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Abstract

Interference is an important limitation in many communication systems. It has been shown in many situations

that the popular Gaussian approximation is not adequate and interference exhibits an impulsive behavior. This

paper surveys the different statistical models proposed for such an interference, that can generally be unified

using the class of sub-exponential family of distributions, and its impact on the receiver design.

Visualizing the optimal decision boundaries allows one to show the non linear effect induced by impulsive

noise models, which explains the significant loss in receiver performance designed under the standard Gaussian

approximation. This motivates the need to develop new receivers. We propose a framework to design receivers

robust to a variety of interference types, both Gaussian and non-Gaussian. We explore three ways of thinking

about such receiver designs: a linear approach; by approximating the noise plus interference distribution; and by

mimicking the decision rule distribution directly. Except for the linear approach, the other designs are capable

of replicating the non-trivial optimal decision regions to different extents. The new detection algorithms are

evaluated via Monte Carlo simulations. We focus on four efficient architectures, including the parameter

estimations: Myriad, Normal Inverse Gaussian, p-norm and a direct estimation of the likelihood ratio function.

They exhibit good performance, close to the optimal, in a large range of situations demonstrating they may be

considered as robust decision rules in the presence of heavy tailed or impulsive interference environments.

Keywords: Interference; Impulsiveness; Robust receiver; Normal Inverse Gaussian distributions

1 Introduction
Wireless communication systems are usually designed
assuming Gaussian noise. This fundamentally impacts
many solutions that are used in transmitters and re-
ceivers. This is especially the case when it comes to
the design of the receiver decision strategy which is
typically directly derived from Gaussian assumptions.
When these assumptions are not satisfied, or the in-
terference is far from Gaussian, the receiver is signifi-
cantly sub-optimal in its performance. One frequently
encountered type of noise is designated by the term
impulsive. However, this term covers a lot of different
statistical models and each model gives rise to many
different communication strategies. In this paper, we
aim to give insight in the choices that can be made to
model the noise and design an adapted receiver. We
want this receiver to be flexible enough in order to
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exhibit performance close to the optimal in many situ-
ations, from purely Gaussian noise to highly impulsive
situations.

Impulsive noises have an important impact in many
communication settings, as can be seen in a very re-
cent literature: power-line communications[1, 2] or dig-
ital subscriber loop [3]; wireless networks and OFDM
[4, 5]; wireless sensor networks [6, 7, 8]; acoustic com-
munication [9, 10]; it is also frequently encountered in
different vehicular communications scenarios [11].

In the literature, a variety of statistical models have
been proposed for the interference, but it remains chal-
lenging to unify these frameworks and to select be-
tween the different choices for a given application. One
commonly encountered feature is that the noise can
exhibit an impulsive behaviour. This means that large
noise values can appear from time to time [12, 13].
These large samples have a dramatic impact on the
receiver which is not supposed to see such events and
fails to recover the proper data.
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In this paper, we first make a survey of interference
statistical models and receiver designs that have been
developed in the wireless communications literature
since the works from Middleton in 1977. We then pro-
pose to characterize impulsiveness in a mathematical
way according to an overarching family of models: the
subexponential family. This provides valuable insight
into general properties of impulsive interference, which
were previously proposed in seemingly unrelated stud-
ies.

We then consider the detection problem in a block
fading scenario. Each data symbol is transmitted over
wireless channels and K versions of each symbol are
received. This transmission structure can be motivated
by many different practical wireless communication
systems, for example transmission for a rake receiver
[14], a single-input-multiple-output system [15], in a
cooperative communication system involving multiple
relays [16] or in impulse radio Ultra Wide Band sys-
tems where repetitions of the transmitted symbol oc-
cur [17]. However the design rule that we propose can
also be applied when channel coding [18, 19] or CDMA
are implied which induce higher dimension problems.
However, focusing on a simple scheme allows us to bet-
ter understand the underlying phenomena in detail.

The main objective of this paper is not to introduce
new receiver designs but to explore the state of the
art of receiver design from a wide variety of literatures
in great detail with regard to their decision regions
and performance, adaptibility, robustness and flexibil-
ity under varying impulsive environments. We attempt
to explain behaviours of classes of existing receivers so
that one can better understand their properties rela-
tive to each other and make appropriate choices in a
specific context. The main contributions can be sum-
marized as:

1 We first present a review of existing works about
impulsive interference modelling and receiver de-
sign. We define three ways to design the receiver:
linear approach, approximation of the interference
PDF or approximation of the Log-Likelihood Ra-
tio (LLR).

2 We propose in Section 3.3 a definition for impul-
sive interference using the sub-exponential family.
It is important because impulsiveness in commu-
nication is widely used but rarely defined. We also
propose in Section 3.4 to visualize the effect of im-
pulsive noise on the decision regions of an optimal
receiver.

3 We propose in Section 4 design strategies for ro-
bust receivers. Some are already known (Myriad
filter [20, 21], p-norm [22]) but we are interested
by their efficiency, accuracy and robustness when

the noise characteristics change. We introduce es-
timation algorithms to ensure their adaptation ca-
pabilities. We also extend the solution we intro-
duced in [23] based on the Normal Inverse Gaus-
sian (NIG) family and propose a receiver that di-
rectly estimates the log-likelihood ratio function
[19, 24, 25].

4 We finally evaluate through simulations the ro-
bustness of several receivers when the interference
impulsiveness varies or when the noise model is
changed in the case of linear, myriad, p-norm, NIG
and LLR-based receivers. We also study the im-
pact of the length of the training sequence.

Since we do not assume that we know a priori the
interference distribution or because general models re-
sult in complicated (or non existing) analytical expres-
sions for the PDF, it is not possible to have a fully an-
alytical performance study. We consequently rely on
Monte Carlo simulations to assess the performance.
However, in the analysis we provide we do consider a
large spectrum of interference settings so that our re-
sults are general and our findings wide ranging in their
coverage. Besides our theoretical interference analysis
makes clear the reasons why a receiver design works
and when it will fail.

2 Method and organisation of the paper
The work is organised in three main steps:
• an important effort was made to understand pre-
vious works on interference and receiver and espe-
cially to understand the impact of non Gaussian
noises on the receiver design. First we did an ex-
tensive study of the state of the art on the inter-
ference models, presented in section 3.2. This al-
lowed us to identify properties of impulsive inter-
ference (sub-exponential family, section 3.3). We
then proposed a clear illustration of the effect of
non Gaussian noise on the optimal decision that
the receiver should make (section 3.4.1). Along
with a review on receiver design (section 3.4.2),
we then proposed a classification of receivers (lin-
ear, interference PDF based or LLR based);

• we then proposed relevant receiver strategies
(Myriad filter, p-norm, Normal Inverse Gaussian
and LLR approximation) and the necessary pa-
rameter estimations (section 4). If we assumed
that the channel is known (perfect channel state
information) at the receiver, on the contrary, no
information about the noise is known a priori;

• the different approaches are finally evaluated
through simulations under different interference
scenarios and compared to a linear approach and
to the optimal receiver (section 5). We showed
that the proposed receivers can adapt to a wide
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range of interference settings, but the myriad filter
that do not adapt well to a decrease in impulsive-
ness.

In the rest of the paper we use the following no-
tation: a bold letter (for instance Y, h) refers to a
vector ; if not bold (for instance s, Y, h), it refers to
a scalar. A random vector is an uppercase bold letter
(Y) when a lowercase bold letter is a specific realiza-
tion (y). PY(y|s;h) refers to the probability of the
event Y = y knowing s and h. For a continuous ran-
dom variable it will be the probability density function
denoted as fY (y). ŝ is the estimated value of s.
Y refers to the received vector, h to the channel real-

ization, K is the number of repetitions of the transmit-
ted bit, s is the transmitted information bit, I is the
interference vector ans N is the thermal noise vector.
Each of the previously mentioned vector is of dimen-
sion K × 1.

3 System model, interference modeling

and receiver review
3.1 System model

For a single transmitted symbol, the received signal
Y ∈ R

K is:

Y = sh+ I+N, (1)

where s is the unknown transmitted symbol, h ∈ R
K

is the block fading channel coefficients, I ∈ R
K is the

interference and N ∈ R
K is the thermal noise with its

elements Nk
i.i.d.∼ N (0, σ2).

