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APPROXIMATING BACKSTOP VIABILITY KERNELS

GUILLAUME DEFFUANT , ISABELLE ALVAREZ , SOPHIE MARTIN , AND PATRICK
SAINT-PIERRE

Abstract. This paper defines a specific viability domain called backstop viability kernel and
proposes a new algorithm that approximates such sets in a compact constraint set of d dimensions.

The algorithm uses a set approximation technique based on a sample chosen in a regular grid of

n® vertices covering the considered constraint set. We show that, in some conditions, the result

of the algorithm is the direct approximation of the backstop viability kernel by this approximation
technique. This theoretical result is illustrated on examples for which the viability kernel is equal to
the backstop viability kernel and can be derived analytically, using two set approximation methods:
the nearest neighbour, ensuring a convergence rate in O(n~1), and a recently developed technique,
the recursive simplex stars (resistars), ensuring a convergence rate in O(n=2).

Key words. viability kernel, viability domain, resistar.

1. Introduction. Viability theory [2, 4] addresses the problem of maintaining a
controlled dynamical system inside a given set of states, generally called the constraint
set. This framework is particularly relevant for modelling sustainability problems in
which the constraint set is interpreted as an acceptable or desirable property of the
system that should be sustained [14, 9, 27, 22, 24]. It appeared also relevant in a
variety of engineering problems [30, 18, 23] and in finance and economics [15, 29]. In
[21, 8, 13, 26] viability theory is at the core of a mathematical definition of resilience,
viewed as the capacity of the system to viably restore the property if it has been lost.
Recently, [17] extended this view to a general theory of sustainable management.

One of the main concepts of viability theory is the viability kernel, the set of
states from which the system can remain indefinitely in the constraint set. From a
state located outside the viability kernel, it is certain that the dynamical system will
cross the limits of the constraint set after a finite time, whatever the chosen controls
over time. The viability kernel is also important because it is easy to derive from it
a variety of control policies keeping the system indefinitely inside the constraint set
(and actually also inside the viability kernel itself).

Generally, it is not possible to determine a viability kernel analytically and sev-
eral methods provide numerical approximations [5, 6, 10, 12, 9, 14, 19, 20, 1]. In the
frequent case of dynamics defined with ordinary differential equations in a continuous
state space, most algorithms start from a regularly distributed sample of points (ver-
tices of a regular grid) covering the constraint set and another one covering the control
space. The first algorithm proposed by Saint-Pierre [28] uses a discrete approximation
of the dynamical system on the vertices of a regular mesh. The algorithm computes
a sequence of mesh subsets, until reaching a fixed point. The final set provides a
discrete approximation of the viability kernel, which converges to the viability kernel
when the time step tends to 0 and n, the number of points by grid axis, tends to
infinity.

In the particular case of viability kernels defined as epigraphs of a function, [7]
showed that the approximation error of the Saint-Pierre algorithm is in O(n~!), when
choosing a time step in O(n~!). In the general case, [25] showed that the approxima-
tion error (defined with the Hausdorff distance) of the Saint-Pierre algorithm is linear
in n=! and in the time step, if the problem satisfies some specific conditions (the
shadowing property in particular). As far as we know, there is no other algorithm for
which the convergence rate has been established, even in restrictive conditions.
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In this paper, we focus on approximating the backstop viability kernel, a subset
of the viability kernel, with the aim to get a better convergence rate.

The first contribution of this paper is theoretical. It defines the backstop viability
kernel as the union of all viability domains satisfying a specific property. It introduces
the extended discrete time in which the control can change at each time step (as
in usual discrete time dynamics) and also when the system is about to leave the
constraint set K, and extends the definition of the backstop viability kernel to the
extended discrete time. It establishes that, in some conditions, the backstop viability
kernels in extended discrete time and in continuous time are equal.

The second contribution is an algorithm approximating backstop viability kernels.
Approximating backstop viability kernels is easier than approximating viability ker-
nels in general, because it boils down to testing long trajectories that change control
at most once, starting from points located in a limited subset of the state space. The
algorithm uses a set approximation technique which is assumed based on a sample
derived from a regular grid of n? points covering K. In some conditions, the final re-
sult is equal to the direct approximation of the exact backstop viability kernel by the
set approximation technique. Therefore, the Hausdorff distance between the backstop
viability kernel and its approximation by our algorithm when n grows is the same as if
the set approximation technique was directly applied to the backstop viability kernel
itself.

The third contribution is a report on tests of the algorithm on viability problems
for which the backstop viability kernel is equal to the viability kernel and can be de-
rived analytically. The tests use two approximation techniques: the nearest neighbour
and a recently developed method, the resistar surfaces [11]. These methods guaran-
tee (if the backstop viability kernel holds some smoothness properties) a Hausdorff
approximation error respectively in O(n~!) and O(n~2). The results of the tests are
in line with the theory.

The remaining of the paper is organised as follows: Section 2 defines the backstop
viability kernel in continuous time and extended discrete time control and determines
some conditions in which these sets are equal. Section 3 presents the approximation
algorithm and the theoretical study of its convergence. Section 4 reports tests of the
algorithm convergence on examples. The final section discusses the contributions of
the paper.

2. Backstop viability kernels.
2.1. Continuous time.

2.1.1. Viability problem and viability kernel. We consider a controlled
dynamical system defined by its state x(t) € R? which can be influenced by a control
u(t), chosen in a compact set U C R™, defined by an ordinary differential equation
where ¢ is a continuous function from R? x R™ to R%:

&(t) = p(z(t), u(t))
(2.1) { u(t) U

A viability problem from point z( is to determine a measurable function u(t) :
R, — U, such that the trajectory from xy when applying u(.) remains for all ¢ in
compact set K C R™.

Integrating equation 2.1, from initial state oy and for a chosen control function
u(.), determines the successor of zg at time ¢ as follows:

2
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(2.2) xwo’u(_)(t) = 20 Jr/o Qa(zzo,u(.)(t/),U(t,))dt/'

We also denote all the successors (or the trajectory) of zy during time interval
[0,t] when applying control function u(.) as follows:

(23) Xﬂcg,u(.)(t) = U xﬁcmu(-)(t/)'
t'€[0,t]

DEFINITION 2.1. The viability kernel Viab(K) of set K under the dynamics de-
fined by function ¢ and control set U is the set of states xg, for which there exists a
control function u(.) such that all successors of o when applying u(.) are in K:

(2.4) Viab(K) = {xo € K,Ju(.): Ry = UVt € Ry, 2, (1) € K} ,

where Ry denotes the set of positive real numbers.

Determining the viability kernel is important because a variety of control func-
tions u(.) keeping the trajectory indefinitely within K can easily be derived from it.
However, the analytical determination of this set is generally impossible and it should
therefore be approximated numerically. In this paper, we define the backstop viability
kernel, a subset of the viability kernel which is easier to approximate.

2.1.2. Backstop viability domain and backstop viability kernel. We need
a few preliminary notations and definitions:

e For (z,y) € K%, D(x,y) denotes the distance between x and y in K, which
is the length of the shortest continuous path connecting = to y in K (K is
supposed to be path-connected). Of course, if K is convex, D(z,y) = ||z — y||,
the usual Euclidean distance.

e For a set A C K, the distance from € K to A in K is: D(z,A) =
inf,c4 D(z,y). By convention: D(z, () = oc.

e For any two sets (A4, B) included in K, the distance from A to B in K is:
D(A,B) =inf,ca D(z, B).

e R denotes the set of strictly positive real numbers.

e For a couple of sets A and B, such that B € A, A — B denotes the comple-
mentary set of B in A.

o If u(t') = u for all t' € [0,], then z, () and X, ,()(t) are respectively
denoted x4, ,,(t) and X, ., (t).

