WHEAMM: a functional-structural model to study plant growth and interactions with neighbors in wheat variety mixtures
Meije Gawinowski, Jérôme Enjalbert, Paul-Henry Cournède, Timothée Flutre

To cite this version:
Meije Gawinowski, Jérôme Enjalbert, Paul-Henry Cournède, Timothée Flutre. WHEAMM: a functional-structural model to study plant growth and interactions with neighbors in wheat variety mixtures. FSPM 2020: 9th International Conference on FUNCTIONAL-STRUCTURAL PLANT MODELS, Oct 2020, Hanovre (Virtual Conference), Germany. hal-02961398

HAL Id: hal-02961398
https://hal.archives-ouvertes.fr/hal-02961398
Submitted on 8 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Crop diversification was identified as a key lever for the agroecological transition. In particular, increasing within-field diversity with variety mixtures for wheat may allow to stabilize yield and reduce the use of chemical inputs [Borg et al., 2018]. However, this technique is restrained in part because of a lack of practical rules for the assembly of varieties. In order to study plant growth and interactions in mixtures, we chose an approach combining field experiment and plant modeling, with a main focus on light competition as plant interaction and tillering as a plastic response to this interaction. Even though, many wheat models already exist, none of them include light competition, accurate tillering dynamics and biomass production and allocation at the same time. WHEAMM (Wheat Model for Mixtures) is hence conceived as a combination of different existing models to assess mixture performance in terms of yield.

WHEAMM is an individual-based FSPM. It is a combination of these different modeling methods:

- A source-sink model based on Greenlab-wheat for an individual plant [Kang et al., 2008]
 - Three organ types: leaf, stem and ear
 - Phenology, organ initiation, extension and senescence according to a thermal time calendar
 - Plant biomass computed with usual Beer-Lambert law based on light interception, plant leaf surface and radiation use efficiency
 - Biomass allocation between growing organs according to their sink strength

- More accurate tillering dynamics based on Ecomeristem model for regression phase [Larue et al., 2019]: allocation rules prioritizing tillers by age with simultaneous senescence processes

![Figure 1: Simulation of plant biomass as a function of time with WHEAMM for one plant with arbitrary parameters](image)

![Figure 2: Simulation of the number of tillers as a function of time with WHEAMM for one plant with arbitrary parameters](image)

Next steps:

- Computation of competition for light in a plant population based on surface partition [Cournède et al., 2008]
 - Determination of plant surface of influence \(S_p \)
 - Partition of \(S_p \) surface according to neighbouring competitors into subsurfaces
 - Computation of probabilities that a plant is covering a subsurface and is above the others
 - Computation on actual exposed leaf surface accordingly to these probabilities

Experiments for model calibration

For WHEAMM calibration there is a need for data of individual plants during their growth. A field experiment was hence conducted in the frame of the PerfoMix project:

- 2 different balanced mixtures of 4 components of 264 plants, 2 replicates at density 160 and one replicate at density 250
- Sowing on October, 30 2019 and harvest on July, 20 2020 at Le Moulon, Gif-sur-Yvette
- Precision sowing for mixtures according to a determined and randomized spatial layout

Collected data for calibration:

<table>
<thead>
<tr>
<th>Scoring</th>
<th>Stand</th>
<th>Number plants per point per stand</th>
<th>Number of scorings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height, Tillers, Biomass</td>
<td>Pure</td>
<td>20-30</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mixtures 250</td>
<td>30</td>
<td>1 (harvest)</td>
</tr>
<tr>
<td></td>
<td>Mixtures 160, rep1</td>
<td>30</td>
<td>1 (harvest)</td>
</tr>
<tr>
<td></td>
<td>Mixtures 160</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Mixtures All</td>
<td>20-30</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Mixtures All</td>
<td>3 (harvest)</td>
<td>1</td>
</tr>
</tbody>
</table>

![Table 1: Table of scorings for the PerfoMix 2019-2020 experiment during growth.](image)

![Figure 3: Number of tillers averaged by variety at each observation point in pure stands and in one mixture of the PerfoMix experiment 2019-2020](image)

On Figure 3 we can see an important difference in tillering between pure stands of early varieties Acroc and Aubusson, and later varieties Bergamo and Expert. In the mixture of these four varieties, this gap is not as noticeable, as early varieties reach a higher tillering plateau.

Next steps:

- Renewal of PerfoMix experiment in 2020-2021
- Calibration in the Bayesian paradigm using a hybrid Metropolis-Hastings-Gibbs algorithm [Viaud, 2018].

References

This work is supported by the FIRE PhD program with the support of Fondation Bettencourt Schueller, the PerfoMix project and the INRAE BAP department for PerfoMix funding and M. Gawnowski PhD funding.