The optimal receiver in terms of minimizing the Bit
Error Rate (BER) is the Maximum Likelihood (ML)
detector. It is given by the solution to the following
optimization problem:

ŝ = argmax
s∈Ω

PY(y|s;h)

= argmax
s∈Ω

K∑

k=1

logPYk
(y|s;hk), (2)

the second equality assuming independent noise sam-
ples.
Calculating (2) requires the evaluation of the mea-

sure PY (y|s;h). In a general approach, this involves
several steps: (a) specify the representation of the im-
pulsive noise I, either by its characteristic function
(CF) or distribution function (when it exists in closed
form); (b) if I is known only through its CF (like for α-
stable distributions), find its Probability Density Func-
tion (PDF) through the Fourier transform; (c) calcu-
late the PDF of the total interference Ik + Nk, via a
convolution:

fIk+Nk
(ζ) =

1

2π

∫
∞

−∞

fN (τ)

∫
∞

−∞

ϕIk (t) e−i(ζ−τ)tdtdτ,

∀k ∈ {1, . . . ,K} ; (3)

(d) conditional on the channel state information, find
the likelihood function as a function of s denoted by
PY (y|s;h) and choose s that maximizes the likelihood.

The description of these different steps serves to
highlight the difficulties one can encounter when de-
signing a receiver. Firstly, specifying the PDF of the
interference can simply be a priori impossible because
the transmission environment is not predictable. Sec-
ondly complexity can be an important issue when de-
riving the likelihood, for example with Middleton or
α-stable PDF. This challenges how one approaches re-
ceiver design.
We consider the binary case only and make the fol-

lowing assumptions:
1 The unknown transmitted symbol, s, is defined on

a discrete support Ω = {−1, 1} with equally likely
elements to be transmitted.

2 The block fading channel coefficients define a ran-
dom vector (RV) denoted by h ∈ R

K . The dis-
tribution of the coefficients depends on the con-
sidered channel model (e.g. Rayleigh, Nakagami,
Rician etc.). We assume perfect channel state in-
formation at the receiver.

3 The impulsive interference is denoted by a RV
I ∈ R

K in which all elements are assumed inde-
pendent and identically distributed (i.i.d.). This
assumption is verified in some settings [26] but is
an open discussion and can depend on the scenario
considered [27, 28]. The physical layer and signal
processing, like discussed in [29] for the passband-
to-baseband conversion, can lead to different de-
pendence structure. Treating the dependent case,
however, remains out of the scope of this paper.

4 The thermal noise at the receiver is a RV N ∈ R
K

in which all elements are assumed i.i.d. with a
Gaussian distribution, Nk

i.i.d.∼ N (0, σ2).
5 The interference is independent of the thermal

noise, i.e., I⊥N.
With these assumptions, the ML detector in (2) is
given by:

K∑

k=1

log
PYk

(y|s = 1, hk)

PYk
(y|s = −1, hk)

ŝ=1

≷
ŝ=−1

0. (4)

3.2 Standard Interference modeling

In many previous papers, it has been shown that the
interference term is not adequately modelled with a
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simple Gaussian distribution assumption. We present
here some of the key results in this regard that we
summarize in Table 1.

3.2.1 Middleton model
We can trace back some works on non Gaussian noise
to 1960 [53] and 1972 [54] about atmospheric noise.
Assuming Poisson distributed sources, the CF of the
impulsive noise can be obtained. Furthermore, appro-
priate assumptions on the transmission medium and
source waveforms allow one to obtain the interference
PDF. A similar approach based on the CF was used by
Middleton [30, 31] who obtained more general expres-
sions based on series expansions. He classified inter-
ference in two main categories depending if the noise
bandwidth is less than the useful signal (class A) or
greater (class B). Class C is a sum of class A and B.
Middleton models have been widely used in different

contexts [55, 56]. It is clear however that this popu-
lar model is challenging to work with in receiver de-
sign since the density function involves infinite sums.
Furthermore, for the class B, the alternating sign of
the series of summands make truncation challenging
to ensure the truncated representation is still a posi-
tive quantity for probability calculations. Besides, the
individual summand terms can become for large in-
dexes challenging computationally to evaluate, hence
not easily computable online in real receiver settings.
Consequently, several approximation models have been
proposed. The main approach is to consider only the
most significant terms. For instance, it is claimed in
[57] that, in many situations for the class A, two or
three terms can be sufficient to obtain a good approx-
imation leading to a Gaussian mixture [38]. Moreover,
in a different context but relevant for how interference
characterization in section 3.3, it is mentioned in [58]
that a Gaussian mixture can capture multi-modality,
asymmetry, heavy tails, which makes it an appealing
solution. The two terms case is often denoted as the
ǫ-contaminated noise, see [56]. In this case the inter-
ference PDF is P(x) = (1− p)N

(
0, σ2

)
+ pN

(
0, κσ2

)
,

where p denotes the probability to have an impulse,
distributed from a Normal with variance κσ2 while
(1−p) gives the probability to only have the Gaussian
noise with variance σ2. Usually, p is small (p = 0.01)
and κ large (κ = 50, 100). The ǫ-contaminated model
can also be expressed in the form of a Bernoulli-
Gaussian noise [34, 35]. Noise plus interference is ex-
pressed as n + bi, where n is the Gaussian noise, al-
ways present, and b a Bernoulli random variable with
parameter p = P(b = 1) representing the frequency of
impulsive noise i occurrence. Usually, i is represented
by a Gaussian random variable with a larger variance
than n.

In [41, 40, 59], the class A model is represented by a
Markov process: the noise distribution depends on the
state of the process. It reduces to the ǫ-contaminated
case when only two states are present, but with an
additional feature of time dependence structure, see
[60].
The popular Class B model can be approximated by

an α-stable distribution [31], still difficult to use in
practice but that we will introduce in section 3.2.3.

3.2.2 Empirical approaches
More recently, many works have been done concern-
ing Time Hopping Ultra Wide Band (TH-UWB) [61].
After showing that the standard Gaussian model is
not accurate [62], non Gaussian models were devel-
oped. To specify the representation of the impulsive
noise I for TH-UWB, Forouzan et al. [63] have studied
the perfect power control case, synchronized or un-
synchronized, and derived a tractable expression for
the total interference PDF. To do so, they approxi-
mated the interference generated by one user. Sabat-
tini et al. [64] have considered the CF. These works
do not solve the complexity issues and remain very
specific to the studied cases. Durisi and Benedetto
[65] have simplified the analysis, only considering the
moments to derive the error probability. However,
this does not allow an efficient receiver design. Many
works have also proposed empirical choices that allow
analytical analysis of the receiver, justified by sim-
ulations, observations of the estimated PDF and/or
gains in BER. The main solutions that have been pro-
posed include Gaussian-Laplace mixture [42], Gener-
alized Gaussian [44, 45, 46], Gaussian mixtures [39]
or Cauchy-Gaussian mixture [43]. In this last paper
it is mentioned that the heavier tail of the Gaussian
Mixture allows better performance than the Laplace
approach. Some surveys can be found in [66, 67].
All these approaches target a specific class of inter-

ference and are not supposed to be robust or adaptive
to changing interference environments. Another class
of model of direct relevance to interference modelling
is the α-stable. It has often been used in the UWB
context [68, 69, 70, 71, 66, 17]. But on the contrary to
the previously discussed approaches, it relies (when no
power control is done) on a theoretical derivation (that
can be related to a physical interpretation), closely
linked to the Middleton’s work and finding its foun-
dation in stochastic geometry [48, 49, 50].

3.2.3 Stochastic geometry and α-stable
Although the first papers were published in the
nineties [51, 72, 73], the analysis of networks has re-
cently attracted a lot of works relying on stochastic
geometry. As in Middleton’s work, interferers are as-
sumed spatially distributed according to a Poisson
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Table 1: Different interference models.
Where does the model come
from?