DEFINITION 2.2. The exit time from a set A for an evolution starting from xg
when applying the control function wu(.) is:

(2.5) 7 (@0, u(.) = mE{t € Ry, 240 () & A},
The exit time from set A and point x( obtained when applying a constant control
u is denoted: Tfl(a:o, u).

DEFINITION 2.3. For any couple (u,v) € U2, the constant control from zo € K
with one possible bounce on the boundary of K, denoted (u,v)z, k(.), is the function

3
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from Ry to U defined as follows:

ufor0<t< rt (20,u)
(2.6) (1, 0)ag,k () = i,

v fort > T (o, u).
The point reached at time t when applying this control function from xqy is denoted
Tay (uw)x (t) and the corresponding trajectory is denoted Xy (yv) (1)

We can now define a backstop viability domain.

DEFINITION 2.4. The set V C K is a backstop viability domain of K under dy-
namics 2.1 for time threshold 6 € R iff there exists a set B C 'V such that:
e D(BK—-V)>0;
e For all zy € B, there exist (u,v) € U? such that X, (4)(0) CV;
e For all xg € V — B, there exists (u,v) € U2, such that:
— either for all t € Ry, x5 (w0 (1) €V,
— or there exists t € R, t > 0| Xo (uv)i () CV and 24 (40), (t) € B.
B is called a backstop in V' for time threshold 0, V — B is called the catch of B in
V, D(B,K — V) the width of the catch of B in V. By convention, the empty set is a
backstop viability domain for any catch width and any time threshold.

PROPOSITION 2.5. Let V' be a backstop viability domain of K and B a backstop
in 'V of catch width 6 € R%  for time threshold 6 € R* . Let B’ C V be such that
B C B and D(B',K —-V) =46" with ' <. For any 0 € R such that 0 <0’ <6, B
is a backstop in V' for time threshold 6’ of catch width ¢§'.

Proof. Consider zy € V — B’. Because B C B’, xg € V — B. Therefore, there
exist (u,v) € U? such that:
e cither ¥Vt € R+, 2, 0,0y, (t) €V,
e or 3t € RY, t > 6 such that X, (40),(t) CV and x4, (uu), (t) € B. There-
fore t > ¢’ and since B C B, T4, (u,v), (t) € B’
Now cousider zg € B'. If xy € B, there exists (u,v) € U? such that X,, ,(0) C V
thus X, (0") C V. If 29 € B’ — B, then 29 € V — B and there exists t € R}, ¢ > 6
such that X, (uu),(t) CV, and ¢t > 0 implies t > ¢'.
Therefore, B’ satisfies the conditions for being a backstop in V for time threshold
0" and its catch width is ¢’ by definition. 0

PROPOSITION 2.6. For any (6,6) € (R%.)?, the union of all backstop viability do-
mains of K under dynamics 2.1 including a backstop of catch width greater or equal
to 0 for time threshold 0 is a backstop viability domain of K including a backstop of
catch width greater or equal to § for time threshold 6. It is called the backstop viability
kernel of catch width § for time threshold 6 and denoted BSViab(4,0, K).

Proof. Let Dpsiop(0,0, K) be the set of all backstop viability domains in K in-
cluding a backstop of catch width at least § for time threshold 6. Let:

(2.7) V= U V' and B = U By,
V'€DBstop(9,0,K) V'€DBstop(8,0,K)

where By is a backstop of V' of catch width ¢ for time threshold 6, for each
V' € Dpsiop(0,60, K).
Consider zyp € B. There exists V' € Dpsiop(9, 0, K) such that o € By, and
D(xg, K — V') > 4. Because (K — V) C (K —-V"'), D(zo, K = V) > 6.
4
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Consider zy € V — B. There exists V' € Dpgop(0, 6, K) such that 2o € V', and
for all V" € Dpsiop(6,0, K), xo ¢ By, which implies g € V' — By. Therefore, there
exist (u,v) € U? such that:

e cither V& € Ry, 2y (uv)x (1) € V', then VI € Ry, 250 (40 (1) €V,
eor 3t € Ry, t > 0 such that X, (), (t) C V' then X, ), (1) CV
because V' C V' and x, (yv), () € By , then x4 (40, (t) € B, because
By, C B.
Consider o € B. There exists V' € Dpsiop(0, 0, K) such that zo € Bys. Therefore,
there exists (u,v) € U? such that Xao,(uv)x (0) C V', hence Xy (y0), (0) C V. d

DEFINITION 2.7. If there ezists (8o, 00) € (R%.)? such that:

(2.8) BSViab(8o,00,K)= |  BSViab(s,0,K),
(8,0)(R)?

then this set is called the backstop viability kernel of K under dynamics 2.1 and denoted
BSViab(K).

Section 4.1 describes examples of viability problems for which the backstop via-
bility kernel exists.

2.2. Extended discrete time.

2.2.1. Viability kernel in extended discrete time. We now define the con-
trol functions in extended discrete time (abbreviated as EDT), namely the control
function for which it is possible to change the control at each clock tick (as usual
in discrete time) and also just before the system leaves the constraint set K. This
extended discrete time will be used in the algorithm approximating backstop viability
kernels.

DEFINITION 2.8. The EDT control function set of time step 0 € R, for con-
straint set K, dynamics 2.1 and starting from xg € K is denoted Eg(xo, K,U) and
is the set of piece-wise constant functions u(.) : Ry — U, defined by the sequence
(uj,vj)jen of pairs of elements of U such that, for j € N:

(2.9) vt €[50, (G + 1DOL u(t) = (uj, v5)e, k(= §0),

where xj = x5, ,()(j0) and (uj,v;)e,; Kk (t — jO) refers to definition 2.3.

DEFINITION 2.9. The viability kernel of K in EDT of time step 6 under dynamics
2.1, denoted Viabgpr (0, K), is the set of states xg € K for which there exists a control
function u(.) in Eg(xo, U, K) such that the trajectory from xy applying control function
u(.) remains indefinitely in K:

(2.10) Viabgpr(0,K) = {z¢ € K,Ju(.) € E(xo, U, K) |Vt € R+,xmo’u(.)(t> € K}.

We now define a viability domain sewed in K with time step # under dynamics
2.1. The image of sewing is suggested by considering the trajectory X, (u..),(0) as
a thread that should be included in K while the stitch x,, (44, (#) should belong to
the viability domain.

DEFINITION 2.10. A set E C K is a viability domain sewed in K with time step
0 under dynamics 2.1, iff:

(211) Vo € E, H(U, U) € U? |XIO,(u,U)K(0) C K and $I07(U,U)K(0) ek
5

This manuscript is for review purposes only.



212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248

249

ProrosiTioN 2.11. The viability kernel of K in EDT of time step 0 is the largest
viability domain sewed in K with time step 6.

Proof. For all xg € Viabgpr(0, K) there exists u(.) € Ey(xo, U, K) such that for
all t € Ry, X;)4)(t) C K. Let u(.) be defined by the infinite series {(uo,vo), ...
,(uj,v5), ...} with, for j € N, (uj,v;) € U?. We have thus X, (u,v)x (0) C K. Let
Tl = Ty (uewo)x (#). The function v/(.) defined by {(u1,v1),..., (uj,v5),...} is such
that for all t € Ry, X, . ()(t) C K. Therefore, z1 € Viabgpr (0, K). Therefore
Viabgpr (0, K) is a viability domain sewed in K with time step 6.

