R. Van-reis and A. Zydney, Membrane separations in biotechnology, Curr. Opin. Biotechnol, vol.12, pp.201-210, 2001.

S. M. Morti and A. L. Zydney, Protein-membrane interactions during hemodialysis: effects on solute transport, ASAIO J. Am. Soc. Artif. Intern. Organs, vol.44, pp.319-326, 1992.

O. Beek, D. Pavlenko, M. Suck, S. Helfrich, L. Bolhuis-versteeg et al., New membranes based on polyethersulfone -SlipSkin TM polymer blends with low fouling and high blood compatibility, vol.225, pp.60-73, 2019.

D. Snisarenko, D. Pavlenko, D. Stamatialis, P. Aimar, C. Causserand et al., Insight into the transport mechanism of solute removed in dialysis by a membrane with double functionality, Chem. Eng. Res. Des, vol.126, pp.97-108, 2017.

R. D. Frank, J. Weber, H. Dresbach, H. Thelen, C. Weiss et al., Role of contact system activation in hemodialyzer-induced thrombogenicity, Kidney Int, vol.60, pp.1972-1981, 2001.

S. Sun, Y. Yue, X. Huang, and D. Meng, Protein adsorption on blood-contact membranes, J. Membr. Sci, vol.222, issue.03, pp.313-315, 2003.

I. H. Huisman, P. Pr?-adanos, and A. Hern?, The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration, J. Membr. Sci, vol.179, pp.501-510, 2000.

S. P. Palecek and A. L. Zydney, Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration, Biotechnol. Prog, vol.10, pp.207-213, 1994.

H. Mo, K. G. Tay, and H. Y. Ng, Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature, J. Membr. Sci, vol.315, pp.28-35, 2008.

S. T. Kelly and A. L. Zydney, Mechanisms for BSA fouling during microfiltration, J. Membr. Sci, vol.107, p.108, 1995.

W. Rudzinski and W. Plazinski, Studies of the kinetics of solute adsorption at solid/ solution interfaces: on the possibility of distinguishing between the diffusional and the surface reaction kinetic models by studying the pseudo-first-order kinetics, J. Phys. Chem. C, vol.111, pp.15100-15110, 2007.

K. L. Jones and C. R. O'melia, Protein and humic acid adsorption onto hydrophilic membrane surfaces: effects of pH and ionic strength, J. Membr. Sci, vol.165, pp.31-46, 2000.

Y. Ho, Review of second-order models for adsorption systems, J. Hazard Mater, vol.136, pp.681-689, 2006.

V. Vadivelan and K. V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interface Sci, vol.286, pp.90-100, 2005.

S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci, vol.276, pp.47-52, 2004.

J. Simonin, On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics, Chem. Eng. J, vol.300, pp.254-263, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01311325

Y. Vitry, S. Teychen?-e, S. Charton, F. Lamadie, and B. Biscans, Investigation of a microfluidic approach to study very high nucleation rates involved in precipitation processes, Chem. Eng. Sci, vol.133, pp.54-61, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01904656

L. Nurdin, A. Venancio-marques, S. Rudiuk, M. Morel, and D. Baigl, High-throughput photocontrol of water drop generation, fusion, and mixing in a dual flow-focusing J microfluidic device, Compt. Rendus Chem, vol.19, pp.199-206, 2016.

J. Jong, R. G. Lammertink, and M. Wessling, Membranes and microfluidics: a review, Lab Chip, vol.6, pp.1125-1139, 2006.

J. C. Eijkel, J. G. Bomer, A. Van-den, and . Berg, Osmosis and pervaporation in polyimide submicron microfluidic channel structures, Appl. Phys. Lett, vol.87, p.114103, 2005.

J. Decock, M. Schlenk, and J. Salmon, In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels, Lab Chip, vol.18, pp.1075-1083, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02346508

R. Vanholder, R. De, G. Smet, A. Glorieux, U. Argil?-es et al., For the European uremic toxin work group (EUTox), review on uremic toxins: classification, concentration, and interindividual variability, vol.63, pp.1934-1943, 2003.

