(U0(t)f) (y) :=
r(X(y; t))f(X(y; t))

r(y)
= f(X(y; t))

@X(y; t)

@y

de�nes a stongly contiuous semigroup (U0(t))t>0 on X0;1 if and only if

sup
x>0

1 + y(x; t)

1 + x
< +1 8t > 0 (46)

and

[0;+1) 3 t! sup
x>0

1 + y(x; t)

1 + x
is locally bounded (47)

where y(x; 0) = x and y(x; t) is de�ned for t > 0 by (38): If

�1 := sup
z>1

r(z)

z
< +1 (48)

then (47) is satis�ed.
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Proof. We have

kU0(t)fkX0;1 =
Z +1

0
ju(y; t)j (1 + y) dy =

Z +1

0
jf(X(y; t))j @X(y; t)

@y
(1 + y) dy:

By the change of variable x = X(y; t), we have

kU0(t)fkX0;1 =

Z +1

0
jf(x)j (1 + y(x; t)) dx

=

Z +1

0

1 + y(x; t)

1 + x
jf(x)j (1 + x)dx

so U0(t) is a bounded operator on X0;1 if and only if (46) holds; in this case,

kU0(t)kL(X0;1) = sup
x>0

1 + y(x; t)

1 + x
: (49)

This shows the �rst claim. Note that under (35),
R y(x;t)
x

1
r(�)d� = t implies

that limx!0 y(x; t) = 0 uniformly in t bounded so

lim
x!0

1 + y(x; t)

1 + x
= 1 (t > 0)

uniformly in t bounded. In particular (46) holds if and only if

sup
x>1

1 + y(x; t)

1 + x
< +1 (t > 0)

and

[0;+1) 3 t! sup
x>1

1 + y(x; t)

1 + x
is locally bounded

or equivalently if

sup
x>1

y(x; t)

x
< +1 (t > 0)

and

[0;+1) 3 t! sup
x>1

y(x; t)

x
is locally bounded.

It follows from (41) that

y(x; t) = x+

Z t

0
r(y(x; s))ds:
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Since y(x; t) > x then (48) gives

r(y(x; s)) � �1y(x; s) (x � 1)

so

y(x; t) � x+
Z t

0
�1y(x; s)ds; (x � 1)

and Gronwall�s lemma gives supx>1
y(x;t)
x � e�1t: The strong continuity at

the origin can be dealt with as in the space X1:

Remark 26 By arguing as in Proposition 6 one can check that if

lim
z!+1

r(z)

z
= +1

then supx>1
y(x;t)
x = +1 and consequently the generation theory in X0;1

fails.

Remark 27 We observe that in contrast to the X1-generation theory, we
need no assumption on the growth rate function at the origin. The fact that
y(x; t) > x and (49) show that (U0(t))t>0 is not contractive in X0;1:

2.2.2 On the generator of (U0(t))t>0 in X0;1

As in X1, the resolvent of the generator T0 in X0;1 is characterized by:

Proposition 28 Let (35)(48) be satis�ed. Let T0 be the generator of (U0(t))t>0
in X0;1: Then�

(�� T0)�1f
�
(y) =

1

r(y)

Z y

0
e
�
R y
x

�
r(s)

ds
f(x)dx; Re� > s(T0)

where s(T0) is the spectral bound of T0: Moreover,

D(T0) =

�
f 2 X0;1;

@ (rf)

@y
2 X0;1

�
; T0 = �

@ (rf)

@y

where @(rf)
@y is the derivative (in the sense of distributions on (0;+1)) of

the locally integrable function rf on (0;+1) :

By using (49) we get:
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Proposition 29 Let (48) be satis�ed. The spectral bound of T0 (or equiva-
lently the type of (U0(t))t>0) in X0;1 is given by

bs(T0) = lim
t!+1

1

t
ln

�
sup
x>0

1 + y(x; t)

1 + x

�
= inf
t>0

1

t
ln

�
sup
x>0

1 + y(x; t)

1 + x

�
> 0

where y(x; t) is de�ned by (38).

We can recover the previous pointwise estimate but under an assumption
stronger than (48).

Lemma 30 Let (35) be satis�ed. If C := supz>0
r(z)
1+z < +1 then

��(�� T0)�1f �� (y) � 1

(1 + y) r(y)
kfkX0;1 ; (f 2 X0;1) ; (� > C):

Proof. Since r(z) � C(z + 1) (8z > 0) then

1

r(z)
� C�1

z + 1

and
e
��

R y
x

1
r(�)

d� � e�
�
C

R y
x

1
�+1

d� = e�
�
C
ln( y+1

x+1
) = (

x+ 1

y + 1
)
�
C : (50)

It follows that��(�� T0)�1f(y)�� � 1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d� jf(x)j dx

� 1

r(y)

Z y

0
(
x+ 1

y + 1
)
�
C jf(x)j dx

=
1

(1 + y) r(y)

Z y

0
(
x+ 1

y + 1
)
�
C
�1 jf(x)j (1 + x) dx

� 1

(1 + y) r(y)

Z +1

0
jf(x)j (1 + x) dx

because x+1
y+1 � 1 and

�
C � 1 > 0: This ends the proof.