Let £ C K be a viability domain sewed in K with time step #. Consider
xo € E. By definition, there exist (ug,v9) € U? such that X, (ugu0),(0) C K
and Iwo,(umvo)K(a) ekb. ‘

Consider now, for j € N, {(ug,vo), .., (uj—1,vj—1)} € (U?)7, such that, denoting
Tpr1 = Top (uywp)i(0); for p € {0,...,5 — 1}, we have: X, 0., (0) C K and
To, (upwp)x (0) € E. In particular, 2; = 24, | (4, 1.0, 1)« (0) € E. Therefore there
exist (uj,v;) € U? such that 2,1 = Ty, (u; ) (0) € E and Xy (4, 0, (0) C K
because E is a viability domain sewed in K.

Therefore, there exists u(.) € £(xg, U, K) such that for all t € Ry, X, () C K,
hence zg € Viabgpr(0, K). Therefore E C Viabgpr(0, K). O

2.2.2. Backstop viability kernel sewed in K.

DEFINITION 2.12. V' C K is a backstop viability domain sewed in K with time
step 0 under dynamics 2.1 iff there exists a set B C V such that:
e D(BK—-V)>0;
e for all zo € B, there exists (u,v) € U? such that Xao(uv)x(0) € K and
xwo,(u,v)x(e) ev;
e For all 1o € V — B, there exist (u,v) € U2, such that:
— either Vj € N, Xo (), (10) € K and x4 (4.0), (j0) €V,
—or3j € N*, Xy ) (J0) C K and x4, (4,0),(70) € B and Vp < j,
Lo, (uw) i (PO) € V.
B is called a backstop of V' in EDT time step 0 and D(B,K — V) is called the catch
width of the backstop V.

It can immediately be seen that a backstop viability domain sewed in K with
time step 6 is a viability domain sewed in K with time step 6.

K

PROPOSITION 2.13. For (8,0) € (R%)?, the union of all backstop viability domains
sewed in K with time step 0 including a backstop of catch width greater or equal to §
1s itself a backstop viability domain sewed in K with time step 0 including a backstop
of catch width greater or equal to §. It is called the backstop viability kernel sewed in
K with time step 6 of catch width 6 and denoted BSViabgpr(0,0, K).

Proof. The proof is similar to the one of proposition 2.6. O

2.3. Connection between backstop viability kernels in continuous and
in extended discrete time.

PROPOSITION 2.14. Let Vy be a backstop viability domain sewed in K with time
step 0 under dynamics 2.1, holding set B as a backstop of catch width 6 € RY.. There
ezists a backstop viability domain V' of K holding B as a backstop for time threshold
0 such that:

(2.12) Vy C V.

This manuscript is for review purposes only.
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Proof. Let B be a backstop of Vy of catch width ¢ and let C(B) be the set of
points x¢ € K for which there exists (u,v) € U? such that:
e cither for all t € Ry, X, (), (t) C K;
e or there exists ¢ € R*, t > 0 such that X, (), (t) C K and 24 (40 (t) €
B;
Let V = BUC(B). For all zg € Vy — B, zg € C(B), therefore, Vy C V. Therefore
inf,,ep D(xo, K — V) > §. V is thus a backstop viability domain holding B as a
backstop of catch width greater or equal to ¢, for time threshold 6. ]

COROLLARY 2.15. For any (6,0) € (R%)?, we have:
BSViabEDT((S, 0, K) C BSVZCLb((S, 0, K)

Proof. The proof comes directly from proposition 2.14 and from the definitions
of BSViab(0,0,K) and BSViabgpr (9,0, K). |

PROPOSITION 2.16. Let V' be a backstop viability domain of K under dynamics
2.1, holding a backstop B of catch width § for time threshold 0 and let:

(2.13) M = max{||¢(z,u)|,z € K,u € U}.

For all 8" < min(6, 2M) V' is a backstop viability domain sewed in K with time step
0" holding a backstop of catch width g.

Proof. Consider ¢ € R such that ¢’ < min(6, 52;). Let B’ = {z € V,D(z, K —
V) > %}, Forallz € B, D(z, K — B') > g For zy € B’, because 6’ < 0, there
exists (u,v) € U? such that X, (), (0') C K and x4, (q, U)K( e V. Con51der
29 € V — B’. Because B C B’, 1y € V — B. Therefore, because B is a backstop in V,
there exists (u,v) € U? such that:

e Either for all t € Ry, 25 (u,0) (t) € V, then V] €N, 2y (uv) (J0) €V, and
Xzo,(u;u)K(.ja ) C V, thus Xmo (u,v) (]9 )
e Or there exists ¢t > 0, t > 0| X$07(u’v) (t ) C V and y = Ty (4,0 (1) € B.
Then y € B’ because B C B’. We know that D(y,V — B’) > 2 which implies
that ¢t > 0" and for all t' € [t — 0',t], T4y (uv), (t') € B'. Therefore, taking j
as the integer part of 4 ensures j6' € [t — 6/, t] thus z,, (4. (j0') € B'.
Therefore, V is a backstop viability domain in EDT of time step ¢’ holding B’ as a
backstop of catch width g. ]

COROLLARY 2.17. Let M be defined by equation 2.13. For any (6,0) € (R%)?, for

any (8',0") € (R%)? such that &' < g and ¢’ < min(f we have:

s
) W)7
BSViab(6,0, K) C BSViabgpr (0,0, K).
Proof. The proof comes directly from proposition 2.16 and from the definitions
of BSViab(0,0, K) and BSViabgpr(d',60', K). d

PROPOSITION 2.18. Let M be defined by equation 2.13. If BSViab(K), the back-
stop viability kernel of K exists and BSViab(K) = BSViab(do, 00, K), for (5o, 00) €
(R%)?, then:

(2.14) v < ‘10 ,¥6 < min(6p, iw) BSViabgpr (6,0, K) = BSViab(K).

Proof. The proposition is a direct consequence of corollaries 2.15 and 2.17. O
7
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Proposition 2.18 provides a connection between the backstop viability kernel and
backstop viability kernels sewed in K (in EDT) which is important for the approxi-
mation algorithm described in the next section.

3. Approximating backstop viability kernels.

3.1. Algorithm and its basic properties. Algorithm 3.1 takes as input: n €
N the number of points by axis of the grid, § € R% a catch width value, 6 € R a
time step value and j4 € N a maximum number of tested steps. It uses algorithm A
approximating sets (or classification functions, this is equivalent) from a finite sample
I'(n) of points in K. This sample is based on a regular grid of n? points (n points by
axis) covering K for the nearest vertex approximation and a more elaborated sample
drawn on edges of the cubes defined by the grid for resistars (which are used in our
tests of the algorithm reported in section 4). Other set approximation algorithms
such as decision trees or support vector machines could be chosen. Considering a set
E C K, A(T'(n) N E) denotes the approximation of E derived from sample I'(n) by
algorithm A.

Algorithm 3.1 builds sets H*NI'(n) from which are derived H? = A(H'NT'(n)), the
iterative approximations of the backstop viability kernel, with sets B, as the approxi-
mation of their backstops. At each iteration, some points of the sample are eliminated
from the definition of the next approximation if they do not pass testInBstop (for
points in B},) or testInCatch (for points in H® — B{ ). Under some assumptions
(see further), the sets B’ , contain the sets H?, thus the sets B’ , — B! are wide
approximations of the catches. Actually, a point passes testInCatch if there exists a
constant control with one possible bounce that defines a trajectory sewed in K with
stitches in B!, during j4 time steps, or reaching B, in less than j4 time steps, with-
out getting out from B! ,. As will be shown further, in some conditions, at the last
iteration of the algorithm, this test determines with full accuracy if a point belongs to
the backstop viability kernel, independently from the precision of the approximation
Ht. The last iteration is reached when no point of the sample is eliminated. The
algorithm also stops if H! NT'(n) = K NT'(n).