C. A. Portugal, J. G. Crespo, and J. C. Lima, Monitoring the structural alterations induced in ?-lactoglobulin during ultrafiltration: learning from chemical and thermal denaturation phenomena, J. Membr. Sci, vol.300, pp.211-223, 2007.

J. Belmejdoub, M. Rabiller-baudry, D. Delaunay, and G. G?-esan-guiziou, Structural modifications of globular proteins in an ultrafiltration loop as evidenced by intrinsic fluorescence and reverse-phase liquid chromatography, Separ. Purif. Technol, vol.96, pp.274-288, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01070077

J. P. Crespo, M. Trotin, D. Hough, and J. A. Howell, Use of fluorescence labelling to monitor protein fractionation by ultrafiltration under controlled permeate flux, J. Membr. Sci, vol.155, pp.309-312, 1999.

L. Benavente, C. Coetsier, A. Venault, Y. Chang, C. Causserand et al., FTIR mapping as a simple and powerful approach to study membrane coating and fouling, J. Membr. Sci, vol.520, pp.477-489, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01417896

W. R. Clark, W. L. Macias, B. A. Molitoris, and N. L. Wang, Plasma protein adsorption to highly permeable hemodialysis membranes, Kidney Int, vol.48, pp.481-488, 1995.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, vol.9, pp.671-675, 2012.

M. R. Eftink, Fluorescence techniques for studying protein structure, pp.127-205, 2006.

F. Bergstr?-om, I. Mikhalyov, P. , R. Wortmann, T. Ny et al., Dimers of Dipyrrometheneboron Difluoride (BODIPY) with light spectroscopic applications in chemistry and biology, J. Am. Chem. Soc, vol.124, pp.196-204, 2002.

N. Marm?-e, G. Habl, and J. Knemeyer, Aggregation behavior of the red-absorbing oxazine derivative MR 121: a new method for determination of pure dimer spectra, Chem. Phys. Lett, vol.408, pp.221-225, 2005.

X. Ma, R. Sun, J. Cheng, J. Liu, F. Gou et al., Fluorescence aggregation-caused quenching versus aggregation-induced emission: a visual teaching technology for undergraduate chemistry students, J. Chem. Educ, vol.93, pp.345-350, 2016.

M. Huang, R. Yu, K. Xu, S. Ye, S. Kuang et al., An arch-bridge-type fluorophore for bridging the gap between aggregation-caused quenching (ACQ) and aggregation-induced emission (AIE), Chem. Sci, vol.7, pp.4485-4491, 2016.

L. H. Greene, J. A. Grobler, V. A. Malinovskii, J. Tian, K. R. Acharya et al., Stability, activity and flexibility in ?-lactalbumin, vol.12, pp.581-587, 1999.

M. Van-audenhaege, S. Pezennec, and G. Gesan-guiziou, Ultrafiltration membrane cutoff impacts structure and functional properties of transmitted proteins: case study of the metalloprotein ?-lactalbumin, Separ. Purif. Technol, vol.114, pp.73-82, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209423

A. C. Franken, J. T. Sluys, V. Chen, and A. G. Fane, Role of protein conformation on membrane characteristics, Fifth World Filtr. Congr, 1990.

M. Meireles, P. Aimar, and V. Sanchez, Albumin denaturation during ultrafiltration: effects of operating conditions and consequences on membrane fouling, Biotechnol. Bioeng, vol.38, pp.528-534, 1991.

R. Chan and V. Chen, Protein transport, aggregation, and deposition in membrane pores, Supramol. Struct. Confin. Geom, pp.231-246, 1999.

S. T. Kelly, W. Opong, and A. L. Zydney, The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration, J. Membr. Sci, vol.80, pp.175-187, 1993.

K. J. Jim, A. G. Fane, C. J. Fell, and D. C. Joy, Fouling mechanisms of membranes during protein ultrafiltration, J. Membr. Sci, vol.68, pp.80151-80160, 1992.

P. Aimar and P. Bacchin, Slow colloidal aggregation and membrane fouling, J. Membr. Sci, vol.360, pp.70-76, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00570689

P. Bacchin, A. Marty, P. Duru, M. Meireles, and P. Aimar, Colloidal surface interactions and membrane fouling: investigations at pore scale, Adv. Colloid Interface Sci, vol.164, pp.2-11, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598749