R. Torah, P. Glynne-jones, T. M. , O. Donnell, T. Roy et al., Self-powered autonomous wireless sensor node using vibration energy harvesting, Meas Sci Technol, vol.19, p.125202, 2008.

S. J. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, 2003.

L. Tang, Y. Yang, and C. K. Soh, Toward Broadband Vibration-based Energy Harvesting, J Intell Mater Syst Struct, vol.21, pp.1867-97, 2010.

I. Neri, F. Travasso, R. Mincigrucci, H. Vocca, F. Orfei et al., A real vibration database for kinetic energy harvesting application, J Intell Mater Syst Struct, vol.23, pp.2095-101, 2012.

R. Rantz and S. Roundy, Characterization of real-world vibration sources with a view toward optimal energy harvesting architectures, International Society for Optics and Photonics, vol.9801, p.98010, 2016.

T. Hoang, G. Ferin, C. Bantignies, B. Rosinski, P. Vince et al., Accelerated Aging Procedures of Bending Piezoelectric Structures Using Electrical Stress Induced Approaches, IEEE Int. Ultrason. Symp. IUS, pp.1-4, 2018.

Y. C. Kuo, J. T. Chien, W. T. Shih, C. T. Chen, S. C. Lin et al., The fatigue behavior study of micro piezoelectric energy harvester under different working temperature, International Society for Optics and Photonics, vol.10967, p.109672, 2019.

P. Gasnier, M. Boucaud, M. Gallardo, J. Willemin, S. Boisseau et al., A 120°C 20G-compliant vibration energy harvester for aeronautic environments, J Phys Conf Ser, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02350981

A. Brenes, A. Morel, D. Gibus, C. Yoo, P. Gasnier et al., Large-bandwidth piezoelectric energy harvesting with frequency-tuning synchronized electric charge extraction, Sens Actuators Phys, vol.302, p.111759, 2020.

A. Morel, G. Pillonnet, P. Gasnier, E. Lefeuvre, and A. Badel, Frequency tuning of piezoelectric energy harvesters thanks to a short-circuit synchronous electric charge extraction, Smart Mater Struct, vol.28, p.25009, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01943613

Y. Cai and Y. Manoli, A piezoelectric energy-harvesting interface circuit with fully autonomous conjugate impedance matching, 156% extended bandwidth, and 0.38?W power consumption, IEEE Int. Solid -State Circuits Conf. -ISSCC, pp.148-50, 2018.

A. Morel, A. Quelen, C. A. Berlitz, D. Gibus, P. Gasnier et al., 32.2 Self-Tunable Phase-Shifted SECE Piezoelectric Energy-Harvesting IC with a 30nW MPPT Achieving 446% Energy-Bandwidth Improvement and 94% Efficiency. 2020 IEEE Int. Solid-State Circuits Conf, pp.488-90, 2020.
URL : https://hal.archives-ouvertes.fr/halshs-01513202

E. L. Pradeesh and S. Udhayakumar, Effect of placement of piezoelectric material and proof mass on the performance of piezoelectric energy harvester, Mech Syst Signal Process, vol.130, pp.664-76, 2019.

N. Tran, M. H. Ghayesh, and M. Arjomandi, Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement, Int J Eng Sci, vol.127, pp.162-85, 2018.

T. Huguet, A. Badel, O. Druet, and M. Lallart, Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness, Appl Energy, vol.226, pp.607-624, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901836

D. Ma?eika, A. ?eponis, P. Vasiljev, S. Borodinas, and B. Pliuskuvien?, Saw-tooth type piezoelectric multimodal energy harvester, Sens Actuators Phys, vol.288, pp.125-158, 2019.

W. Wu, Y. Chen, B. Lee, J. He, and Y. Peng, Tunable resonant frequency power harvesting devices, p.61690, 2006.

S. Zhao, U. Radhakrishna, S. Hanly, J. Ma, J. H. Lang et al., Co-optimization of a piezoelectric energy harvesting system for broadband operation, J Phys Conf Ser, 2019.