The algorithm uses the following definitions:

e For any set H C K and any 6 € R, the sets (H)s and (H)_s are respectively
the erosion and the dilatation of size § in K:

(H)s :={x € H|D(z,K — H) > ¢},
(H)_s :={x € K|D(z,H) < §}.

e The sets B! and B!, approximate respectively (H%)s and (H?)_j:

B}, = A((H")5 NT(n)),
Bl = A((H')_s NT(n)).

e The sets H* are recursively defined by:

H! (—{130 cK | H(U,’U) S UQ,me(u)v)K(e) C K},
H"™' «{2¢ € B!, | testInBstop(zg, B.,, B%,;)}U
{xo € H' |29 ¢ B!, and testInCatch(zg, B.,, B.,,)}.

8
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Algorithm 3.1 BSVApp(n, d,6,j4). Backstop viability kernel approximation.
Input: n» € N number of points by grid axis, € R* width of backstop catch, 6 € R
time step, j4 € N number of tested steps.
H'NT(n) « {€€T(n),I(u,v) € U? X¢ (), (0) C K};
if HNT(n) = KNTI(n) then
| return K;
end
H' « A(H'NT(n));
1+ 0;
repeat
i1+l .
Bi, « A((H')s NT(n)); Bl — A((H')_s NT(n));
H™ NT(n) «+{¢ € B!, NT(n)|testInBstop(, B, B ,.)}U
{¢ € H'NT(n)|¢ ¢ Bj, and testInCatch(¢, By, Bl,,)}
HF — A(H™' N T(n));
until H'NT(n) = H*NT(n);
return (H°);

Algorithm 3.2 testInCatch(zo, B, B,;). Test selecting points in B, — B, .
Input: zo € B! , — B! , B! | B!

out wmn? wm out”

b+ I(u,v) € U?|either Vj < ja, Xu (wo)x (10) C K and z,, (w0, (76) € By

Xzo,(u,v)x(je) C K and xrm(%”)K(jG) = BZ"
and Vp < J, Ty (u,0) (P9) € B,

out*

0rE|j<jA{

return (b);

Algorithm 3.3 testInBstop(xo, B!, , B.,,
Input: 2y € B! , B! | B!

wmn? wm? out*

b+ I(u,v) € U? | Xao,(u)xc (0) C K and y <= 24, (u,0), (0) |

y € Bl or
y € B, — B!, and testInCatch(y, B! , B!

m? out)

). Test selecting points in B, .

return (b);

The basic properties of algorithm 3.1 require the following assumption.

ASSUMPTION 1. For any € € RY, there exists ni(e) € N*, such that for all n >
n1(€), at any iteration i of the algorithm, for any set H € {H', (H")s,(H")_s}, we
have:

(H). c HC (H)_. and (H). c H C (H)_,,

where H := A(H NT(n)).

ProrosiTION 3.1. Under assumption 1, for all n > nl(%), at each iteration of
algorithm 3.1, we have:

o

(HYs C B!, C (H")s and (H")

9

- Bzi)ut - (Hl)’T‘%

3 —
2

s
2

ol
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Proof. For e e R% | e < %, for n > nq(e€), at any iteration ¢, we have:

(HY. C H
This implies:
(3.1) ((H)e)s © (H')s hence: (H)sie © (H)s.
and assumption 1 ensures also:
(H')e C H',
which implies:
(3.2) ((H")e)s—e C (H")s-c hence: (H')5 C (H)s—e.
Therefore:
(3.3) (H')s4e C (H')s C (H')5-e-

Applying assumption 1 to set (H%)s, and setting B, = A((H%); NT'(n)) we get:

((HY)s)e € BY, C ((H")5)_c hence (eq: 3.3):
((H")s4e)e € By, C ((H')s-c)-c hence:
(Hi)5+26 C Bfn - (Hi)5726~

Applying the same reasoning to BY , (mutatis mutandis) and taking ¢ = g completes

the proof. ]
PRrROPOSITION 3.2. Under assumption 1, for n > nl(%), algorithm 3.1 stops after
a finite number of iterations.

Proof. Proposition 3.1 guarantees that, for n > nl(g), at each iteration i of
algorithm 3.1, we have: B! C H' and thus H*' N T(n) C H' NT(n). Since I'(n)
is finite, the procedure reaches H'™* N T'(n) = H' N T(n) after a finite number of
iterations. O

ProrosiTION 3.3. Under assumption 1, for n > nl(%), at any step i of algorithm
3.1 we have:

(3.4) BSViabEDT(%a, 0,K)cC H".

Proof. Let V = BSViabppr(32,0, K). Obviously V C H'.
Assume now V C H? and consider 2y € V. Two cases occur:
o xpeV — (V)%, then there exists (u,v) € U? such that:

— either for all j € N, Xy (uv), (j0) C K and 2, (u,0), (70) € V, then
for all j € N, @, () (j0) € Bl because V. C H' and because of
proposition 3.1, H* C B} ;;

— or there exists j € N*| X, (u0),(10) C K and x5, (4,0, (0) € (V)%s
and for all p < j, T, (u,0) (P0) € V, then ) (.0, (70) € B, (because
V. C H', (V)ss C (H')ss and because of proposition 3.1, H?%; C B)
and for all p < j, L4y, (u,0), (PO) € B,

10
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Therefore testInCatch(zg, B!

wm?

B! ) = true. If zo ¢ B!, then zo € H'™L.
If 2o € B!, this implies testInBstop(xo, B, B.,,) = true, thus xo € H*!,

® xy € (V)%, then xo € B!, (because of 3.1) and there exists (u,v) € U? such
that X, (we) () C K and y = 24 (u,0), (0) € V. Therefore y € Bl,,. If

out*

yevV— (V)%s, and as shown in the previous case, testInCatch(y, B! , B’

wmn? out)

= true. Else y € (V)3 hence y € Bj, therefore testInBstop(zo, By, B,

wn) out)
= true.

Finally, in all cases, zg € H'*!, therefore V. H**!, ]

3.2. Inclusion of the algorithm output in viability kernel in EDT. The
next propositions require assumption 2 and a new definition.

ASSUMPTION 2. For any € € RY, there exists na(e) € N, such that for all n >
na(€), at any iteration i of the algorithm, for any set H', we have:

Vee K —H' 3¢ e (K—-H)NT(n),D(z,&) <,

DEFINITION 3.4. For j € N, let H7 be the set of points of K for which the ewit
time when applying the EDT control of time step 0 is greater than j0:

(3.5) H = {zo € K,3u(.) € E(z0, U, K), 75 (w0, u(.)) > j0}.

We start by showing that the final set H¢ defined by the algorithm is included
in #74. Then we distinguish the case where there exists j4 € N such that H/4 =
Viabgpr(0, K) from the case where there is none.

PROPOSITION 3.5. Under assumptions 1 and 2, for n > max(ni(3),n2(3)), at
the last iteration q of algorithm 3.1, we have:

HY C HiA.

