RNA seq reveals different yeast behaviours in terms of nitrogen consumption and fermentative aroma production

Stephanie Rollero, Audrey Bloem, Anne Julien Ortiz, Carole Camarasa, Benoit Divol

To cite this version:

Stephanie Rollero, Audrey Bloem, Anne Julien Ortiz, Carole Camarasa, Benoit Divol. RNA seq reveals different yeast behaviours in terms of nitrogen consumption and fermentative aroma production. International Conference in Wine Sciences Macrowine 2018, May 2018, Saragosse, Spain. hal-02961832

HAL Id: hal-02961832
https://hal.archives-ouvertes.fr/hal-02961832
Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
FERMENTATIVE AROMAS PLAY A IMPORTANT ROLE IN THE ORGANOLEPTIC PROFILE OF WINES. THESE COMPOUNDS DERIVE FOR A SIGNIFICANT PART FROM THE BREAK-DOWN OF NITROGEN SOURCES NATURALLY FOUND IN GRAPE JUICE, BUT THEIR PRODUCTION ALSO DEPENDS ON THE YEAST STRAINS DRIVING THE FERMENTATION. DURING SEQUENTIAL INCULATION OF NON-SACCHAROMYCES YEASTS WITH SACCHAROMYCES CEREVISIAE, MULTIPLE INTERACTIONS BETWEEN YEASTS MAY OCCUR, INCLUDING COMPETITION FOR NUTRIENTS THAT DIRECTLY IMPACTS FERMENTATION PERFORMANCES AND AROMA PRODUCTION. TWO UNCONVENTIONAL NON-SACCHAROMYCES YEASTS (PICHIA BURTONII AND KLUYVEROMYCES MARXIANUS) WERE SELECTED FOR DISPLAYING A BEHAVIOUR DIFFERENT FROM THAT OF S. CEREVISIAE IN TERMS OF NITROGEN CONSUMPTION AND FERMENTATIVE AROMA PRODUCTION. THE UPTAKE OF NITROGEN SOURCES WAS MONITORED TOGETHER WITH FERMENTATION AND POPULATION KINETICS. IN PARALLEL, TOTAL RNA WAS EXTRACTED AT SPECIFIC TIME POINTS CORRESPONDING TO LAG PHASE (LP) AND TIME WHERE HALF OF THE MAXIMAL POPULATION (HMP) WAS REACHED. RNA SEQUENCING WAS USED TO UNRAVEL THESE STRAIN-SPECIFIC BEHAVIOURS AT A MOLECULAR LEVEL.

Methodology

Different wine associated yeasts

- Monophyletic characteristics
- Transcriptional data
- Amino acids consumption during the first 72 h
- Fermentative aroma production
- Fermentative aroma production

Nitrogen consumption during the first 72 h of fermentation

Depending on the yeast strain and the amino acids considered, 3 behaviours were observed:
- **Amino acids consumed continuously during the first 72 h**
- **Amino acids consumed until the HMP was reached (but not depleted)**
- **Amino acids started to be consumed when the HMP was reached**

Nitrogen source transporters

When HMP was reached:
- **S. cerevisiae:** Almost all amino acids are depleted (except Arg, NH3, and GABA)
- **K. marxianus:** 5 amino acids are still present in high concentration in the medium (Arg, Asp, Glu, His, NH3)
- **P. burtonii:** None of the amino acids is depleted

Fermentative aroma production

- **Amino acid**
 - 2-oxoglutarate
 - Glutamate
 - PDC1, PDC5, PDC6, ARO10
 - CCM
 - Ketoacid
 - ADH1, ADH2, ADH3, ADH4
 - NAD+, NADH
 - Aldehyde
 - Higher alcohol
 - 2-oxoglutarate
 - Glutamate
 - PDC1, PDC5, PDC6, ARO10
 - CCM
 - Ketoacid
 - ADH1, ADH2, ADH3, ADH4
 - NAD+, NADH
 - Aldehyde
 - Higher alcohol

GAP1 (general amino acid permease): Up-regulated in the 3 strains

K. marxianus (compared to S. cerevisiae):
- Consumed 20% of NH3 (60% for Sc)
- Up-regulation of the low-affinity (MEP2) amino acid transporter; when Sc up-regulated MEP2 (high-affinity)
- Late uptake of Met
- Up-regulation of Met transporter (MUP3), when down-regulated in Sc
- Late uptake of Arg
- Up-regulation of CAN1 (Arg permease)

P. burtonii (compared to S. cerevisiae):
- Up-regulation or higher expression of most of the genes involved in Ehrlich pathway
- Was able to consume only 20% of initial YAN and 25% of sugars
- Ketoacid pool massively directed towards the higher alcohol production rather than the growth because of the low nitrogen consumption?

K. marxianus

- Up-regulation of ARO8
- Higher production of phenylethanol and isobutanol
- Same uptake of Phe, 60% of sugars consumed
- Up-regulation of ADH3, ADH4, SFA1
- Gene regulation different in Km (e.g. ARO8 vs ARO9)
- Higher conversion of:
 - Phe into phenylpyruvate
 - Aldehydes into higher alcohols

Aldehydes into higher alcohols?

Data:

- 4-4.5 µmol L-1 per g L-1
- 100 µmol L-1 per g L-1
- 200 µmol L-1 per g L-1
- 400 µmol L-1 per g L-1
- 600 µmol L-1 per g L-1
- 800 µmol L-1 per g L-1
- 1000 µmol L-1 per g L-1
- 2000 µmol L-1 per g L-1
- 4000 µmol L-1 per g L-1

The authors thank I. Sanchez (UMR MISTEA, INRA, Montpellier, France) and Prof H. Patterson (Stellenbosch University) for their help with the analysis of RNA seq data. The authors also thank Stellenbosch University and Lallemand for funding this project.