B. A. Seddik, G. Despesse, and E. Defay, Wideband mechanical energy harvester based on piezoelectric longitudinal mode, New Circuits Syst. Conf. NEWCAS 2012 IEEE 10th Int, pp.453-456, 2012.

B. Ahmed-seddik, G. Despesse, S. Boisseau, and E. Defay, Self-powered resonant frequency tuning for Piezoelectric Vibration Energy Harvesters, J Phys Conf Ser, vol.476, p.12069, 2013.

A. Badel and E. Lefeuvre, Wideband Piezoelectric Energy Harvester Tuned Through its Electronic Interface Circuit, J Phys Conf Ser, vol.557, p.12115, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01322280

M. Kim, M. Hoegen, J. Dugundji, and B. L. Wardle, Modeling and experimental verification of proof mass effects on vibration energy harvester performance, Smart Mater Struct, vol.19, p.45023, 2010.

Z. Yang and J. Zu, Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting, Energy Convers Manag, vol.122, pp.321-330, 2016.

X. Xiong and S. O. Oyadiji, Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation, J Intell Mater Syst Struct, vol.25, pp.1177-95, 2014.

Y. Jia and A. A. Seshia, Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting, J Microelectromechanical Syst, vol.25, pp.108-125, 2016.

Q. Wang, X. Du, B. Xu, and L. E. Cross, Electromechanical coupling and output efficiency of piezoelectric bending actuators, IEEE Trans Ultrason Ferroelectr Freq Control, vol.46, pp.638-646, 1999.

T. H. Ng and W. H. Liao, Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor, J Intell Mater Syst Struct, vol.16, pp.785-97, 2005.

S. Yu, S. He, and W. Li, Theoretical and experimental studies of beam bimorph piezoelectric power harvesters, J Mech Mater Struct, vol.5, pp.427-472, 2010.

D. Gibus, P. Gasnier, A. Morel, S. Boisseau, and A. Badel, Modelling and design of highly coupled piezoelectric energy harvesters for broadband applications, J Phys Conf Ser, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02055654

A. Lei, R. Xu, L. M. Borregaard, M. Guizzetti, O. Hansen et al., Impedance Based Characterization of a High-Coupled Screen Printed PZT Thick Film Unimorph Energy Harvester, J Microelectromechanical Syst, vol.23, pp.842-54, 2014.

V. Choudhary and K. Iniewski, MEMS: Fundamental Technology and Applications, 2017.

N. E. Dutoit, B. L. Wardle, S. Kim, . Vibration, and . Harvesters, Integr Ferroelectr, vol.71, pp.121-60, 2005.

A. Badel and E. Lefeuvre, Nonlinear Conditioning Circuits for Piezoelectric Energy Harvesters, Nonlinearity Energy Harvest. Syst. Micro-Nanoscale Appl, pp.321-59, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02042560

A. Morel, A. Badel, R. Grézaud, P. Gasnier, G. Despesse et al., Resistive and reactive loads' influences on highly coupled piezoelectric generators for wideband vibrations energy harvesting, J Intell Mater Syst Struct, vol.30, pp.386-99, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01943612

E. Lefeuvre, A. Badel, A. Brenes, S. Seok, and C. Yoo, Power and frequency bandwidth improvement of piezoelectric energy harvesting devices using phase-shifted synchronous electric charge extraction interface circuit, J Intell Mater Syst Struct, vol.28, pp.2988-95, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01901526

N. W. Hagood and W. H. Chung, Von Flotow A. Modelling of piezoelectric actuator dynamics for active structural control, J Intell Mater Syst Struct, vol.1, pp.327-354, 1990.

E. B. Tadmor and G. Kosa, Electromechanical coupling correction for piezoelectric layered beams, J Microelectromechanical Syst, vol.12, pp.899-906, 2003.

M. Kim, Materials and device design for MEMS piezoelectric mechanical vibration energy harvesters, 2012.

D. Oguamanam, Free vibration of beams with finite mass rigid tip load and flexural-torsional coupling, Int J Mech Sci, vol.45, pp.963-79, 2003.