Proof. At iteration i of algorithm 3.1, let 7% = B! N (K —H’4). Assume F* # ()
and, for all 7y € F?, testInBstop(xg, B,, B’,;) — true. For each point o € F*, we
define U(zo) C U* and j(xg) € N as follows:

e If there exists (u,v) € U? such that KXo, () (0) C K and x4 (4,0, (0) €
Bi,. Then U(xzg) := 0 and j(z¢) := 0;
e Else there exists (u,v) € K? | X, (u0)(0) C K and y 1= x40, (0) €
B!, — B!  and, because ro ¢ H’4, there exists (v',v') € U% and j € N,
7 < ja such that Xy7(u/7U/)K(j0) C K, y () (10) € B!, and for p € N,
0<p <], Ty )@ € By Then U(xg) := (u,v,u,v") and j(z) := j.
We define set E as follows:

E :=F'U
{xxmov(u,v)}((9)1(“‘/7”/)1((pe)?xO E ‘Fi, (U7’U7ul7’l)/) = U($0) # (2)70 S p S ](mo)}

It can easily be verified that F is a viability domain sewed in K with time step 6.
Therefore E C H’4. This is impossible because 7 C E and F' C (K — H74), by
definition.

Therefore, there exists xo € F', such that testInBstop(zo, B!, , B%,) =false,
thus 2o € K — H**!. Because of assumption 2, there exists £ € (K — H'*1) N T(n)
such that D(z,€) < 3 therefore, ¢ € H' because o € BY, and assumption 1 ensures
B}, C (H')s, hence D(zo, K — H') > §.

11
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Consider now the case when F° = (), hence B!, C H’4, and consider a point
ro € H' such that zo ¢ H/4. For (u,v) € U?, let y = Ty ()i (0) U & HiA
(otherwise we would have zo € H74), therefore y ¢ B},. Assume y € B!, — Bl,.
Then, for any (u/,v") € U2, X, (w.v),(ja0) C K is impossible because zo ¢ H74.
Suppose that there exist (v/,v") € U? and j < ja, such that X, (s ), (j0) C K and
Ty (v (J0) € Bj,. Bj, C H* implies zy 4 ), (j8) € H’4 which is impossible
because xg ¢ H?4. Therefore, testInBstop(xo, BY,, B.,,)= false and, for all 2 €
H' such that o ¢ H/4, xo ¢ H**L. Therefore HiT! C HIA,

To summarize, while B{, is not included in H74, H*1 NT'(n) # H* NT(n) hence
the algorithm does not stop and at the first iteration i such that B! C H’4, we have
H+1 c Ha, Assumption 1 ensures that the algorithm stops after a finite number of

iterations ¢ and that HY C H+t! C HIa, 0

DEFINITION 3.6. The supremum of steps that the system’s trajectory remains in
K when applying the EDT control of time step 0 from points of K which are not viable
for the EDT control of time step 0, is:

jﬁEDT(ea K) = sup {] € Na E"U,() € 59(170’ Uv K)7Xx0,u()(]9) C K}
CEoEK*V’LAabEDT(Q,K)

For n € N, the same supremum restricted to (K — Viabgpr(0,K)) NT'(n) is:
Fopr(n.0.K) = sup {j €N.3u() € & (¢, U K),
€€(K7ViabEDT(0,K))ﬂF(’I’L)
Xeu()(70) C K}

PROPOSITION 3.7. Under assumptions 1 and 2, for n > max(ni($),n2(%)), and
if 34500, K) < 0o and ja > j& (0, K), at the last step q of algorithm 3.1 we have:

(36) HY C ViabEDT(G,K).

Proof. The proof comes directly from proposition 3.5 and from the fact that
HI4 = Viabppr(0, K) because ja > j%DT(&K). ad
PROPOSITION 3.8. Assume j%DT(n,Q,K) < oo. Under assumptions 1 and 2,
for n > max(ni(2),n2(2)), and if j4 > j%DT(n,Q,K), the last iteration ¢ € N of

1 2
algorithm 3.1 defines set HY such that:

(3.7) (H?NT(n)) C (Viabgpr(8, K) N T(n)).

Proof. Proposition 3.5 ensures that for all £ € T'(n), if £ € HY then ¢ € HI4.
Because j4 > j%DT(n,H,K), ¢ € H74 implies ¢ € Viabppr(0, K). d

3.3. Convergence to the backstop viability kernel. The following proposi-
tion requires a new assumption and a new definition.

AsSUMPTION 3. There ewists (0p,00) € (R%)? such that BSViab(dy,00, K) =
BSViab(K) is the backstop viability kernel of K.

DEFINITION 3.9. Under assumption 3, the mazximum number of time steps in K
for constant control with one possible bounce starting from points in K — BSViab(K),
denoted jﬁC(H,K) is:

(38)  ji(0,K)= sup {7 €N, 3(u,0) € U, Xay uy (46) € K-
zo€K—BSViab(K)
12
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PRrROPOSITION 3.10. Let M be defined by equation 2.13. If:
e Assumptions 1, 2 and 3 are satisfied and n > max(ni($),n2(2)),
. jﬁC(Q,K) < oo and ja > jg(@,K),
then for all § € RY. such that 375 < %‘J, for all 6 < min(6y, 2‘5—]‘\}[), at the last step q of
algorithm 3.1 we have:

H? = BSViab(K).

Proof. The structure of the proof is similar to the one of proposition 3.5. Let

V = BSViab(K). Because of proposition 2.18, the choice of § and 6 ensures V =
BSViabppr(§,6, K). Suppose (H')s N (K — V) # 0 and that:

o for all points zo € (H')s — Bj,, testInCatch(wo, B;

n’ n’

e for all points zg € B!, , testInBstop(zg, B, B.,;) = true.

For z( € (Hz)% we define V (xg) € U? or U(xg) € U* and j(zo) € N as follows:
o If 2o € (H’)% — B!, there exists (u,v) € U% and j € N, j < j5(0,K) <

ja, such that Xoo (w0 (70) C K, T4y uw)x (70) € By, and for all p < j,
Tao ()i (PO) € Bhyy. Then, V(o) := (u,v) and j(zo) := j,
o If 5 € B!, because jg(@,K) < ja, we can define U(xg) and j(zo) like we
did in the proof of proposition 3.5.
Let E be defined as follows:

Bt ) = true and

E:= (H"):U
{xfto,(uﬂ))K(pe)va € (Hi)% - Bgna (u,v) = V(xo), 0<p< ](xo)}U

{xwzo,w,v)K(@),(u'w/)K(p0)3 Zo € Bllru (u,v,u',v/) = U(IO) 7é ®70 < p S ](IO)}

slor

By construction, E is a backstop viability domain sewed in K with time step 6 holding
Bi,, as a backstop of catch width greater or equal to g. E is not included in V' because
E C (H') and by hypothesis, (H*)s N (K — V) # 0. This is impossible because the
choice of @ ensures that V = BSViabEDT(%,H,K) and thus includes all backstop
viability domains sewed in K of catch width greater or equal to % with time step 6,
by definition.

Therefore, there exists zg € (H')s — Bj,, i Blut)
= false, or there exists zo € B!, such that testInBstop(xo, B;,, B,;) = false.

In both cases, there exists a point =y € (Hi)% thus such that D(zg, K — H') > % and

xo ¢ H'"'. Because of assumption 2, there exists & € T'(n) such that & ¢ H'™ and
D(,&) < 8, therefore & € H'. Therefore H* NT'(n) # H' NT(n).

Suppose now (H'); C V. Consider xg € H' — V. z9 € H' — Bj, because B}, C
(H%)s. Suppose testInCatch(xg, Bf,, B!,;) = true. Then there exist (u,v) € U?