What are the main results? Examples, comments, simplification

Work from Middleton [30, 31] Distribution expressed as infi-
nite series

Simplification to the most significant terms: ǫ-
contaminated [32, 33], Bernoulli-Gaussian [34, 35,
36, 37], Gaussian mixtures [38, 39], Markov [40, 41]

Empirical approach based on
fitting of data and improve-
ment of the receiver

Many different distributions Laplace [42], Cauchy [17], Cauchy-Gaussian mixture
[43], Generalized Gaussian [44, 45, 46], Normal In-
verse Gaussian [23]

Based on stochastic geometry
[47, 48, 49, 50]

Distribution expressed as infi-
nite series

If no near-field effect, falls in the attraction domain
of an α-stable distribution [51, 52, 17]

field. In this context, the distribution of interference is
expressed as

I =
∑

i∈Ω

l(di).Qi (5)

where di is the distance between interferer i and the
destination and l(d) the attenuation as a function of
the distance; a classical model is lγ,ǫ(d) = d−γ1r≥ǫ, d ∈
R

+ where γ is the channel attenuation coefficient; ǫ
accounts for a minimum distance between the receiver
and the transmitter for physical reasons or due to some
MAC layer protocol like carrier sensing; Qi accom-
modates various propagation effects such as multipath
fading and shadowing as well as the physical layer of
the transmitters and the receiver; and Ω is the set of
interferers.
If applied in an ad hoc network, an unbounded re-

ceived power assumption makes the interference fall in
the attraction domain of a stable law. This unbounded
assumption means taking the limit as ǫ → 0; in that
case the received power tends to infinity when d tends
towards zero. The accuracy of the approximation has
been questioned in [74, 75], but working without the
unbounded received power assumption does not allow
an analytical derivation of the characteristic function
[50, 76]. A truncated α-stable distribution is proposed
in [77, 13] to solve the infinite variance problem.
This result can be seen as a consequence of the gen-

eralized central limit theorem [78, 79]. The main ad-
vantage of the heavy tailed stable distributions is their
ability to represent rare events. In many communica-
tion situations, these events are in fact those that will
limit the system performance. The traditional Gaus-
sian distribution ignores them leading to poor results.
The proof of this result is generally done considering

the log-CF of the total interference, see for instance
[51, 52, 17], which can be written as:

ψI (ω) = log
(
E

[
ejω

T I
])

= −δα |ω|α , (6)

where I is the total interference and T denotes the
transpose. The right term is the log-characteristic

function of a symmetric α-stable (SαS) random vari-
able with dispersion δ. Another solution for the proof,
based on the Lepage series, was proposed in [73].

This area of research is still active. Problems con-
cerning the non homogeneous position of users are
studied, for instance based on cluster point process
[80, 81] for general ad hoc networks or Poisson hole
process for cognitive radio [82]. The dependence struc-
ture of interference is also attracting many works
[83, 84, 85]: it is an important feature for the network
analysis but difficult to handle. Mahmood et al. stud-
ied the dependence structure at the baseband between
two α-stable interference sample [29, 86] and showed
that with proper sampling they could be made inde-
pendent.

If the proposed framework offers an efficient tool for
the network performance evaluation, a simple (with a
tractable expression) and accurate model is still to be
found [87]. It is probably unrealistic anyway to believe
that one simple model will be able to cover all the
possible situations. Therefore if we aim to design a
robust receiver, we need it to adapt to the context and
the changing interference environments that may be
faced over space or time.

3.3 Impusive interference modelling under the unified

family of the sub-exponential models

The previous discussions on background literature
have detailed specific examples of impulsive interfer-
ence models. Unifying these different concepts in a
general class can help communication strategies, which
are flexible and can adapt to a wide range of interfer-
ence environments. In this section we propose a gen-
eral class of mathematical models for impulsive inter-
ference which encompasses examples discussed previ-
ously: the sub-exponential family, extended to the en-
tire real line (not only R

+). In [12], interference distri-
butions are classified in superexponentially, exponen-
tially or subexponentially decaying tails to explain the
reason why a large deviation can appear in the total in-
terference: due to many small contributions or a single
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large one. Similarly, Weber et al. [88] justify the tight-
ness of a lower bound on the transmission capacity in
an ad hoc network, using the fact that a sum of iid ran-
dom variables typically achieve large values due to one
or more large summands rather than a large number
of moderate value summands; such observations are
aligned naturally with the property of distributions in
the sub-exponential class of interference models.
A way to characterize impulsive interference is via

considering probability distributions whose tails are
not exponentially bounded: that is, they have heav-
ier tails than the exponential distribution. Indeed, in
impulsive interference we can observe large values that
rarely appear. Such a behavior can be accurately rep-
resented with a so-called heavy tailed distribution. It
is useful to relate this class of distributions to the be-
haviour of the moment generating function (MGF) as
one often considers heavy tailed models as those with
non-finite mean or variance or higher order moments.
In doing so, we see that an interference distribution
which is heavy-tailed under this characterization will
have a MGF that is finite in some right neighborhood
of the origin if and only if the following bound on
the complementary cumulative distribution function
F (x) = P(X > x) holds for some positive real num-
bers M and t,

F (x) ≤M exp(−tx), ∀x > 0. (7)

Clearly, this links the moment existence directly to
the tail behaviour. Hence, one may characterize heavy
tailed distributions or processes with impulsive real-
izations either as families which have infinite mean or
variance. Or equivalently, via (7), as those distribu-
tions which have tails which fail to satisfy this bound
for some positive constant M .
For instance some of the interference models dis-

cussed in Section 3.2 (such as the Middleton or the α-
stable) can be characterized as sub-families of the sub-
exponential class on the entire real line. The knowledge
of the properties of this class of distributions will allow
us to get insight on how one can design receivers that
will be robust to a wide range of interference settings.
We denote this sub-exponential class according to

the general notation F (see the original characteriza-
tion in [89]). This family of heavy tailed distributions
has played an important role in many areas of sci-
ence such as branching phenomena for positive random
variables in [90] and insurance contexts in [91]. Here,
we introduce it as an over-arching model framework
for understanding different types of impulsive interfer-
ence models in wireless communications, where exist-
ing models previously discussed can be considered as
subfamilies in F .

The original specification of the F class of interfer-
ence distributions involved distributions F with sup-
port F : R+ 7→ [0, 1] and is given by Definition 1.

Definition 1 (Sub-exponential Impulsive Noise [92]):
The sub-exponential family of distributions defines a
class of heavy tailed severity models that satisfy the
limits

lim
x→∞

1− Fn⋆(x)

1− F (x)
= n, (8)

if and only if,

lim
x→∞

1− F 2⋆(x)

1− F (x)
= 2, (9)

where Fn⋆(x) is the n-fold convolution of distribution
F with itself.

It was shown by [93] that a distribution is a member
of this class (F ∈ F) if and only if it is long-tailed, i.e.,
it satisfies

lim
x→∞

1− F (x+ y)

1− F (x)
= 1, ∀y ∈ R

+ (10)

The extension of the family of sub-exponential dis-
tributions to the entire real-line is required for wireless
communications applications. This extension is a rela-
tively recent result, see [94, Section 3.2], therefore we
believe it will be highly informative for the wireless
communications audience to have these results briefly
brought to consideration. In particular it can be shown
that an interference model is sub-exponential on the
entire real line, denoted by F ∈ FR, if and only if it
satisfies that F ∈ F and F is long-tailed on R and
therefore satisfies (10) and finally that given indepen-
dent I ∼ G1 and N ∼ G2 with Gi = O(F (x)) as
x→ ∞ then one has the total interference in the tails
given by

P [I +N > x, I > g(x), N > g(x)] = o
(
F (x)

)
,

as x→ ∞ (11)

where g(x) is a function that satisfies that g(x) → ∞
as x→ ∞ and O(.) and o(.) are the big-Oh and little-
Oh Landau notations.
To understand how such a general characterization

of all interference models can be interpreted and be-
comes practically useful for things like receiver design,
consider the following property: consider the noise plus
interference distribution in (3) required for receiver de-
sign. The impulsive noise term I has a distribution FI



Clavier et al. Page 7 of 19

in the sub-exponential class. It can be shown that it
dominates the Gaussian thermal noise N , with distri-
bution FN , in the tails. Therefore, one can avoid to cal-
culate any complicated convolutions and instead work
with approximation of the heavy tailed interference.
Put another way, if one considers the distribution of
the maximum, for sub-exponential models one obtains

P (max {I +N} > x) = F I(x)FN (x) ∼ 2F I(x),

as x→ ∞. (12)

where ∼ denotes the asymptotic equivalence between
the distributions. The equivalent result can be ob-
tained for the minimum also, i.e., the left tail. This
property implies that the partial sum is likely to get
large when one of the random variables gets large. Im-
portantly, for receiver design such a result tells us that
asymptotically the interference distribution dominates
so that we need to design receivers flexible enough
to adapt to the interference tail behaviour, when re-
ceivers based on the Gaussian model are not produc-
ing acceptable performance in the presence of impul-
sive noise because they do not handle the tail be-
haviour characteristic; this remark is general for all
sub-exponential models.