Remark 31 (Open question) We suspect that a similar statement should
hold under the general assumption (48).
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2.2.3 A �rst perturbed semigroup in X0;1

As previously in X1 we have:

Proposition 32 Let (35)(48) be satis�ed. Let X(y; t) be de�ned by (36).
Then

U(t)f : = e
�
R y
X(y;t)

�(p)
r(p)

dp r(X(y; t))f(X(y; t))

r(y)

= e
�
R y
X(y;t)

�(p)
r(p)

dp
f(X(y; t))

@X(y; t)

@y
= e

�
R y
X(y;t)

�(p)
r(p)

dp
U0(t)f

de�nes a positive C0-semigroup (U(t))t>0 on X0;1.

and

Proposition 33 Let (35)(48) be satis�ed. Let T be the generator of (U(t))t>0
in X0;1: Then�

(�� T )�1f
�
(y) =

1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
�(�)
r(�)

d�
f(x)dx

=
1

r(y)

Z y

0
e
�
R y
x
�+�(�)
r(�)

d�
f(x)dx:

for Re� > s(T ), where s(T ) is the spectral bound of T:

Arguing as in Proposition 13 we get:

Proposition 34 Let (35)(48) be satis�ed. The spectral bound of T in X0;1 is
given by

bs(T ) = lim
t!1

sup
x>0

" 
�t�1

Z y(x;t)

x

�(p)

r(p)
dp

!
+ t�1

�
ln
1 + y(x; t)

1 + x

�#
:

In particular

bs(T ) � � lim
t!1

inf
x>0

t�1
Z y(x;t)

x

�(p)

r(p)
dp+ bs(T0):

If b� := inf (1+p)�(p)r(p) > 0 (e.g. if inf � > 0) then

bs(T ) � (1� b�) bs(T0):
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2.2.4 A smoothing e¤ect of the perturbed resolvent in X0;1

As in X1, we show now a smoothing e¤ect in X0;1 but we have to replace
the natural assumption (48) by a stronger one.

Lemma 35 Let (35) be satis�ed. If C := supz>0
r(z)
1+z < +1 then, for

� > C;Z +1

0

���(�� T )�1f� (y)���(y) (1 + y) dy � Z +1

0
j(f(y)j (1 + y) dy; (f 2 X0;1) :

Proof. By using (50) we have for � > CZ +1

0

���(�� T )�1f� (y)���(y) (1 + y) dy
�

Z +1

0

�(y) (1 + y)

r(y)

�Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
�(p)
r(p)

dp jf(x)j dx
�
dy

=

Z +1

0

�Z +1

x
(
x+ 1

y + 1
)
�
C e

�
R y
x
�(p)
r(p)

dp�(y) (1 + y)

r(y)
dy

�
jf(x)j dx

=

Z +1

0

�Z +1

x
(
x+ 1

y + 1
)
�
C
�1e

�
R y
x
�(p)
r(p)

dp�(y)

r(y)
dy

�
jf(x)j (1 + x) dx

�
Z +1

0

�Z +1

x
e
�
R y
x
�(p)
r(p)

dp�(y)

r(y)
dy

�
jf(x)j (1 + x) dx

where we have used in the last step that xy � 1 and
�
C � 1 > 0: We already

know thatZ +1

x
e
�
R y
x
�(p)
r(p)

dp�(y)

r(y)
dy = �

Z +1

x

d

dy

�
e
�
R y
x
�(p)
r(p)

dp
�
dy = �

�
e
�
R y
x
�(p)
r(p)

dp
�y=+1
y=x

� 1

whenceZ +1

0

���(�� T )�1f� (y)���(y) (1 + y) dy � Z +1

0
jf(x)j (1 + x) dx

and we are done.

Remark 36 (Open question) We suspect that a similar smoothing e¤ect
should hold under (48).

Remark 37 One can deduce from Lemma 35 that

D(T ) = ff 2 D(T0); �f 2 X0;1g ; T f = T0f � �f:
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2.2.5 The full perturbed semigroup in X0;1

We give now a second perturbation theorem in X0;1.

Theorem 38 Let (35)(48) be satis�ed. We assume that

n(y) :=

Z y

0
b(x; y)dx

is such that bC := supy>0 n(y)1+y < +1: Then the fragmentation operator (14)
is T -bounded in X0;1 and

lim
�!+1

B(�� T )�1L(X0;1) � lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� :
In particular, if

lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� < 1 (51)

then
T +B : D(T ) � X0;1 ! X0;1

generates a positive semigroup (V (t))t>0 in X0;1:

Proof. We have

kB'kX0;1 �
Z +1

0

�Z +1

x
a(y)b(x; y) j'(y)j dy

�
(1 + x) dx

=

Z +1

0
a(y)

�Z y

0
(1 + x) b(x; y)dx

�
j'(y)j dy

=

Z +1

0
a(y) [(y � �(y)y) + n(y)] j'(y)j dy

=

Z +1

0

a(y) [(y � �(y)y) + n(y)]
1 + y

j'(y)j (1 + y) dy

so B(�� T )�1f
X0;1

=

Z
fa�cg

a(y) [(y � �(y)y) + n(y)]
1 + y

���(�� T )�1f��� (1 + y) dy
+

Z
fa>cg

a(y) [(y � �(y)y) + n(y)]
1 + y

���(�� T )�1f��� (1 + y) dy:
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Note that Z
fa�cg

a(y) [(y � �(y)y) + n(y)]
1 + y

���(�� T )�1f��� (1 + y) dy
� c

�
1 + bC�(�� T )�1f

X0;1

while Z
fa>cg

a(y) [(y � �(y)y) + n(y)]
1 + y

���(�� T )�1f��� (1 + y) dy
=

Z
fa>cg

a(y) [(y � �(y)y) + n(y)]
(1 + y) (a(y) + d(y))