% wn? ~out
and j €N, j < jL(0,K) < ja| Xuy (uo)r(G0) C K and 2, (u0).(70) € B, and for
all p < j, Tuy (uw) (PF) € Byyy- Then the set V U {zy (uw), (p0),p € {0,..,7}} is a
backstop viability domain of time threshold 6 admitting B}, as a backstop of catch
width at least g and this backstop viability domain is not included in V. This is im-
possible. Therefore, testInCatch(zo, B, Bi,,) = false. This implies: H*1 C V.
Because of proposition 2.18, the choice of § and 6 ensures V = BSViabEDT(%‘s, 0,K).
Proposition 3.3 can be applied because assumption 1 is satisfied thus V ¢ H**! and
V C H™*? therefore H't! = H'*2 = V.

such that testInCatch(zg, B! , B’

13
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Overall, while (H")s is not included in V, H* NT(n) # H**' NT(n) therefore
the algorithm does not stop. Once (H’)% C V, the algorithm stops after at most one
iteration and H*! = BSViab(K). 0

3.4. Convergence rate. We now derive the implications of the previous propo-
sitions on the convergence rate of the algorithm output to the backstop viability
kernel when n, the number of points by axis of the grid, increases. This requires a
new assumption which uses the Hausdorff distance Dy, (A, B) between two sets A and
B:

(3.9) Du(A, B) = max(D(A, B), D(B, A)).

ASSUMPTION 4. There ezists a function e(n) : N — R, €(n) — 0 when n — oo,
such that, for any set H satisfying some smoothness properties (see examples in section
4), there exists ny € N such that for n > ny:

(3.10) Di(A(H NT(n)), H) < e(n).

PROPOSITION 3.11. Assume the conditions of proposition 3.10. Under assump-
tion 4 and if BSViab(K) satisfies the required smoothness conditions and n is large
enough, at the final iteration q of algorithm 3.1, we have:

(3.11) Dy (H?, BSViab(K)) < e(n).

Proof. Let V. = BSViab(K). Proposition 3.10 ensures H9 = V and because of
assumption 4, D (A(V NT(n), V) < e(n). |

PROPOSITION 3.12. Assume that BSViab(K) = BSViab(dy,0y) is the backstop
viability kernel and is equal to the viability kernel: BSViab(K) = Viab(K). Assume
that the conditions of proposition 3.8 are satisfied and jao > j]ﬁ;DT(n,Q,K). Under
assumption 4 and if Viab(K) satisfies the required smoothness conditions and n is
large enough, then for all 6 € R such that 3—2‘5 < %0, for all 6 < min(6, 25—]?4), at the
final iteration q of algorithm 3.1, we have:

(3.12) Dy (HY, Viab(K)) < e(n).

Proof. Let V = Viab(K). In the considered conditions, V = Viabgpr(0, K)
because BSViab(K) C Viabgpr(0, K) and Viabgpr (6, K) C V. Proposition 3.8
ensures HYNI'(n) = VNI'(n) and because of assumption 4, Dy (A(VNT(n), V) < e(n).0

Note that the case Viab(K) = BSViab(K) is particularly interesting, because the
convergence rate €(n) can be ensured even for j%,,..(6, K) = co and jg(H,K) = o0,

whereas if Viab(K) # BSViab(K), it requires jnc(&K) < oo. The next section
reports tests performed in this case.

4. Tests of the convergence rate when viability kernel and backstop
viability kernel are equal. In the tests, the trajectories X, (4 ), (j0) are approx-
imated by the Runge and Kutta method with a time step smaller than 6 ensuring
that several trajectory points are computed in each grid cube. Hence the approxima-
tion error on the trajectory (of the order of n=*) is negligible with respect to the set
approximation error (at best of the order of n=2).

14
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4.1. Tested viability problems. The tests are performed on three viability
problems in d dimensions.

4.1.1. Population problem. In the original 2D version [3]|, z1(t) represents
the size of a population, which grows or diminishes with the evolution rate x5 (¢) that
can be modified by the control. The populations should be kept within some bounds.
The system is written as follows, mq, My, ma, Ma, m,,, M, being positive parameters:

Oz2(t) ) S ult) < +My,
(z1(t),22(t)) € K = [mq, My] x [=mg, Ma).

In the extension to d dimensions, the model includes d — 1 > 2 populations
Z1,Ta,..,Tq—1 and it uses variable Z(¢):

d—1 2
My — 2 M
(4.2) B(t) = My —ma)” <xi(t) _ 1+ml)
= 4 2
The extended viability problem is:
2y (t) = y(t) (w1 (t) + i (t)) —my < u(t) < M,
(4.3) < zi(t)=0,i€{2,..,d—1} with ¢ my < a;(t) < My,i€{l,..,d— 1},
x)(t) = u(t), —may < xq(t) < Ms.

Where « is a parameter. In this system, the dynamics of population x; non-
linearly depends on the abundance of the other populations which are constant.

The analytical definition of the viability kernel of the d-dimensional problem can
be directly derived from the one of the 2D case (provided in [3]):

(4.4) Viab(K) = {z € K,0V_(z) < 24 < OV4(x)}, with:
OV (x) = \/ 2m,, log ((Mrter ),
(4.5) -
oV_(x) = —\/ZMu log (%)
The backstop viability kernel of this problem exists and is equal to the viability
kernel.

4.1.2. Consumption problem. In the original 2D problem [3], 2 () represents
the consumption of a primary good and z5(¢) a critical level of consumption above
which the prices can decrease and accelerate consumption and below which, on the
contrary the prices increase and decrease the consumption. The critical level z5 can
be modified by a control within some bounds in order to maintain the consumption
within some bounds. The system is written as follows (m,,, My, m1, M; and My are
positive):
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Like the population model, we extend the consumption model to d dimensions by
considering d — 1 > 2 consumption variables x1,xs,..,z4_1. We also define variable
Z(t) with equation 4.2. The extended system is:

(4.7)
2y (t) = (z1(t) + () — za(t) —M, <u(t) < M,,
Z(H)=0,i=2,.,d—1 with { —my < z;(t) < My,ie {1,..,d— 1},
zg(t) = u(t), 0 < aq(t) < M.

The analytical definition of the viability kernel can easily be derived from its
expression in the 2D problem (provided in [3]):

(4.8) Viab(K) = {z € K,0V_(x) < x; < 9V4 ()} with:

OV_(x) = xg — my + My exp (_‘"”d> - a,

(4.9) iy
oVy(x) =xq+ M, — M, exp (“ﬁul) —az.

For this problem also, it can be verified that the backstop viability kernel exists
and equals the viability kernel.

4.1.3. Variants of the models with oblique trajectories. In both popu-
lation and consumption problems, the fact that z}(t) = 0 for ¢ € {2,..,d — 1} can
be seen as an easy particular case for the resistar approximation because in each 2-
dimensional grid defined by axes x; and x4, the problem to solve is the same as in
2 dimensions. Increasing the dimensionality requires only the interpolation by the
resistars between these 2-dimensional classifications.

In order to test how the approach performs on a more difficult problem, instead
of keeping all trajectories in the 2 D spaces parallel to (b1,b4), (b;, i € {1,..,d} being
the canonical basis vectors), for point = (x1,...,xz4) the trajectory is set in the 2D
space generated by vectors (z(z), bg), with:

d—1
1—
(4.10) z(x) = by + Zzl(x)b, with, setting m(z;) = ?ﬂ + By,
i=2

(4.11) forie{2,..,d—1},z(z) = {

ﬂ%, lf €T; S m<x1)7

17 1 M
ﬁlfm(zl), otherwise,

where j3 is a parameter (0 < 3 < 1) and the problem is rescaled so that K = [0, 1]%.
When z is located on the right line of direction b; + 3 Z?;zl b; which includes point
(%, ey %), it makes the maximum angle with b;. The components z;(x) equal 0
for z; =0 or z; = 1.