Considering this general overarching characteriza-
tion of impulsive interference models, we can state
that a simple Gaussian approximation for the re-
ceiver design will fail to capture the tail behavior and,
consequently, will not perform efficiently in practice.
We therefore conclude that we must consider a new
paradigm for receiver design if we truly wish to have
a receiver strategy that is flexible enough to accom-
modate a variety of different impulsive noise environ-
ments and to be adaptive enough to work efficiently in
all situations.

3.4 Receiver design

When it comes to receiver design, the first observa-
tion is the poor behaviour obtained by the linear re-
ceiver, which is optimal in a Gaussian noise but highly
suboptimal in other interference settings. The second
observation is the difficulty in developing an optimal
receiver. One reason is the variety of proposed inter-
ference models: which model should I design my re-
ceiver for and how will it perform if my environment
changes? If empirical models, chosen to offer analyti-
cal solutions, are attractive, their ability to adapt to
different contexts is to be proven. Another reason is
that implementing a receiver can be complex for some
specific interference distributions, for instance with the
infinite series from Middleton’s model, stochastic ge-
ometry or the absence of closed-form α-stable PDF.

3.4.1 Impact of impulsiveness on the optimal decision
An efficient way to characterize and understand the
influence of impulsive noise is to visualize the impact of
the non linearities by representing the decision regions.
This was proposed by Saaifan and Henkel [95] for the
Middleton class A case and by Shehat et al. [96] and
by Saleh et al. [97] for the α-stable case.
We represent in Fig. 1 four different examples of

noise realizations. Then we show in Fig. 2 the deci-
sion regions that the optimal receiver must produce in
a binary case under each of the different models, i.e.,
the regions that maximize the probability of having
transmitted s when Y = (y1, y2) is received.

am
p.

-2

0

2

Gaussian α-stable

time

am
p.

-2

0

2

ǫ-contaminated

time

α-stable + Gaussian

Figure 1: Realisation examples for different noise pro-
cesses. The following parameters were used in each
case: Gaussian case (µ = 0 and σ2 = 0.2); α-stable
(α = 1.5, γ = 0.1); ǫ-contaminated case (ǫ = 0.01,
κ = 100, σ2 = 0.2); sum of Gaussian and α-stable in
a moderately impulsive case (α = 1.5, γ = 0.1 and
σ2 = 0.2 (NIR = 0)).

The Generalized Gaussian distribution, when the
shape parameter is less than 1, is sub-exponential in
nature. The Mixture of Gaussians, including the ǫ-
contaminated, are not strictly sub-exponential. How-
ever, as noted in [98] one can approximate for instance
an α-stable sub-exponential interference model to an
arbitrary accuracy over any tail probabilities, eventu-
ally with enough Gaussian mixture components. It is
in this context that we consider such models as “im-
pulsive”. The α-stable distributions belong to the sub-
exponential family.
It is well known that the optimal decision regions are

linearly separated under interference with exponential
tail decay, such as the Gaussian case shown in Fig.
2. However, the optimal decision regions under heavy
tailed sub-exponential interference produce non-linear
frontiers and disjoint regions, as seen with the α-stable
noise. We can identify two operating regions: for small
received values y1, y2, boundaries are linear. However,
when at least one value becomes larger, linear bound-
aries completely fail to recover the most likely trans-
mitted symbol. The point at which this non-linearities
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Figure 2: Optimal decision regions for the different
noise processes. We follow the framework proposed in
[97] and use the same parameters defined in Fig. 1: the
received vector Y is composed of two received samples
(two dimensions, Y = [y1 y2]), the wireless channel is
set to h = [1 1], and we consider two possible trans-
mitted values (ie. Ω = {−1, 1}). The areas in black
correspond to a decision ŝ = +1, the areas in white to
ŝ = −1.

appear is linked to the heaviness of the tail: the heavier
it is, the more reduced the linear frontiers are, since the
sub-exponential tail asymptotic is dominant sooner.
In the ǫ-contaminated case, we see that for large val-

ues, the exponential tail makes the decision boundary
become linear again. However, the impulses generated
by the rare but large variance Gaussian component in
the noise distribution create a non linear area; very
similar to the α-stable case.
Finally, in the α-stable and Gaussian mixture, the

heavy-tailed interference noise dominates the light
tailed Gaussian thermal noise in extremes and dic-
tates the extent of the non linearity in the decision
boundaries, considerably increasing the complexity of
the optimal receiver design.

3.4.2 Overview of Receiver Strategies
In the following we do not try to be exhaustive about
the existing receiver strategies but we propose to clas-
sify the different receiver design approaches into three
categories, see Table 2.

3.4.3 Linear approaches
Evaluating the LLR with a Gaussian noise assumption
results in a linear operation for detection. We primar-
ily consider this choice for its simple implementation
structure (and also as a reference), though it is known

to perform poorly in impulsive situations. Maximum
Ratio Combining maximizes the Signal to Noise Ra-
tio in Gaussian noise. Johnson [99] proposes a general
study of linear optimal receivers in non Gaussian noise
and takes the specific example of α-stable noise. This
is further studied for a rake receiver in [14, 100] and
for diversity combining schemes in a multi-antenna re-
ceiver in [101] in presence of symmetric α-stable inter-
ference. However we found that the improvement over
the standard linear approach is very limited and we
have therefore omitted the corresponding BER curves
in section 5.

3.4.4 Noise distribution approximation
Another way to solve (4) is to find a distribution that
would approximate well the true noise plus interfer-
ence PDF fI+N (.) with an analytical expression and
parameters that can be simply estimated. If I is sub-
exponential and N Gaussian, I will dominate N , at
least in the tails, so that it is important to increase
the heaviness of the tail and several ways have been
proposed to do so. Erseghe et al. used a Gaussian mix-
ture for UWB communications [102]. In [103], the ǫ-
contaminated is used to study the impact of impul-
sive noise on Parity Check Codes. The importance to
take the real noise model into account during the de-
coding is underlined. A review in the UWB case can
be found in [66]. For instance Fiorina [44] proposed a
receiver based on a generalized Gaussian distribution
approximation. Beaulieu and Niranjayan [42] consid-
ered a mixture of Laplacian and Gaussian noise. The
Cauchy model, based on a sub-exponential distribu-
tion, is proposed in [17]. Each solution is shown to
significantly improve the performance in their specific
context. We can wonder how robust they will be in
case of a model mismatch.
In this paper, we propose two receivers based on

this approach and taking into a account the sub-
exponentional nature of the impulsive noise, which
means our choices are able to capture the heaviness
characteristic of the noise distribution. The Myriad re-
ceiver [20, 104] is an improved version of the Cauchy
receiver [17] for α 6= 1 or a mixture of stable and Gaus-
sian interference; as a complement to the work started
in [23], we also propose the use of NIG distributions. It
is a flexible family of distributions that contains as lim-
iting cases both the Myriad filters and standard linear
Gaussian receiver.

Myriad Receiver This receiver is based on Cauchy
distributions, which are a special case of SαS distribu-
tions that have an explicit PDF expression with dis-
persion γ and median µ:

f1(x) =
γ

π[γ2 + (x− µ)2]
. (13)
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Table 2: Receiver strategies discussed in this paper.
Receiver Strategies

Type of receiver Examples

Linear Linear combiner [99, 14, 100, 101]

Noise distribution
approximation

Gaussian mixture [102], ǫ-contaminated [103], Generalized Gaussian [44], mixture of Laplacian
and Gaussian [42], Cauchy [17], Myriad [20, 104, 97], NIG[23]

LLR inspired Soft limiter and Hole puncher [79, 105, 72, 97, 106], p-norm [107], LLR approximation [19],
approximation of f ′

I+N (.)/fI+N (.) [108, 109, 110]

To improve the adaptability of a receiver based on
the Cauchy distribution, the myriad filters have been
discussed in [20, 104, 97]. They are based on the
Cauchy density but with a modified dispersion param-
eter κ replacing γ in (13) so that the decision rule
becomes:

K∑

k=1

log
κ2 + (yk + hk)

2

κ2 + (yk − hk)2

ŝ=1

≷
ŝ=−1

0. (14)

The so called “linearity parameter” κ was firstly used
to adapt the receiver to interference with an α-stable
distribution for α 6= 1. We discuss the estimation of κ
in section 4.2.