(a(y) + d(y))
�
(�� T )�1 jf j

�
(1 + y) dy

� sup
fa>cg

a(y) [(y � �(y)y) + n(y)]
(1 + y) (a(y) + d(y))

Z +1

0
(a(y) + d(y))

�
(�� T )�1 jf j

�
(1 + y) dy

� sup
fa>cg

a(y) [(y � �(y)y) + n(y)]
(1 + y) (a(y) + d(y))

Z +1

0
jf(y)j (1 + y) dy

(Lemma 35 is used in the last step) so

B(�� T )�1L(X0;1) � c�1 + bC�(�� T )�1L(X0;1)+ supfa>cg

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

�
for arbitrary c > 0 and consequently

lim
�!+1

B(�� T )�1L(X0;1) � lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

�
which ends the proof by invoking W. Desch�s theorem (i.e. Theorem 1).

Let us check Assumption (51).

Corollary 39 We assume that a(:) 2 L1loc(0;+1) and

 := lim sup
a(y)!+1

(1� �(y))
1 + d(y)

a(y)

< 1:

Then Assumption (51) is satis�ed in the following cases:
(i) a(:) is unbounded at zero and at in�nity and

max

�
lim sup

y!0

n(y)

(1� �(y)) ; 1 + lim sup
y!+1

n(y)

y (1� �(y))

�
< �1: (52)
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(ii) a(:) is unbounded at zero only and

lim sup
y!0

n(y)

(1� �(y)) < 
�1:

(iii) a(:) is unbounded at in�nity only and

1 + lim sup
y!+1

n(y)

y (1� �(y)) < 
�1:

Proof. Note that

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� =
y + n(y)

(1��(y))
(y + 1)

(1� �(y))
1 + d(y)

a(y)

so that (51) is satis�ed if

lim sup
a(y)!+1

y + n(y)
(1��(y))

(y + 1)
< �1:

This ends the proof since

lim sup
y!0

y + n(y)
(1��(y))

(y + 1)
= lim sup

y!0

n(y)

(1� �(y))

and

lim sup
y!+1

y + n(y)
(1��(y))

(y + 1)
= 1 + lim sup

y!+1

n(y)

y (1� �(y)) :

Remark 40 As noted in the Introduction, for homogeneous fragmentation
kernels (9), the above conditions are satis�ed if

R 1
0 h(z)dz < 1:

Let us give more general examples.

Proposition 41 Let the fragmentation kernel be given by (11). Let a(:) be
unbounded at zero and at in�nity only. Then (52) holds if �+1 < 1 and

lim sup
y!0

bn(y) < ��1�
�+1
�2 and lim sup

y!+1

bn(y)
y

<

�
1� �+1

�
��1�

�+1
�2 :

where bn(y) = R y0 bb(x; y)dx and ��1; �+1 are given by (30).
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Proof. Note that

1� �(y) = 1

y

Z y

0
x�(x; y)bb(x; y)dx

so

1� lim inf
a(y)!+1

�(y) � lim sup
a(y)!+1

1

y

Z y

0
x�(x; y)bb(x; y)dx � �+1

and

1� lim sup
a(y)!+1

�(y) � lim inf
a(y)!+1

1

y

Z y

0
x�(x; y)bb(x; y)dx � ��1:

Since �
1� lim inf

a(y)!+1
�(y)

��1
�
�
�+1
��1

and

max

�
lim sup

y!0

n(y)

(1� �(y)) ; 1 + lim sup
y!+1

n(y)

y (1� �(y))

�
� max

�
lim sup

y!0

�+1bn(y)
��1

; 1 + lim sup
y!+1

�+1bn(y)
y��1

�
then (52) holds if

max

�
�+1
��1

lim sup
y!0

bn(y); 1 + �+1
��1

lim sup
y!+1

bn(y)
y

�
<

1

�+1

which is equivalent to �+1 < 1 and

lim sup
y!0

bn(y) < ��1�
�+1
�2 and lim sup

y!+1

bn(y)
y

<

�
1� �+1

�
��1�

�+1
�2 :

2.2.6 Compactness results in X0;1

By replacing the natural assumption (48) by a stronger one, we can show:

Theorem 42 Let (35)(44) be satis�ed. If C := supz>0
r(z)
1+z < +1 then T

is resolvent compact on X0;1:
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Proof. Let � > C and f be in the unit ball of X0;1, i.e.Z +1

0
jf(x)j (1 + x) dx � 1:

According to Lemma 35Z +1

0

���(�� T )�1f� (x)���(x) (1 + x) dx � 1:
Let c > 0 and " > 0 be arbitrary. We have

1 �
Z +1

"�1

���(�� T )�1f� (x)���(x) (1 + x) dx =Z +1

"�1
1f�<cg

���(�� T )�1f� (x)���(x) (1 + x) dx
+

Z +1

"�1
1f��cg

���(�� T )�1f� (x)���(x) (1 + x) dx
so

sup
kfkX0;1�1

Z +1

"�1
1f��cg

���(�� T )�1f� (x)�� (1 + x) dx � 1

c
:

On the other hand, according to Lemma 30,��(�� T )�1f �� � ��(�� T0)�1f �� � 1

(1 + x) r(x)
kfkX0;1

so Z +1

"�1
1f�<cg

���(�� T )�1f� (x)���(x) (1 + x) dx � cZ +1

"�1

1f�<cg
r(x)

dx

and then

sup
kfkX0;1�1

Z +1

"�1

���(�� T )�1f� (x)�� (1 + x) dx � 1

c
+ c

Z +1

"�1

1f�<cg
r(x)

dx

can be made arbitrarily small by choosing �rst c large enough and then "
small enough.