This leads to population or consumption problems in the spaces (z(z),bq) with
a constraint set equal to [0, ||z(z)||] x [0, 1] instead of [0,1] x [0,1]. Their viability
kernel in the plane (z(z),bs) can be derived directly from the viability kernels of the
2D problems.

4.1.4. Spirals problem. Equation 4.12 defines the spirals problem in d dimen-
sions, with 0 < r9p < 1 and w > 0..

16
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r=/x1(t)% + x2(t)2,

(4.12) 22; _ ;f”é)(tizz(i;o;;);;(ﬂ’ with — 1 < 2(t) < 1,4 € {1,..,d}.
fE;(t) = 7in(t)ai € {33 "7d}’

Qualitatively, in the plane P generated by canonical basis vectors by = (1,0, ...,0)
and by = (0,1,0,...,0) and which includes point ¢ = (0,..,0), the dynamics turns
around c in P and if the distance to c is higher than r(, then the trajectory is a spiral
which increases its distance to ¢ while the spiral goes towards ¢ when the distance to
¢ is smaller than ro. When the point is exactly at the distance rg from ¢, the radius
is kept constant. The parameter w rules the increase or decrease of the distance to
c. When x does not belong to P, the dynamics is the combination of the spiral in
the plane generated by (by,bs) which includes = and a translation towards P with
a speed proportional to the distance from x to P (ruled by parameter o). For sake
of simplicity, there is no control in this problem (in our framework, the control set
includes a single value).

In the spirals problem, jﬁE pr(0, K), the supremum of number of steps in K for
the non-viable points of K, is infinite, while it is finite for the two first problems.
Indeed, consider x € K such that ||x —c¢|| = 9 + € (¢ > 0); when € tends to 0, the
trajectory starting from x makes an indefinitely increasing number of turns around ¢
before exiting from the constraint set. In the 2D example, we set w = 0.01 and the
system makes a large number of rounds before exiting K even when it is moderately
close to the circle of centre ¢ and radius rg.

It can be verified that the backstop viability kernel exists and is equal to the
viability kernel. The viability kernel can easily be defined analytically:

(4.13) Viab(K) = {x € K |x] + 23 < r3}.

4.1.5. Parameter values. Table 1 breaks down the parameter values used in
the tests of the population and consumption models and Table 2 provides the values
used in the tests of the spirals model.

TaBLE 1
Parameters of population and consumption models.

Model ma M1 mo M2 my, Mu « ,8 1) 0 jA
Popul.2D | 0.2 3 2 2 0.5 | 0.5 0 na. | 0.1 | 0.6 | 50
Popul.dD | 0.2 3 2 2 2 05 1] 015 | 0.6 | 0.1 | 0.3 | 50
Cons.2D 0 2 0 25109 |09 0 na. | 0.1 | 04 | 50
Cons.dD 0 2 0 22 109|009 |-015] 06 | 0.1 | 04| 50
TABLE 2
Parameters of spirals model.
ro w o 1) 0 ja
2D 0.75 | 0.01 | n.a. | 0.1 | 0.6 | 10000
dD 0.75 | 0.1 02 | 01106 100

In both tables the values are given for problems with modified axis scales so
that K = [0,1]?. We checked experimentally that these parameters are such that
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Viab(K) = BSViab(K) = BSViabgpr(6,0, K). Note that m, = 2 in the Population
model in d dimensions in order to get a smoother boundary 0V, (z), ensuring that
the conditions of the convergence for resistars are satisfied in the considered range of
values of n.

4.2, Set approximation algorithms and their convergence rates. In this
subsection, we assume K = [0,1]?. The tests use two set approximation algorithms.

4.2.1. Nearest vertex. The nearest vertex approximation N, (H) of set H C K
is defined from G,,, the set of vertices of the regular grid covering K, as follows:

(4.14) reN,(H)«—= ¥ cG,NH| |z—¢| :E{relicl;} |z —¢|.

ProrosiTION 4.1. For any H C K such that, for oll x € H there ewists £ €
G, N H such that D(z,§) < ?, we have:

(4.15) Dy(H,N,(H))=0(n").

Proof. By definition, for all point € K such that x € N,,(H) there exists £ €
(G, N H) such that & is the point of G,, which is the nearest to x, thus D(z,¢) < %.
Therefore, D(z, H) < 2—\/3. Moreover, by hypothesis, for all x € H there exists £ € G,

such that D(z,§) < %. Therefore, D(z, N,,(H)) < %. We get: Dp(H,N,(H)) <
va, 0
n

4.2.2. Recursive simplex stars (resistars). We assume that set H C K is a
d-dimensional manifold, 0H, the boundary of H and 0x H = 0H — (0H N JK) are
(d — 1)-dimensional manifolds. The resistars are designed for approximating dx H by
hypersurfaces made of (d—1)-dimensional simplices. The first step for deriving resistar
surfaces is determining the boundary points By (G,,) which are approximations of the
intersections between 0x H and the edges of the grid. These points are computed on
the edges [v,v'] of the grid such that one of the vertices is inside H and the other is
outside. The estimation of a boundary point is done by successive dichotomies. The
simplices defined in a cube share the barycentre of the boundary points located in the
cube as a vertex, and their other vertices are defined similarly in the facets and faces
of the cube. The complete description is available in [11].

THEOREM 4.2 ([11]). If Ok H is a (d — 1)-dimensional manifold in K of reach' r
such that v > \/2dn=", if for all j-dimensional faces F of K, setting Hr = HNF,
OpHp is a (j—1)-dimensional manifold of reach rp > v/2jn~", and if all the boundary
points are determined with at least logy(n) dichotomies, then the Hausdorff distance
between H and its resistar approzvimation decreases like O(dn=2).

4.3. Evaluating the Hausdorff distance between the viability kernel and
its approximations. The procedure evaluates tho distance from HY (result of the
approximation algorithm) to Viab(K') (known analytically). It assumes that it is close
to the distance from Viab(K) to H%. It focuses on the points of the boundary dx H9
that are likely to be the furthest to OViab(K) in order to limit the computation time.

IThe reach of O H is the supremum of p such that for any point x of K for which D(z,0x H) = p,

there is only one point y € dx H such that ||z — y|| = p [16].
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This manuscript is for review purposes only.



697

N = D]
oo O Qo C O O o o 9o © WY
© 00 N OO W NN =IO O ®

-~ ~1 ~ =~ =] =~ =~ =~

~N =~ ~ N ~ 3 =
[N}
ot

~N N N =~ =~

~N N N N N N
PN
Tt ok W N

4.3.1. Resistar approximation. Among the vertices of the simplices defining
dx H4, the barycentres of all boundary points of a grid cube are likely to be the furthest
from OxViab(K). The procedure estimates the distance from such vertices x to the
projection of z on Ox Viab(K) parallel to the estimated normal vector to the resistar
surface at x and it returns the maximum of these distances. It is indeed assumed
that the normal vector to dx HY at z is close to the normal vector to dViab(K) at
the nearest point to x of dViab(K). The procedure estimates the intersection y of
OViab(K) with the segment [x,x + vDy] or with the segment [z,2 — vDys] (D
being a parameter) by performing successive dichotomies. The case when x + vDy
or x — vD)s is located outside K requires a specific management. The estimation
of the normal vector to O H? at point z, is based on the estimation (by successive
dichotomies) of d — 1 affinely independent points of O HY at a given distance from
x, from which the normal vector can be derived. The method includes a specific
tratment for the cases when z is on the border of K or very close to it.