L. J. Gong, C. L. Pan, Q. S. Pan, and Z. H. Feng, Theoretical analysis of dynamic property for piezoelectric cantilever triple-layer benders with large piezoelectric and electromechanical coupling coefficients, J Adv Dielectr, vol.06, p.1650017, 2016.

A. Erturk, P. A. Tarazaga, J. R. Farmer, and D. J. Inman, Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams, J Vib Acoust, vol.131, p.11010, 2009.

J. Ducarne, O. Thomas, and J. Deü, Placement and dimension optimization of shunted piezoelectric patches for vibration reduction, J Sound Vib, vol.331, pp.3286-303, 2012.

C. Chen, R. Zhang, Z. Wang, and W. Cao, Electromechanical coupling coefficient k31eff for arbitrary aspect ratio resonators made of [001] and [011] poled (1?x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, J Appl Phys, vol.105, p.64104, 2009.

, IEEE Standard on Piezoelectricity. ANSIIEEE Std, pp.176-1987, 1988.

, TRS Technologies, 2018.

, Noliac piezoceramic material NCE51, 2019.

J. E. Kim and Y. Y. Kim, Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio With a Distributed Tip Mass, J Vib Acoust, vol.133, p.41010, 2011.

M. Curatolo, L. Rosa, M. Prestininzi, and P. , On the validity of plane state assumptions in the bending of bimorph piezoelectric cantilevers, J Intell Mater Syst Struct, 2019.

A. Morel, R. Grézaud, G. Pillonnet, P. Gasnier, G. Despesse et al., Active AC/DC control for wideband piezoelectric energy harvesting, J Phys Conf Ser, vol.773, p.12059, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01574297

G. Tang, B. Yang, J. Liu, B. Xu, H. Zhu et al., Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film, Sens Actuators Phys, vol.205, pp.150-155, 2014.

N. A. Siddiqui, D. Kim, R. A. Overfelt, and B. C. Prorok, Electromechanical coupling effects in tapered piezoelectric bimorphs for vibration energy harvesting, Microsyst Technol, vol.23, pp.1537-51, 2017.

S. P. Beeby, R. N. Torah, M. J. Tudor, G. , P. O\textquotesingledonnell et al., A micro electromagnetic generator for vibration energy harvesting, J Micromechanics Microengineering, vol.17, pp.1257-1265, 2007.

S. Leadenham and A. Erturk, Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation, Nonlinear Dyn, vol.79, pp.1727-1770, 2015.

N. Jackson, O. Z. Olszewski, C. O'murchu, and A. Mathewson, Shock-induced aluminum nitride based MEMS energy harvester to power a leadless pacemaker, Sens Actuators Phys, vol.264, pp.212-220, 2017.

Z. Yang, S. Zhou, J. Zu, and D. Inman, High-Performance Piezoelectric Energy Harvesters and Their Applications, Joule, 2018.

S. P. Beeby, L. Wang, D. Zhu, A. S. Weddell, G. V. Merrett et al., A comparison of power output from linear and nonlinear kinetic energy harvesters using real vibration data, Smart Mater Struct, vol.22, p.75022, 2013.

M. V. Wozniak, S. C. Conlon, E. C. Smith, and K. M. Reichard, Design, Analysis, and Characterization of Single Crystal Energy Harvesters for Rotorcraft Wireless Sensor Applications, 2015.

M. Benchemoul, G. Ferin, B. Rosinski, C. Bantignies, T. Hoang et al., Wireless Inertial Sensing Platform Self-Powered by Piezoelectric Energy Harvester for Industrial Predictive Maintenance, IEEE Int. Ultrason. Symp. IUS, pp.1-4, 2018.

S. Roundy, P. K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Comput Commun, vol.26, pp.1131-1144, 2003.

E. Lefeuvre, A. Badel, C. Richard, and D. Guyomar, Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction, J Intell Mater Syst Struct, vol.16, pp.865-76, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00404199