Similarly, we have

1 �
Z "

0

���(�� T )�1f� (x)���(x) (1 + x) dx
=

Z "

0
1f�<cg

���(�� T )�1f� (x)���(x) (1 + x) dx
+

Z "

0
1f��cg

���(�� T )�1f� (x)���(x) (1 + x) dx
46



so

sup
kfkX0;1�1

Z "

0
1f��cg

���(�� T )�1f� (x)�� (1 + x) dx � 1

c
:

As previouslyZ "

0
1f�<cg

���(�� T )�1f� (x)���(x) (1 + x) dx � cZ "

0

1f�<cg
r(x)

dx

so

sup
kfkX0;1�1

Z "

0

���(�� T )�1f� (x)�� (1 + x) dx � 1

c
+ c

Z "

0

1f�<cg
r(x)

dx

can be made arbitrarily small by choosing �rst c large enough and then "
small enough.

On
�
"; "�1

�
we have the uniform domination

��(�� T )�1f �� � ��(�� T0)�1f �� � 1(";"�1)(x)

(1 + x) r(x)
2 X0;1 (kfkX0;1 � 1)

so the restriction of the set
n��(�� T )�1f �� ; kfkX0;1 � 1o to the set �"; "�1�

is is relatively weakly compact on X0;1: Finallyn
(�� T )�1f ; kfkX0;1 � 1

o
is as close to a relatively weakly compact set as we want and consequently
is weakly compact. This shows that (�� T )�1 is weakly compact operator
and consequently (see [28] Lemma 14) (�� T )�1 is compact.

As in Corollary 21 we have:

Corollary 43 Let (35)(51)(44) be satis�ed. If C := supz>0
r(z)
1+z < +1 then

T +B : D(T ) � X0;1 ! X0;1

is resolvent compact.

2.2.7 Spectral gap of the full semigroup (V (t))t>0 in X0;1

The same arguments as in the proof of Lemma 22 give:
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Lemma 44 Let (35)(48) be satis�ed. We assume that the support of a(:)
is not bounded. Then (�� T �B)�1 is positivity improving, i.e.

(�� T �B)�1f > 0 a.e.

for any nontrivial nonnegative f 2 X0;1; or equivalently (V (t))t>0 is irre-
ducible in X0;1.

Arguing as in the proof of Theorem 23 we get the main result of Sub-
section 2.2.

Theorem 45 Let (35)(51)(44) be satis�ed. If supz>0
r(z)
1+z < +1 and the

support of a(:) is not bounded then (V (t))t>0 has a spectral gap in X0;1, i.e.

ress(V (t)) < r�(V (t));

and satis�es the asynchronous exponential growth.

Remark 46 (Open questions) Following Remarks 31 and 36, we suspect
that the di¤erent statements of this subsection 2.2, should hold under As-
sumption (48) instead of supz>0

r(z)
1+z < +1:

3 The second construction

We consider now the caseZ 1

0

1

r(�)
d� < +1 and

Z 1

1

1

r(�)
d� = +1: (53)

It turns out that we cannot expect a generation theory in the space X1 =
L1 (R+; xdx), see Remark 51 below. So we restrict ourselves to the "�nite
mass and number of agregates" space

X0;1 = L
1 (R+; (1 + x)dx) :

We start with:

Proposition 47 Let (53) be satis�ed. Then the partial di¤erential equation

@

@t
u(x; t) +

@

@x
[r(x)u(x; t)] = 0; (x; t > 0)

with initial condition u(x; 0) = f(x) and boundary condition

lim
y!0

r(y)u(y; t) = 0 (t > 0)
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has a unique solution given by

u(y; t) =

(
r(X(y;t))f(X(y;t))

r(y) if
R y
0

1
r(�)d� > t

= 0 if
R y
0

1
r(�)d� < t

where X(y; t) (t > 0) is de�ned byZ y

X(y;t)

1

r(�)
d� = t;

�Z y

0

1

r(�)
d� > t

�
:

Proof. We solve
@

@t
u(x; t) +

@

@x
[r(x)u(x; t)] = 0

with intial data
u(x; 0) = f(x)

and boundary condition

lim
x!0

r(x)u(x; t) = 0 (t > 0)

by the method of characteristics. This amounts to solving

1

r(x)

@

@t
'(x; t) +

@

@x
['(x; t)] = 0; '(x; 0) = r(x)f(x):

We introduce the characteristic equations

dt

ds
=

1

r(x(s))
;
dx

ds
= 1

with "initial" conditions

x(0) = x; t(0) = 0 (x > 0)

i.e. x(s) = s+ x and

t(s) =

Z s

0

1

r(� + x)
d� =

Z s+x

x

1

r(�)
d� (s > 0):

Thus

[0;+1) 3 s! r(s+ x)u(s+ x;

Z s+x

x

1

r(�)
d�) is constant
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and then

r(s+ x)u(s+ x;

Z s+x

x

1

r(�)
d�) = r(x)u(x; 0) = r(x)f(x) 8s > 0:

For t > 0 and y > 0 given, we setZ s+x

x

1

r(�)
d� = t; s+ x = y

i.e.
R y
x

1
r(�)d� = t: Since

R y
0

1
r(�)d� < +1 let y0(t) > 0 be de�ned byZ y0(t)

0

1

r(�)
d� = t: (54)

Hence there exists a unique X(y; t) < y such thatZ y

X(y;t)

1

r(�)
d� = t; (y > y0(t)): (55)

We denote by X(y; :) the continuous function which gives x 2 (0; y) from t
(given y > 0). Thus, for y > y0(t)

r(y)u(y; t) = r(X(y; t))f(X(y; t))

i.e.

u(y; t) =
r(X(y; t))f(X(y; t))

r(y)
(y > y0(t)):

On the other hand, for y < y0(t)Z y

0

1

r(�)
d� < t:

We introduce the characteristic equations

dt

ds
=

1

r(x(s))
;
dx

ds
= 1

with "initial" conditions

x(0) = 0; t(0) = t > 0

i.e. x(s) = s and

t(s) = t +

Z s

0

1

r(�)
d�:
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Note the constancy of

r(s)u(s; t +

Z s

0

1

r(�)
d�) (s > 0)

amounts to

r(y)u(y; t +

Z y

0

1

r(�)
d�) (y > 0) is constant

i.e. (formally)

r(y)u(y; t +

Z y

0

1

r(�)
d�) = r(0)u(0; t ) = 0

Thus

r(y)u(y; t +

Z y

0

1

r(�)
d�) = 0 8y > 0; t > 0

Thus for any t > 0 and y > 0 such thatZ y

0

1

r(�)
d� < t

we can choose t > 0 such that

t +

Z y

0

1

r(�)
d� = t

namely

t = t�
Z y

0

1

r(�)
d� :

Finally, u(y; t) = 0 if
R y
0

1
r(�)d� < t:

3.1 Theory in the space X0;1

As previously, we develop a general theory on well-posedness and spectral
analysis.

3.1.1 The �rst generation result

Theorem 48 Let (53) be satis�ed. Let X(y; t) be de�ned by (55). Then

U0(t)f := �nR y
0

1
r(�)

d�>t
o r(X(y; t))f(X(y; t))

r(y)
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de�nes a positive C0-semigroup on X0;1 if and only if

[0;+1) 3 t! sup
x>0

1 + y(x; t)

1 + x
(56)

is locally bounded where y(x; t) is de�ned by (59). This occurs if

r(z) � C(z + 1) (8z > 0); (57)

in this case
1 + y(x; t)

x+ 1
� eCt (x > 0):

Proof. Let us check that U0(t) is a bounded operator on X0;1: Note that
for
R y
0

1
r(�)d� > t (i.e. if y > y0(t)) we haveZ y

X(y;t)

1

r(�)
d� = t (58)

which shows that (for t > 0 �xed) X(y; t) is strictly increasing in y and tends
to 0 as y ! y0(t). Note that

(y0(t);+1) 3 y ! X(y; t) 2 (0;+1)

is continuous. By arguing as previously we show that

1

r(y)
=

1

r(X(y; t))

@X(y; t)

@y

and

(U0(t)f) (y) = f(X(y; t))
@X(y; t)

@y
; y 2 (y0(t);+1):

Thus

kU0(t)fkX0;1 =
Z +1

0
j(U0(t)f) (y)j (1+y)dy =

Z +1

y0(t)
jf(X(y; t))j @X(y; t)

@y
(1+y)dy

and the change of variable x = X(y; t) gives

kU0(t)fkX0;1 =
Z +1

0
jf(x)j (1 + y(x; t))dx

where y(x; t) is the unique y > x such that x = X(y; t) i.e.Z y(x;t)

x

1

r(�)
d� = t: (59)
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Since

kU0(t)fkX0;1 =
Z +1

0

1 + y(x; t)

1 + x
jf(x)j (1 + x) dx

then U0(t) is a bounded linear operator in X0;1 if and only if

sup
x>0

1 + y(x; t)

1 + x
< +1:

In such a case

kU0(t)kL(X0;1) = sup
x>0

1 + y(x; t)

1 + x

and
[0;+1) 3 t! U0(t) 2 L(X0;1)

is locally bounded if and only if

[0;+1) 3 t! sup
x>0

1 + y(x; t)

1 + x

is. It follows (see e.g. [12]) that (U0(t))t>0 is exponentially bounded. As
previously, to show that (U0(t))t>0 is strongly continuous on X0;1 it su¢ ces
to check that

U0(t)f ! f in L1(R+; (1 + x) dx) as t! 0

on a dense subspace of L1(R+; (1 + x) dx), e.g. for f continuous with
compact support in (0;+1): Note that for any compact set

�
c; c�1

�
Z y

0

1

r(�)
d� > t

for t small enough uniformly in y 2
�
c; c�1

�
so

(U0(t)f) (y) = f(X(y; t))
@X(y; t)

@y
8y 2

�
c; c�1

�
for t small enough. In particularZ y

X(y;t)

1

r(�)
d� = t 8y 2

�
c; c�1

�
and

U0(t)f =
r(X(y; t))f(X(y; t))

r(y)
8y 2

�
c; c�1

�
:
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for t small enough. We note that X(y; t) ! y as t ! 0 for any y > 0 and
uniformly in y 2