Normal Inverse Gaussian Receiver Family We pro-
pose the family of receivers specified by the Normal-
Inverse-Gaussian distributions (details about these
distributions are given in appendix A). We imple-
ment a Symmetric NIG receiver, presented in de-
tails in Section 4.1. The NIG distribution is denoted
fNIG(x;α, β, µ, δ). We note that extension of the re-
ceiver can easily be developed for asymmetric cases.

3.4.5 LLR inspired solutions
When noise is impulsive with a sub-exponential dis-
tribution, the optimal LLR is no longer an monotonic
increasing function but tends to reduce the weight of
large values in the decision, as shown in [19] in the case
of α-stable distributions. It means that we should not
trust large positive or negative received values, con-
trary to the decision weight that the linear receiver
would attribute. This is illustrated in Fig. 3, which
represents the LLR as a function of the received value
for the four previously described noise settings. Except
for the Gaussian noise whose LLR is a linear function,
the three other cases reaches a maximum and then
decrease and tends towards zero. Once again we no-
tice the strong resemblance between the pure α-stable
and the mixture with the Gaussian noise, curves being
nearly identical when superimposed on each other.
This idea leads to a modification of the LLR func-

tion and classical examples are the soft limiter and the
hole puncher [79, 105, 72, 97, 106]. For small received

y
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Figure 3: LLR for the different noise processes. Gaus-
sian case (µ = 0 and σ2 = 0.2); α-stable (α = 1.5,
γ = 0.1); ǫ-contaminated case (ǫ = 0.01, κ = 100,
σ2 = 0.2); sum of Gaussian and α-stable in a moder-
ately impulsive case (α = 1.5, γ = 0.1 and σ2 = 0.2
(NIR = 0)).

samples, a linear function is used and for large sam-
ples, respectively, a constant value or a zero are used
as output of the LLR function. Another approximation
is given by:

LLR(y) = sign (y)min

(
a |y| , b|y|

)
(15)

where sign(x) is the sign of x. It was proposed in [19]
for Low Density Parity Check codes. The model fits
the linear part of the LLR for small values of x and
the 1/x approximation is inspired from the limit of
the likelihood ratio for high values of x in the α-stable
case. Parameters a and b are estimated with different
methods. Good results are obtained in α-stable and
Middleton class A interferences.
Other works for weak signal detection approximate

the function f ′I+N (.)/fI+N (.) where f ′(.) is the deriva-
tive of f(.). Zozor et al. [110] for instance used a poly-
nomial approximation of the function. Spaulding and
Middleton [108, 109] proposed optimal and subopti-
mal strategies for coherent and non coherent detection
in Middleton Noises. In the coherent case, the opti-
mal detector necessitates to evaluate a ratio of infinite
sums, too complex to be implemented. A locally opti-
mum detector is proposed, using a series expansion for
small signal. It results in applying a logarithm to the
received signal followed by the linear operation.
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Another way to analyse detection is to consider that
the likelihood measures a distance between the re-
ceived signal and the possible transmitted signals. Op-
timal in Gaussian noise, the Euclidean distance is not
adapted to the impulsive case. To improve the perfor-
mance, a solution is then to modify this metric and to
use the p-norm, which is a distance measurement in
α-stable situations with p < α, see [107],

||X−Y ||α =

{
[E|X − Y |p/C(α, p)]1/p, 1 ≤ α ≤ 2,

[E|X − Y |p/C(α, p)]α/p, 0 < α < 1,

(16)

where C(α, p) = 2p+1Γ((p+1)/2)Γ(−p/α)
α
√
πΓ(−p/2)

, and Γ(.) is the

gamma function. In [111], an interference suppression
scheme for DS-CDMA systems in the presence of addi-
tive SαS interference is proposed based on the Lp-norm
instead of the standard Least Mean Square based on
the L2-norm.

This expression is of interest as it does not depend
on any estimation of distribution parameters and a
rough knowledge of α can be sufficient if the condition
0 < p < α is fulfilled. We can therefore utilize the
p-norm metric in our decision statistic as,

Λp (Y) =

K∑

k=1

(|yk + hk|p − |yk − hk|p)
ŝ=1

≷
ŝ=−1

0. (17)

We can notice that this metric would be optimal in a
Generalized Gaussian noise.

We present in Fig. 4 the proposed approximations:
p-norm, soft limiter and hole puncher and from (15).
We see that the p-norm and the solution from (15)
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min(ax,b/x)

p=0.5

p=1

p=1.5

Figure 4: Examples of approximated LLR.

offer a wider flexibility. The p-norm can also mimic
the linear case when p = 2. This aspect is confirmed
in the performance evaluation that is why we are not
going to represent the performance of the hole-puncher
nor the soft-limiter.

4 Proposed Robust Receivers
In this section we first detail the NIG receiver and the
necessary parameters’ estimation. We then propose es-
timation procedures for the parameters κ in the Myr-
iad, p in the p-norm receivers and a and b for the LLR
approximation.

4.1 Receiver based on the Normal Inverse Gaussian

Approximation

In order to develop a flexible receiver that can ac-
commodate high performance in a wide variety of
impulsive interference environments, as characterized
by the sub-exponential family, we need a receiver
which has three practical characteristics: (1) it should
have heavy tailed properties commensurate with the
sub-exponential characterization in section 3.3; (2) it
should be easy to perform online real time estimation
the receiver parameters; and (3) wide range of skew-
kurtosis property for the density. We will show be-
low that the family of distributions known as the NIG
model has these three desirable characteristics.
In particular, estimation via Method of Moments is

trivially achieved in general for NIG models if one re-
stricts to a subfamily of the NIG distributions, through
constraining on the existence of the first four cumu-
lants [112] (see appendix A, (24)-(27) for the moment
expression). The expressions for the parameters of the
NIG distribution are then given in (18).
Method of Moments Closed Form Parame-

ter Estimation for NIG Models: Given i.i.d. dis-
tributed NIG(α, β, µ, δ) random variables, the sample
mean, variance, skewness and excess kurtosis, denoted
by M̂, V̂, Ŝ and K̂ respectively can be utilized to esti-
mate the model parameters with a constraint imposed.
Assume that the following constraint applies to the kur-
tosis 3K̂ > 5 and the skewness Ŝ2 > 0, then the method
of moments estimators for the parameters are given by

α̂ = 3ρ̂1/2(ρ̂− 1)−1V̂−1/2|Ŝ|−1,

β̂ = 3(ρ̂− 1)−1V̂−1/2Ŝ−1,

µ̂ = M̂ − 3ρ̂−1V̂1/2Ŝ−1,

δ̂ = 3ρ̂−1(ρ̂− 1)1/2V̂1/2|Ŝ|−1,

(18)

where ρ̂ = 3K̂Ŝ−2 − 4 > 1.
We can further simplify these expressions for the

Symmetric case (β = µ = 0). This results in simpler
parameter estimators given by α̂ =

√
3V̂−1/2K̂−1/2

and δ̂ =
√
3V̂1/2K̂−1/2.

Remark 1 We note that special care has to be taken
due to the high order moment calculation, especially in
the illustration we take involving stable distribution for
the true impulsive interference distribution. To ensure



Clavier et al. Page 11 of 19

the validity of the obtained parameters, the training
data has to respect some restrictions. Another way is
to reduce the impact of large samples in the training
sequence by a soft thresholding method known widely
in statistics as tempering the empirical distribution of
the data before calculating the moments. This can also
be known as exponential tilting and it ensures the ap-
proximate NIG receiver model is always well defined,
see discussions in [113].

To illustrate how flexible the proposed NIG receiver
behaves in an impulsive noise environment, we plot
the decision regions as in Section 3.2, considering
the maximisation problem in (2) with the density
fNIG(x;α, 0, 0, δ) given in (22). We notice that the
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Figure 5: LLR and decision regions for the NIG re-
ceiver when α = 0.3, δ = 1 or α = 2.5, δ = 5
(β = µ = 0).

impact of impulsiveness is well taken into account and
modifying the parameters will allow to adjust the “lin-
ear part” of the receiver. We can expect that this
receiver will be able to adjust to different impulsive-
ness degrees approximating well a wide variety of sub-
exponential impulsive noise models, such as those il-
lustrated in Fig. 1.