4.3.2. Nearest vertex approximation. The set H? is now the nearest vertex
approximation. The estimation of the Hausdorff distance from HY to Viab(K) is
derived from the method defined for the resistar set approximation. It uses indeed
the resistar surface denoted H*, defined from the boundary points b = (v+v')/2 where
v and v’ define a grid edge [v,v'] such that v € HY and v ¢ H?. It estimates the
distance from the centres of the cubes containing boundary points of H* to 0Viab(K)
using the normal to H* estimated at the barycentre of the boundary points of the
cube. Indeed, the centre of the cube is always on the boundary of H and is likely to
be the point from which 0Viab(K) is the furthest. The direction normal to dx H* at
the barycentre of the boundary points of the cube is a reasonable approximation of
the direction from the centre of the cube to its nearest point in OViab(K).

4.4. Results. Figure 1 shows the sets H’ for all the iterations of algorithm
3.1 applied on the 2D problems. The final result can be visually compared with
the theoretical viability kernel (quantified evaluations of the Hausdorff distance are
shown on figure 3). Note that the algorithm stops after 4 iterations for the population
and consumption problems and after 6 iterations for the spirals problem (even with
w = 0.01). The number of iterations is similar in higher dimensionality. Figure 2
shows examples of final results on the 3D problems. The smooth non-linearity along
the x5 axis ruled by parameters a and 8 appears in the viability kernel approximations
of population and consumption problems. Panels (a), (b) and (c) of Figure 4 show the
intersection with three chosen hyperplanes of viability kernel resistar approximations
of algorithm 3.1 in 6 dimensions with n =5 (grid size: 5).

On Figure 3, panels (a), (b) and (c) show the estimated Hausdorff distance be-
tween the viability kernel and its approximation (y axis) by the nearest vertex and by
a resistar surface, in dimensionality 2, 3, 4 and 5, and for different values of the grid
size n (z axis). For resistar approximations, the values of n are 7, 9, 13, 17, 25, 33,
49, 65, 97, 129, 193, 257 for the 2D problems, 7, 9, 13, 17, 25, 33, 49, 65, 97 for the
3D problems, 7, 9, 13, 17, 25, 33, 49 for the 4D problems and 7, 9, 13, 17, 25 for the
5D problems. For nearest vertex approximations, the values 7 and 9 are not tested
because they are too small for defining properly the sets B!, . The other values of n
are the same The axes are in a logarithmic scale.

Table 3 shows the estimation of the slopes of the logarithm of the Hausdorff
distance as a function of the logarithm of n, for the problems in 2 and 3 dimensions.
These results are in good agreement with the theoretical prediction of an Hausdorff
distance decreasing like n~! for the approximation with the nearest vertex and like
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Ficure 1. Approximations of the viability kernel in 2D for the three problems (first row:
population, second row: consumption, third row: spirals). Left column: nearest vertex approzimation
with n = 33 (grid size: 332), right column: resistar approvimation with n = 9 (grid size: 92).
The black curves are the boundaries of the theoretical viability kernel. The approximations H are
represented in darker and darker grey as i increases. The darkest set is the output of algorithm 3.1.
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FIGURE 2. Approzimations of the viability kernel in 3D for the three problems (first row:
population, second row: consumption, third row: spirals). Left column: nearest vertex approzimation
with n = 33 (grid size: 33%), right column: resistar approzimation with n =9 (grid size: 93).

21

This manuscript is for review purposes only.



746

747
748
749
750

Nearest v. Resistars
2D 3D 2D 3D
Population —-1.00 | —0.97 | —2.00 | —1.99
Consumption | —1.01 | —1.03 | —2.01 | —1.98
Spiral —1.02 | —0.94 | —2.02 | —2.01

TABLE 3
Slopes of the linear regression of the logarithm of the estimated Haussdorf distance between the
viability kernel and its approximation as a function of the logarithm of n. The R? wvalues are all
superior to 0.98.

n~2 for the approximation with the resistars.
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Ficure 3. Estimation of the Hausdorff distance between the viability kernel and its approrima-
tion (y azis) as a function of n defining the grid size as n® (x azis) for the population, consumption
and spirals problems in d € {2,3,4,5} dimensions. The dashed lines are the linear regressions on
the 2D wvalues (slopes given in table 3).

On figure 3, for a given value of n, the error does not change much when increasing
the dimensionality. This observation is confirmed on Figure 4, panel (d) showing that
the error of the resistar approximation for a grid defined by n = 5 does not vary
significantly when the dimensionality d varies from 3 to 9.

5. Discussion - conclusion. In general conditions, there exists a range of pa-
rameter values for which BSViabApp(n, 4, 0, ja), the output of the approximation
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FIGURE 4. Panels (a), (b) and (c): Resistar backstop viability kernel approzimations in dimen-
sionality d = 6 and n = 5 (grid size: 55), for respectively the population, consumption and spirals
problems. FEach panel represents the intersection of the resistar approzimation with 3 hyperplanes
(r3 = 0.02, x4 = 0.05 and x5 = 0.08 in K = [0,1]%). Panel (d): Hausdor(f distance between viability
kernel and its resistar approzimation (y azis) for the population, consumption and spirals problems
in a grid of size n =5 and dimensionality varying from 3 to 9 (x awis).

algorithm, satisfies:
36
BSViab(?, 0, K)NT(n) C BSViabApp(n,d,0,54) NT'(n) C Viabgpr (8, K) NT(n).

The second inclusion implies that all the points of BSViabApp(n,d,d,j4) NT(n)
are viable. This is generally not guaranteed with the Saint-Pierre algorithm which
provides an approximation of a set which contains the viability kernel. This difference
is important when the objective is to guarantee the viability of a system. When the
backstop viability kernel BSViab(K) exists, under general conditions, there exists a
range of parameter values such that:

BSViabApp(n,d,0,j4) NT'(n) = BSViab(K)NT(n).
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Overall, these results lead to a convergence rate of the algorithm to the backstop
viability kernel which is the same as the convergence rate of the chosen set approxi-
mation technique.

When the viability kernel is equal to the backstop viability kernel, the conditions
to get this convergence rate are more general. Even when using the nearest vertex
approximation, we expect our algorithm to then outperform the current techniques
approximating viability kernels for three reasons. Firstly, the convergence to the
viability kernel is ensured without decreasing the time step to 0, which is a major
difference. Secondly, for a given time step, our algorithm requires a lower number
of iterations, especially when the supremum of time steps in K for the non-viable
points is infinite (as illustrated on the spiral problem). Thirdly, our algorithm avoids
cumulating the error of the successive set approximations taking place in standard
algorithms.

When using resistars as set approximation technique, if the best conditions are
satisfied, the convergence rate of our algorithm is like O(n~2) which significantly
increases the advantage over the standard methods, converging at best like O(n=1).
Indeed, in order to be as accurate as a resistar approximation using a grid of n¢
points, the standard methods need a grid of at least n2¢ points. For instance, we have
shown that it is possible to run resistars approximations in 5 dimensions using a grid
of 255 (about 8 10°) points. In order to reach the same accuracy as the one of these
approximations, the standard methods would require a grid of at least (252)° (about
9.5 10*3) points, which is not manageable by current standard computers.
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