�
c
2 ; 2c

�1�. Hence
U0(t)f =

r(X(y; t))f(X(y; t))

r(y)
! f(y) (t! 0)

and, by the dominated convergence theorem, U0(t)f ! f in L1(R+; (1 + x) dx)
as t! 0: It follows from (59) that

@y(x; t)

@t
= r(y(x; t)) 8t > 0:

so, using (57),

y(x; t) = x+

Z t

0
r(y(x; s))ds � x+

Z t

0
C (y(x; s) + 1) ds

and

y(x; t) + 1 � x+ 1 +
Z t

0
C (y(x; s) + 1) ds:

Gronwall�s lemma gives y(x; t)+1 � (x+ 1) eCt: Finally 1+y(x;t)
x+1 � eCt (x >

0) and kU0(t)kL(X0;1) � e
Ct:

Remark 49 The proof above shows that (U0(t))t>0 is not contractive in
X0;1.

Remark 50 As in Remark 26 on checks that if limz!+1
r(z)
z = +1 then

the generation theory fails. Hence the su¢ cient condition (57) is partly nec-
essary. The necessity of boundedness of the growth rate at the origin is
unclear.

Remark 51 Note that kU0(t)fkX1 =
R +1
0

y(x;t)
x jf(x)jxdx so that the bound-

edness of U0(t) on X1 amounts to

sup
x>0

y(x; t)

x
< +1: (60)

But (54) and (59) imply that limx!0 y(x; t) = y0(t) > 0 (t > 0) so that (60)
is violated and we cannot expect a generation theory in X1 under assumption
(53).
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3.1.2 On the generator of (U0(t))t>0

We identify now the resolvent of the generator.

Proposition 52 Let (53)(57) be satis�ed. Let T0 be the generator of (U0(t))t>0:
Then �

(�� T0)�1f
�
(y) =

1

r(y)

Z y

0
e
�
R y
x

�
r(s)

ds
f(x)dx; Re� > s(T0)

where s(T0) is the spectral bound of T0

Proof. We know that

U0(t)f = �nR y
0

1
r(�)

d�>t
o r(X(y; t))f(X(y; t))

r(y)

so �
(�� T0)�1f

�
(y) =

Z +1

0
e��t�nR y

0
1

r(�)
d�<t

o r(X(y; t))f(X(y; t))
r(y)

dt

=

Z R y
0

1
r(�)

d�

0
e��t

r(X(y; t))f(X(y; t))

r(y)
dt

Note that for any �xed y > 0 and t <
R y
0

1
r(�)d� we have

R y
X(y;t)

1
r(�)d� = t

and

� 1

r(X(y; t))

@X(y; t)

@t
= 1:

One sees that

t 2 (0;
Z y

0

1

r(�)
d�)! x := X(y; t)

is strictly decreasing from y to 0 so the change of variable t ! x = X(y; t)
gives Z R y

0
1

r(�)
d�

0
e��t

r(X(y; t))f(X(y; t))

r(y)
dt =

Z y

0
e��X�1(y;x)

f(x)

r(y)
dx

where X�1(y; x) is the inverse of t ! x = X(y; t): This inverse is nothing
but x! t =

R y
x

1
r(�)d� so�

(�� T0)�1f
�
(y)) =

1

r(y)

Z y

0
e
��

R y
x

1
r(�)

d�
f(x)dx

and this ends the proof.
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Remark 53 Note that X0;1 � L1(R+; dx): We can check that

D(T0) =

�
f 2 X0;1;

@ (rf)

@y
2 X0;1; lim

y!0
r(y)f(y) = 0

�
; T0 = �

@ (rf)

@y

where @(rf)
@y is the derivative (in the sens of distributions on (0;+1)) of the

function rf 2 L1(R+; dx). Note that rf 2W 1;1(R+) so that limy!0 r(y)f(y)
exists.

The same proof as in Lemma 30 gives a pointwise estimate in X0;1:

Lemma 54 Let (53)(57) be satis�ed. Let � > C: Then��(�� T0)�1f �� (y) � 1

(1 + y) r(y)
kfkX0;1 (f 2 X0;1):

3.1.3 The �rst perturbed semigroup

We build now a second explicit C0-semigroup by the method of characteris-
tics. We solve

@

@t
u(x; t) +

@

@x
[r(x)u(x; t)] + �(x)u(x; t) = 0

with boundary condition limx!0 r(x)u(x; t) = 0 and intial data u(x; 0) =
f(x): By arguing as in subsection 2.2 we show that the solution is given by

U(t)f = �nR y
0

1
r(�)

d�>t
oe� R yX(y;t) �(p)r(p)

dp r(X(y; t))f(X(y; t))

r(y)
= e

�
R y
X(y;t)

�(p)
r(p)

dp
U0(t)f

(X(y; t) is given by (36)) and de�nes a C0-semigroup (U(t))t�0 on X0;1 while
the resolvent of its generator is given by:

Proposition 55 Let (53)(57) be satis�ed. The resolvent of the generator
T of (U(t))t�0 in X0;1 is given by

(�� T )�1 f = 1

r(y)

Z y

0
e
�
R y
x
�+�(p)
r(�)

d�
f(x)dx:

Remark 56 We can "compute" the spectral bound of T0 and T in X0;1 as
in Proposition 29 and Proposition 34.