4.2 Estimation steps for the Myriad filter

The myriad filter relies on one parameter κ. An em-

pirical estimator (κ̂α =
√

α
2−αγ

1/α) was developed in

[20] for an α-stable noise. It was further modified by
Niranjayan and Beaulieu [104] in the case of a sum of
α-stable and Gaussian noises. However, these solutions
necessitate to estimate the noise parameters which is
not trivial. Consequently we have chosen to directly
estimate κ. This can be done by maximizing the LLR

λ0 given by (we consider the case of a symmetric dis-
tribution so that µ = 0):

λ0 = log fI+N (x) =

N∑

i=1

log(fI+N (xi))

=

N∑

i=1

log

(
κ

π[κ2 + x2]

)
. (19)

where x = (x1, x2, ..., xN ) are the i.i.d thermal noise
plus interference samples (xi = Ni + Ii) which can be
obtained when the source is silent. κ can be obtained
through the derivative by solving:

dλ0
dκ

= 0 ⇔
N∑

i=1

(
κ2

x2i + κ2

)
− N

2
= 0, (20)

and κ2 is simply obtained for instance via a simple
univariate root search procedure.

4.3 Estimation steps for the p-norm
To adapt to different contexts, we propose to estimate
p using a similar framework as for estimating the shape
parameter of a generalized Gaussian distribution based
on the maximum likelihood method [114]. We use a
univariate root search procedure method to find the p
value that verifies [115]:

1+
ψ(1/p)

p
−

∑N
i=1 |xi|

p log |xi|∑N
i=1 |xi|

p
+

log( p
N

∑N
i=1 |xi|

p)

p
= 0,

(21)

where ψ(.) is the digamma function. When the esti-
mated p is larger than 2, we set it to 2.

4.4 Estimation for the LLR inspired approach.

We use the approximation given in (15). We will esti-
mate a and b based on a training sequence. We first
estimate the probability density function of the noise
using a classical kernel based approach. We then es-
timate the LLR directly by computing (4) using the
density estimate. We cannot use the estimated LLR,
ˆLLR(x), directly to make a decision because of the

numerous numerical uncertainties. So we extract from
ˆLLR(x) the two parameters a and b by considering

linear approximations for small values to get a and for
the inverse of the large values to get b. Defining what
are the small and what are the large values remains
tricky. We use the empirical rules that small values
are x < hi and large values are x > 1.5hi (where hi
is the channel attenuation). This leads to good results
if we take care of problems due to the division and to
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the log in (4). When noise is low and for short training
sequences, we can still have problems to evaluate one
of the two parameters due to missing values. In that
case we choose an empirical value that we fixed at two.
If the proposed approach shows good results, it fails

when the noise is too low giving a noise floor when bit
error rate reaches approximately 10−5. This could be
improved with more efficient estimation steps.

5 Simulation Results
An analytical evaluation of our framework is difficult
because we want to be flexible on the noise model.
Consequently we have preferred to perform extensive
simulations to compare the performance of the pro-
posed detection solutions.
The network configuration is set as follows: K = 8

repetitions are available at the destination. The chan-
nels are i.i.d. Rayleigh block fading, with a different
coefficient per repetition. We study four representative
cases, the same as presented in Fig. 1:
1 A pure Gaussian case; it is important that the

proposed receivers behave well when no impulsive
noise is present.

2 A pure α-stable noise with α = 1.5; this repre-
sents a highly impulsive situation and an interfer-
ence limited regime where the Gaussian noise is
negligible. This can be representative of Network
interference as described in [27].

3 A mixture of α-stable and Gaussian noises with
α = 1.5 and the noise to interference ratio NIR=
σ2/(2γ) = 0 dB; this represents a more complex
situation with a noise whose density has no ex-
plicit form. It is a similar situation as the previous
case but the contribution of both impulsive in-
terference and Gaussian thermal noise are signifi-
cant. The optimal receiver is based on the inverse
Fourier transform of the characteristic function.

4 ǫ-contaminated noise with ǫ = 0.01, κ = 100, re-
flecting rare but strong impulses (highly impul-
sive noise). This case is not strictly in the sub-
Gaussian family and it is interesting to see how
receivers will then behave. It is a simplification of
the Middleton model thant can be used to model
for impulsive noise caused by atmospheric man-
made partial discharge, switching effect, electro-
magnetic interference [56].

We consider four receivers: Gaussian, Myriad, sym-
metric NIG, p-norm and LLR-approximation. They
have been selected because they exhibit a good be-
haviour in the different situations.
In a first step we evaluate the performance of the es-

timation steps, before comparing the receiving strate-
gies with the BER curves. When the noise involves an
α-stable impulsive interference, the BER is measured

as a function of the inverse dispersion of the SαS distri-
butions (1/γ), since the increase of inverse dispersion
indicates the decrease of the noise strength, reflecting
the conventional signal-to-noise ratio. When the noise
is purely Gaussian or ǫ-contaminated, the SNR at the
receiver is used for the x-axis. The number of training
sequence for NIG, Myriad, p and LLR-approximation
estimations is set to 200 bits per dimension, so 1600
bits.

5.1 Estimation

Estimation performance is good, even if it is difficult
sometimes to evaluate because we do not know what
the optimal values should be. So we mainly study the
variability, given by the standard deviation, and the
evolution of the BER as a function of the training se-
quence length. We only present results for the Gaus-
sian and Stable mixture in Table 3 and similar ten-
dency are obtained for the other noises.

• p-norm receiver: the estimator converges but
tends to over estimate p when the training se-
quence is short and the estimation exhibits an
important variability, which degrades the BER.
A long training sequence is necessary to reach the
optimal performance

• Myriad receiver: the estimator of κ is certainly
the most robust one. The standard deviation of
the estimated value is very low, even for short
training sequences and the mimimum BER is
rapidly reached.

• NIG receiver: values of the parameters, as well
as the standard deviation, decrease when the
training length increases. However the lower BER
is reached for rather short training sequences (∼
100 bits) but increases with longer training se-
quences. This is due to the difficult estimation
of the higher order moments in sub-exponential
noises. Longer sequences increase the risk of re-
striction violation (see remark 1) in the estimation
process, inducing the error degradation.

• LLR-approximation: It exhibits a large vari-
ability in the estimated parameters as the training
sequence length increases. Long sequences are nec-
essary to reach low BER. However, it is the one
reaching the lowest BER. The estimation proce-
dure in that case has to be optimized.

In the following, we take a long training sequence
(1600 bits), ensuring the convergence of the algo-
rithms. Shorter sequences may modify the optimal re-
ceiver choice. The noise approximations work better
when the training sequence is short and rapidly exhibit
good performance. The LLR approximations converge
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Table 3: Estimated parameters in the mixture of Gaussian and α-stable noise (α = 1.5, γ = 0.3, σ2 = 0.6
(NIR = 0)). The value mean ± standard deviation is given for the estimated parameters. The BER is to be
multiplied by 10−3.

Myriad NIG p-norm LLR
L κ BER α γ BER p BER a b BER
40 0.412± 5.8e−2

1.7 1.1± 0.52 0.64± 0.29 1.4 1.42± 0.47 7.9 2.68± 1.3 4.1± 0.96 2.3

80 0.413± 4.2e−2
1.6 0.869± 0.48 0.560± 0.35 1.3 1.280± 0.41 6.4 3.27± 1.06 4.93± 0.80 1.6

200 0.410± 1.8e−2
1.5 0.418± 0.32 0.328± 0.14 1.4 1.05± 0.23 4.0 4.13± 0.35 6.27± 1.06 1.2

1000 0.410± 1.3e−2
1.5 0.273± 0.23 0.245± 0.14 2.3 0.99± 0.17 1.7 4.2± 0.24 7.03± 0.96 1.0

much slower but reaches better performance for long
training sequence and, as seen in Fig. 7a attains the
optimal performance.