The same proof as in Lemma 35 gives a smoothing e¤ect in X0;1:
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Lemma 57 Let (53)(57) be satis�ed. Let � > C: ThenZ +1

0

���(�� T )�1f� (y)���(y) (1 + y) dy � Z +1

0
j(f(y)j (1 + y) dy; (f 2 X0;1) :

Remark 58 One can deduce from Lemma 57 that

D(T ) = ff 2 D(T0); �f 2 X0;1g ; T f = T0f � �f:

3.1.4 The second perturbed semigroup

The proof of the following theorem relying on W. Desch�s perturbation the-
orem is identical to that of Theorem 38.

Theorem 59 Let (53)(57) be satis�ed. We assume that

n(y) :=

Z y

0
b(x; y)dx

is such that supy>0
n(y)
1+y < +1: Then the fragmentation operator (14) is

T -bounded in X0;1 and

lim
�!+1

B(�� T )�1L(X0;1) � lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� :
In particular, if

lim sup
a(y)!+1

[(y � �(y)y) + n(y)]
(1 + y)

�
1 + d(y)

a(y)

� < 1: (61)

then
T +B : D(T ) � X0;1 ! X0;1

generates a positive semigroup (V (t))t>0 in X0;1:

Remark 60 We can state results similar to those given in Proposition 41.

3.1.5 Compactness results in X0;1

We are ready to show:
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Theorem 61 Let (53)(57) be satis�ed. Let the sublevel sets of � be thin at
in�nity in the sense thatZ +1

1

1f�<cg
r(x)

dx < +1 (c > 0) (62)

(e.g. let limx!+1 �(x) = +1 ). Then T is resolvent compact on X0;1:

Proof. Let � > C and f be in the unit ball of X0;1, i.e.Z +1

0
jf(x)j (1 + x) dx � 1:

According to Lemma 57Z +1

0

���(�� T )�1f� (x)���(x) (1 + x) dx � 1:
Let c > 0 and " > 0 be arbitrary. We have

1 �
Z +1

"�1

���(�� T )�1f� (x)���(x) (1 + x) dx
=

Z +1

"�1
1f�<cg

���(�� T )�1f� (x)���(x) (1 + x) dx
+

Z +1

"�1
1f��cg

���(�� T )�1f� (x)���(x) (1 + x) dx
so

sup
kfkX0;1�1

Z +1

"�1
1f��cg

���(�� T )�1f� (x)�� (1 + x) dx � 1

c
:

On the other hand, according to Lemma 54,��(�� T )�1f �� � ��(�� T0)�1f �� � 1

(1 + x) r(x)
kfkX0;1

so Z +1

"�1
1f�<cg

���(�� T )�1f� (x)���(x) (1 + x) dx � cZ +1

"�1

1f�<cg
r(x)

dx

and then

sup
kfkE�1

Z +1

"�1

���(�� T )�1f� (x)�� (1 + x) dx � 1

c
+ c

Z +1

"�1

1f�<cg
r(x)

dx
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can be made arbitrarily small by choosing �rst c large enough and then "
small enough.

On the other hand on
�
0; "�1

�
we have the uniform domination

��(�� T )�1f �� � 1(0;"�1)(x)

(1 + x) r(x)
2 X0;1 (kfkX0;1 � 1)

because Z "�1

0

1

r(x)
dx < +1:

Finally
n
(�� T )�1f ; kfkX0;1 � 1

o
is as close to a relatively weakly com-

pact set as we want and consequently is weakly compact so (� � T )�1 is
weakly compact operator and consequently (see [28] Lemma 14) (�� T )�1
is compact.

As in Corollary 43, we have:

Corollary 62 Let (53)(57)(61)(62) be satis�ed. Then T+B : D(T )! X0;1
is resolvent compact.

3.1.6 Spectral gap of the full semigroup (V (t))t>0 in X0;1

The same arguments as in Lemma 22 give:

Lemma 63 Let (53)(57)(61) be satis�ed. We assume that the support of
a(:) is not bounded. Then (�� T �B)�1 is positivity improving, i.e.

(�� T �B)�1f > 0 a.e.

for any nontrivial nonnegative f 2 X0;1; or equivalently (V (t))t>0 is irre-
ducible in X0;1.

The same arguments as in Theorem 23 give the main result of Section
3.

Theorem 64 Let (53)(57)(61)(62) be satis�ed. We assume that the support
of a(:) is not bounded. Then (V (t))t>0 has a spectral gap in X0;1, i.e.

ress(V (t)) < r�(V (t));

and satis�es the asynchronous exponential growth.
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4 Theory in the space X0

This last section is devoted to growth-fragmentation equations in the "�nite
agregates number" space

X0 := L
1 (R+; dx)

under (53). For simplicity, we restrict ourselves to the case

d(:) = 0:

By resuming the proof of Theorem 48 (the sublinearity condition (57) is no
longer necessary here) one sees that

(U0(t)f) (y) =

(
f(X(y; t))@X(y;t)@y ; y 2 (y0(t);+1)

0 (y < y0(t))

so

kU0(t)fkX0 =
Z +1

0
j(U0(t)f) (y)j dy =

Z +1

y0(t)
jf(X(y; t))j @X(y; t)

@y
dy

and the change of variable x = X(y; t) gives

kU0(t)fkX0 =
Z +1

0
jf(x)j dx = kfkX0 :

Hence we have:

Theorem 65 Let (53) be satis�ed. Let X(y; t) be de�ned by (55). Then

U0(t)f := �nR y
0

1
r(�)

d�>t
o r(X(y; t))f(X(y; t))

r(y)

de�nes a stochastic C0-semigroup (U0(t))t>0 on X0.

As previously, we show that

U(t)f = �nR y
0

1
r(�)

d�>t
oe� R yX(y;t) a(p)r(p)

dp r(X(y; t))f(X(y; t))

r(y)
= e

�
R y
X(y;t)

a(p)
r(p)

dp
U0(t)f

(X(y; t) is given by (55)) de�nes a contraction C0-semigroup (U(t))t�0 on
X0 and the resolvent of its generator T is given by

(�� T )�1 f = 1

r(y)

Z y

0
e
�
R y
x
�+a(p)
r(�)

d�
f(x)dx: (63)

We have a smoothing e¤ect in X0:
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Lemma 66 Let (53) be satis�ed. ThenZ +1

0

���(�� T )�1f� (y)�� a(y)dy � Z +1

0
jf(x)j dx (f 2 X0); (� > 0):

Proof. One sees that for � > 0Z +1

0

���(�� T )�1f� (y)�� a(y)dy
�

Z +1

0

a(y)

r(y)

�Z y

0
e
��

R y
x

1
r(�)

d�
e
�
R y
x
a(p)
r(p)

dp jf(x)j dx
�
dy

=

Z +1

0

�Z +1

x

a(y)

r(y)
e
��

R y
x

1
r(�)

d�
e
�
R y
x
a(p)
r(p)

dp
dy

�
jf(x)j dx

�
Z +1

0

�Z +1

x

a(y)

r(y)
e
�
R y
x
a(p)
r(p)

dp
dy

�
jf(x)j dx �

Z +1

0
jf(x)j dx

sinceZ +1

x

a(y)

r(y)
e
�
R y
x
a(p)
r(p)

dp
dy = �

Z +1

x

d

dy

�
e
�
R y
x
a(p)
r(p)

dp
�
dy = �

�
e
�
R y
x
a(p)
r(p)

dp
�y=+1
y=x

� 1:

A trivial consequence of (63) is the pointwise estimate���(�� T )�1 f ��� (y) � 1

r(y)

Z +1

0
jf(x)j dx (f 2 X0); (� > 0): (64)

By combining the above smoothing e¤ect and (64) and arguing as in the
proof of Theorem 61, we get.

Theorem 67 Let (53) be satis�ed. Let the sublevel sets of a be thin at
in�nity in the sense thatZ +1

1

1fa<cg
r(x)

dx < +1 (c > 0) (65)

(e.g. let limx!+1 a(x) = +1 ). Then T is resolvent compact on X0:

We give now the full generation result.

Theorem 68 Let (53) be satis�ed and let

n(:) :=

Z y

0
b(x; :)dx 2 L1(0;+1): (66)
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Then the fragmentation operator (14) is T -bounded in X0 and

lim
�!+1

B(�� T )�1L(X0) � lim sup
a(y)!+1

n(y):

In particular, if
lim sup

a(y)!+1
n(y) < 1 (67)

then
T +B : D(T ) � X0 ! X0

generates a positive semigroup (V (t))t>0 in X0:

Proof. We note that

kB'kX0 �
Z +1

0

�Z +1

x
a(y)b(x; y) j'(y)j dy

�
dx

=

Z +1

0
a(y)

�Z y

0
b(x; y)dx

�
j'(y)j dy

=

Z +1

0
a(y)n(y) j'(y)j dy

and B(�� T )�1f
X0
=

Z +1

0
a(y)n(y)

���(�� T )�1f��� (y)dy
=

Z
fa�cg

a(y)n(y)
���(�� T )�1f��� (y)dy

+

Z
fa>cg

a(y)n(y)
���(�� T )�1f��� (y)dy:

SinceZ
fa�cg

a(y)n(y)
���(�� T )�1f��� (y)dy � c knkL1 (�� T )�1L(X0) kfkX0

andZ
fa>cg

a(y)n(y)
���(�� T )�1f��� (y)dy � sup

fa>cg
n(y)

Z +1

0
a(y)

���(�� T )�1f��� (y)dy
� sup

fa>cg
n(y)

Z +1

0
jf(x)j dx
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(the smoothing e¤ect is used in the last step), thenB(�� T )�1L(X0) � c knkL1 (�� T )�1L(X0) + sup
fa>cg

n(y) (c > 0)

and
lim

�!+1

B(�� T )�1L(X0) � sup
fa>cg

n(y) (8c > 0):

Finally, W. Desch�s theorem ends the proof.

Remark 69 Note that n(y) � 1 for conservative fragmentation kernels.
This shows the key role of the mass loss assumption.

Remark 70 For homogeneous kernels (9) with mass loss, (67) amounts toR 1
0 h(z)dz < 1: More generally, for a fragmentation kernel given by (11) the
condition (67) holds if �+1 lim supa(y)!+1 bn(y) < 1 where bn(y) = R y0 bb(x; y)dx:

As previously, T + B is resolvent compact and, arguing as in the proof
of Theorem 23, we obtain the main result of Section 4.

Theorem 71 Let (53)(65)(66)(67) be satis�ed. We assume that the support
of a(:) is not bounded. Then (V (t))t>0 has a spectral gap in X0, i.e.

ress(V (t)) < r�(V (t));

and satis�es the asynchronous exponential growth in X0.

Remark 72 We could build a similar theory in X0 under (35). We leave
the details to the interested reader.
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