5.2 Performance in Gaussian noise

In Fig. 5a, the linear combiner (maximum ratio com-
bining) is the optimal receiver. The p-norm receiver
reaches the same performance as the optimal one,
meaning that in that case the estimation of p works
well, always giving values close to 2, which corresponds
to the optimal receiver. The values slightly less than
two do not introduce errors and we have set to 2 esti-
mated values larger than 2.
The NIG and LLR approximation perform very close

to the optimal. Only the Myriad receiver exhibits a
slight degradation of the performance. This is natu-
rally explained because it is based on a modified ver-
sion of the Cauchy distribution (see (13) and (14)) and
the receiver has difficulties to well behave in noises
with exponential tails.

5.3 Performance in α-stable noise

In Fig. 5b, α is set to 1.5, corresponding to a rather im-
pulsive noise. All receivers perform well but the linear
receiver, which exhibits a very significant performance
degradation. This last solution is indeed badly affected
by large, but rare, values. The four other proposals (p-
norm, Myriad, NIG, LLR approximation) behave well
and very close to the optimal solution.

5.4 Performance in α-stable and Gaussian mixture

In Fig. 7a, α is set to 1.5 for network interference and
NIR is 0 dB. This case includes both a sub-exponential
type component and a more traditional thermal noise.
Once again the linear receiver can not handle large
received noise samples and its performance are signif-
icantly degraded.
The four other solutions behave well, close again

from the optimal. The LLR approximation is in this
case very close to the optimal. In the LLR, the linear
part corresponds to the Gaussian noise for small values
and the 1/x part to the tails of the distribution which
is dominated by the sub-exponential contribution.
We notice in the example that, as suggested by the

discussion about (12), the sub-exponential component

dictates the tail behaviour and it is important that the
receiver takes this into account.

5.5 Performance in ǫ-contaminated noise

Finally we consider in Fig. 7b the ǫ-contaminated en-
vironment with epsilon = 0.01 and κ = 100. This sit-
uation represents a highly impulsive noise but without
a heavy tail representation. Again, the linear receiver
sees its performance far below the optimality when the
others tend to get very close. The LLR approximation
is once again the most efficient approach when the NIG
exhibits a slight loss.

5.6 Summary

From the preceding figures, and also considering other
approaches we did not include here, we make the fol-
lowing comments:
1 Linear receivers only behave well in Gaussian

noise. When an impulsive component is present,
the degradation in comparison to receivers that
take this component into account is significantly
poorer as seen in Fig. 7a. This is especially clear
when the noise is purely sub-exponential (Fig. 5b)
but it is also true with models having exponen-
tial tails, like the ǫ-contaminated in Fig. 7b when
rare but large samples are present. This conclu-
sion would be similar, even if optimal linear re-
ceivers [99] were considered.

2 Approaches trying to approximate the noise dis-
tribution give good performance. We evaluated
two flexible families of distributions with param-
eters that can be easily and efficiently estimated:
(a) the Myriad with a single parameter to be es-
timated with a quick and efficient root search; (b)
the NIG distribution family presents both the re-
quired flexibility and an easy parameter estima-
tion procedure based on moment estimation. Both
approaches are robust and adaptive but the NIG
outperforms the myriad in Gaussian noise. For
short training sequences they are more efficient
than LLR based approaches, due to efficient esti-
mation algorithms. It would be needed to further
study the complexity issue, especially for the NIG
receiver that relies on more complex function, in-
cluding a Bessel function.
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Figure 6: BER comparison of different receivers.

3 LLR approximation based approaches have a
good potential. They have been less studied in
the literature and more work has to be done in
that direction. The intuitive approaches are the
soft limiter and the hole puncher that limits the
impact of the large values. If they improve the
performance in comparison to the linear approach
when impulsive interference is present and have
a limited impact when impulsiveness decreases,
their performance remains far from the optimal
[106] and we did not include them in our result
section. We studied two other alternatives. If they
increase the complexity, they significantly outper-
form the soft limiter. The p-norm allows either a
”close to linear” or linear behaviour when the
Gaussian noise is the main contribution to the
noise and also approaches the sharp shape of the
LLR when impulsiveness increases. A single pa-
rameter has to be estimated with a root search
numerical procedure. The LLR-approximation is
also very efficient. It is the receiver that adapts
the best to configuration mixing different distri-
butions. Especially the linear part adapt to low
noise value corresponding to the Gaussian part
and the 1/x part correspond to the tail of the
interference, dominated by the sub-exponential
component of the total noise. It is however more
complex to estimated but recent proposals allow
to address this task [25, 116].

It is important to consider the non Gaussian nature
of the noise in the receiver design. Having in mind
the sub-exponential class of distribution can give hints
for the design of a receiver, either by approaching the

noise distribution or approximating the LLR. If both
approaches tend to give close results, some research
questions are still opened. Complexity is an issue but
implementation of each solution has to be optimized.
We have shown that the receiver can be defined by a
limited set of parameters. This is especially true for
the p-norm and the myriad filter which only require a
single parameter. Besides, making assumptions on the
noise distribution allows one to rely on well-studied
algorithms for the parameter estimation, ensuring an
accurate result with a shorter training sequence.
Adaptability and robustness to different situations

are also important. For instance, if the Myriad filter
seems to be very efficient, performance is not so good
when the noise is just Gaussian. And this could hap-
pen when the activity in the network is varying with
time. LLR approximation and p-norm seem very flex-
ible and attractive but require a longer training se-
quence. However, the estimation has not been opti-
mized and further research is needed, as proposed in
[116] for instance.

6 Conclusion
Interference is a significant limiting factor in many
communication situations. Besides it is not Gaussian
distributed in many cases. A large amount of papers
have dealt with such contexts for many different physi-
cal layers and many different applications and the topic
is still very active.
We proposed in this paper a study of impulsive noise

models. We defined impulsive interference thanks to
a broad class of models, the sub-exponential family,
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Figure 7: BER comparison of different receivers.

and showed the impacts interference has on the op-

timal signal detection regions, resulting in non linear

decision boundaries, not even contiguously joined. To

design receivers, we proposed to classify the differ-

ent approaches (linear, flexible density functions, LLR-

inspired). Based on it, we evaluated the p-norm, the

NIG, the Myriad and a LLR-approximation receivers.

We included the estimation steps of the receivers and

tested them in different contexts, modifying the impact

of impulsiveness and the models for interference. The

four solutions under test outperform the traditional

linear approach. They offer simple parameter estima-

tion and robustness in environments that are impulsive

or not.

The wireless communication environment has signif-

icantly changed in the last decades. However engineers

are generally still using the Gaussian assumption for

receiver designs. This is significantly sub-optimal in

many cases. The difficult point is that the receiver

has to adapt to many different scenarios depending

on space and time and the transmission conditions are

generally unpredictable. We showed with only one or

two parameters, a robust and adaptive receiver can be

designed but it is still to be implemented in real sys-

tems and the impact of the hardware part is also to

be studied and probably adapted. Another important

issue is to model the space, time and frequency de-

pendence [27] of the interference and to link it with

the resource allocation strategy [117] to improve the

scalability and coexistence of networks.

Appendices

A NIG distribution.

The NIG distributional family is characterized by four
parameters α, β, µ and δ (the same letters as the sta-
ble family which are used in a similar manner): α is
inversely related to the heaviness of the tails, where a
small α corresponds to heavy tails that can accommo-
date outlying observations; skewness is directly con-
trolled by the parameter β, where negative (positive)
values of β result in a left (right) skew, and β = 0 is
the symmetric model; location (or translation) of the
distribution is given by the parameter µ; scale of the
distribution is given by the parameter δ. Notably, when
β = 0 and µ is arbitrary, the NIG model asymptoti-
cally approaches the Gaussian model X ∼ N

(
µ, δ

α

)

as α → ∞. Hence one could approximate the opti-
mal linear receiver when only Gaussian thermal noise
is incident on the received signal. In addition, when
α = β = 0 with µ and δ arbitrary, the NIG model ap-
proaches the Cauchy distribution. It can also approxi-
mate the skewness and kurtosis of the log-normal, Stu-
dent’s t, and gamma distributions, among others [118].

The NIG model takes its name from the fact that
it represents a normal variance-mean mixture that oc-
curs as the marginal distribution for a random vari-
able X when considering a pair of random variables
(X,Z) where Z is distributed as an inverse Gaussian

Z ∼ IG(δ,
√
α2 − β2), and X conditional on Z is

(X|Z = z) ∼ N (µ+ βz, z), see [119]. The resulting
density function is given in the following definition:
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Definition 2 (Normal Inverse Gaussian Density):
A random variable X ∼ NIG (α, β, µ, δ) is character-
ized by the density function

fNIG(x;α, β, µ, δ) =
αδ

π

exp (g(x))

h(x)
K1 (αh(x)) , (22)

where the functions g(·) and h(·) are defined as g(x) =

δ
√
α2 − β2 + β(x − µ), and h(x) = [(x − µ)2 + δ2]1/2

and K1[·] is a modified Bessel function of the second
(or third) kind with index 1. The parameters have the
constraints µ ∈ R, δ > 0, 0 ≤ |β| ≤ α.

We can study the distribution function tail be-
haviour of the NIG receiver model, showing that
indeed it satisfies the properties required for sub-
exponential models.

Property 1 Consider a NIG random variable. The
tail behaviour for the density and distribution func-
tions can be characterized asymptotically as x→ ∞ as
follows:

fNIG(x;α, β, µ, δ) ∼ |x− µ|−3/2 exp (−α|x− µ|+ β(x− µ))

P (X − µ > x) ∼ x−3/2 exp(−(α− β)x)

P (X − µ < −x) ∼ x−3/2 exp(−(α+ β)x)

These asymptotics then show that indeed the NIG
receiver model can be shown to be long-tailed and
therefore an admissible sub-family of the subexponen-
tial impulsive interference models. To see this we con-
sider the definition given in (10). We apply it to the
NIG case and see that the asymptotic of the numera-
tor for any y ∈ R

+ is given by considering for instance
the right tail asymptotic ratio

lim
x→∞

1− F (x+ y)

1− F (x)

= lim
x→∞

(x+ y)−3/2 exp(−(α− β)(x+ y))

x−3/2 exp(−(α− β)x)

= exp((β − α)y). (23)

Hence, if one sets α = β then the resulting distribution
has limit of 1 and the receiver model we propose clearly
captures the class of sub-exponential models. When
α 6= β, one gets other more general approximations
which can also be achieved in addition to heavy tailed
sub-exponential interference models, clearly demon-
strating the flexibility of the NIG receiver model we
propose.
The final characteristic is that it is easily calibrated

and can adaptively alter its characteristics to time
changing or varying ranges of impulsive interference

environment. This means that, in practice, the result-
ing receiver model is easily estimated online. The ease
of estimation arises from the fact that the NIG dis-
tributional family has sufficient statistics given by the
first four moments (mean, variance, skewness and kur-
tosis) and the ability to explicitly solve for the parame-
ters in terms of the cumulants of the distribution using
Method of Moments:

E(X) = µ+
δ
(

β
α

)

(
1−

(
β
α

)2
)1/2

, (24)

Var(X) =
δ

α

(
1−

(
β
α

)2
)3/2

, (25)

Skew(X) =
3
(

β
α

)

(δα)1/2
(
1−

(
β
α

)2
)1/4

, (26)

Kurt(X) = 3
4
(

β
α

)2

+ 1

δα

(
1−

(
β
α

)2
)1/2

. (27)

7 Declarations

7.1 Funding

The work is supported by the french ANR project ARBURST.

7.2 Acknowledgements

This work was supported by IRCICA, USR CNRS 3380, Lille, by the COST

action CA15104, IRACON.

Author details
1IMT Lille Douai, Univ. Lille, CNRS, UMR 8520 - IEMN, F-59000 Lille,

France. 2Department of Actuarial Mathematics and Statistics, Heriot-Watt

University, Edinburgh, UK. 3IMT Lille Douai, Univ. Lille, CNRS, UMR

9189 - CRIStAL, F-59000 Lille, France. 4TUM CREATE, Singapore.

References

1. Xu, Z., Yang, C., Tan, Z., Sheng, Z.: Raptor code-enabled reliable

data transmission for in-vehicle power line communication systems

with impulsive noise. IEEE Communications Letters (2017)

2. Al-Rubaye, G.A., Tsimenidis, C.C., Johnston, M.: Improved

performance of TC-OFDM-PLNC for PLCs using exact derived

impulsive noise pdfs. In: IEEE International Conference on

Communications Workshops (ICC Workshops), Paris, pp. 1271–1276

(2017)

3. Bai, T., Zhang, H., Zhang, R., Yang, L.L., Rawi, A.F.A., Zhang, J.,

Hanzo, L.: Discrete multi-tone digital subscriber loop performance in

the face of impulsive noise. IEEE Access 5, 10478–10495 (2017)

4. Epple, U., Schnell, M.: Advanced blanking nonlinearity for mitigating

impulsive interference in ofdm systems. IEEE Transactions on

Vehicular Technology 66(1), 146–158 (2017)

5. Mostafa, M.: Stability proof of iterative interference cancellation for

ofdm signals with blanking nonlinearity in impulsive noise channels.

IEEE Signal Processing Letters 24(2), 201–205 (2017)



Clavier et al. Page 17 of 19

6. Sarr, N.B., Yazbek, A.K., Boeglen, H., Cances, J.P., Vauzelle, R.,

Gagnon, F.: An impulsive noise resistant physical layer for smart grid

communications. In: IEEE International Conference on

Communications (ICC), Paris, France, pp. 1–7 (2017)

7. Landa, I., Blazquez, A., Velez, M., Arrinda, A.: Indoor measurements

of iot wireless systems interfered by impulsive noise from fluorescent

lamps. In: 11th European Conference on Antennas and Propagation

(EUCAP), Paris, pp. 2080–2083 (2017)

8. Ai, Y., ChitreCheffena, M.A.: On multi-hop decode-and-forward

cooperative relaying for industrial wireless sensor networks. Sensors

17(695) (2017)

9. Chen, P., Rong, Y., Nordholm, S., He, Z., Duncan, A.J.: Joint

channel estimation and impulsive noise mitigation in underwater

acoustic ofdm communication systems. IEEE Transactions on

Wireless Communications 16(9), 6165–6178 (2017).

doi:10.1109/TWC.2017.2720580

10. Mahmood, A., Chitre, M.: Ambient noise in warm shallow waters: A

communications perspective. IEEE Communications Magazine 55(6),

198–204 (2017)

11. Liu, S., Yang, F., Ding, W., Song, J.: Double kill:

Compressive-sensing-based narrow-band interference and impulsive

noise mitigation for vehicular communications. IEEE Transactions on

Vehicular Technology 65(7), 5099–5109 (2016)

12. Ganesh, A.J., Torrisi, G.L.: Large deviations of the interference in a

wireless communication model. IEEE Transactions on Information

Theory 54(8), 3505–3517 (2008). doi:10.1109/TIT.2008.926304

13. Egan, M., Clavier, L., de Freitas, M., Dorville, L., Gorce, J.M.,

Savard, A.: Wireless communication in dynamic interference. In: IEEE

GLOBECOM, Singapore (2017)

14. Niranjayan, S., Beaulieu, N.C.: The BER optimal linear rake receiver

for signal detection in symmetric α-stable noise. IEEE Trans.

Commun. 57(12), 3585–3588 (2009)

15. Filippou, M.C., Gesbert, D., Ropokis, G.A.: Optimal combining of

instantaneous and statistical CSI in the SIMO interference channel.

In: IEEE 77th Vehicular Technology Conference (VTC Spring), pp.

1–5 (2013)

16. Chen, J., Clavier, L., Xi, Y., Burr, A., Rolland, N., Rolland, P.A.:

Alpha-stable interference modelling and relay selection for

regenerative cooperative IR-UWB systems. In: European Wireless

Technology Conference (EuWiT) (2010)

17. Ghannudi, H.E., Clavier, L., Azzaoui, N., Septier, F., Rolland, P.-A.:

α-stable interference modeling and cauchy receiver for an IR-UWB ad

hoc network. IEEE Trans. Commun. 58, 1748–1757 (2010)

18. Gu, W., Clavier, L., Rolland, N., Rolland, P.A.: Turbo code decoding

in mai environment. In: 6th International Symposium on Turbo Codes

& Iterative Information Processing, Brest, France (2010)

19. Dimanche, V., Goupil, A., Clavier, L., Gellé, G.: On detection method
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