Impact of sequential inoculation with M. pulcherrima on wine properties and influence of the main characteristics of the must
Pauline Seguinot, Anne Julien Ortiz, C. Camarasa

To cite this version:
Pauline Seguinot, Anne Julien Ortiz, C. Camarasa. Impact of sequential inoculation with M. pulcherrima on wine properties and influence of the main characteristics of the must. 70. ASEV National Conference, Jun 2019, Napa, United States. hal-02958376

HAL Id: hal-02958376
https://hal.archives-ouvertes.fr/hal-02958376
Submitted on 7 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Over the past 50 years, the use of selected *S. cerevisiae* starters to control alcoholic fermentation has broadened, to ensure the completion of fermentation and to avoid the production of undesirable off-compounds. Non-*Saccharomyces* yeasts, naturally predominant in grape must, are rapidly outcompeted. Although these species were long viewed as spoilage yeasts, their potential for improving the sensory quality of wines is now acknowledged. They possess some specific metabolism pathways and excrete hydrolytic enzymes involved in the release of varietal aromas. Since their use is recent, their behavior during fermentation, in particular the interactions with *S. cerevisiae* in mixed culture, remain little known.

The contribution of *M. pulcherrima* in sequential inoculation with *S. cerevisiae* to wine fermentation was investigated in this study. With this aim, we analyzed the impact of the main components of grape, i.e. concentrations of sugars, nitrogen and lipids, on the production of aroma compounds (higher alcohols, acetate esters and thiols) during *M. pulcherrima* / *S. cerevisiae* sequential fermentation.

Materials and Methods

Fermentation set-up

Yeast strains - Metschnikowia pulcherrima Flavia® (MP) et Saccharomyces cerevisiae Lalvin QA23® (SC)

Inoculation - Sequential fermentation : MP at 1.10^6 cells/mL + SC at 5.10^6 cells/mL after 48 hours of fermentation

5.10^6 cells/mL in pure culture as a control.

300 mL of synthetic must (Bely et al. 1990) + thiols precursors

Thiol precursors’ concentrations:
- Cys-3MH : 100 µg/L
- G-3MH : 100 µg/L
- Cys-4MMP : 10 µg/L
- G-4MMP : 10 µg/L

250 mL of must

Samples at 90% of fermentation progress

Aroma analysis by GC-MS

Experimental design

Box-Behnken design:
- 15 fermentations with central point in triplicate
- Determination of the effects of parameters on aroma production.

Regression of ATRF by both nitrogen and lipids

Acetate esters:
- Positive effect of nitrogen
- Interaction between lipids and nitrogen:
 - positive effect of lipids with low nitrogen concentrations
 - negative effect of lipids with high nitrogen concentrations

Ethyl esters:
- Positive effect of nitrogen : already observed with *S. cerevisiae* (Torrea et al. 2011, Garde-Cerdan and Ancin-Azpilicueta, 2008)
- Negative effect of lipids

Regulation of ATRF by both nitrogen and lipids

Thiols:
- Quadratic effect of nitrogen on the release of 3MH and 4MMP
- Positive effect of nitrogen on the production of 3MHA

3MHA production using similar mechanisms than the other acetate esters

The comparison between sequential inoculation and pure cultures revealed the benefit of using *M. pulcherrima* in fermentation. Thanks to the Box-Behnken model, the impact and interaction of the parameters were assessed, showing that nitrogen was the most influencing nutrient on the sensory and organoleptic profile of wines.

These results are of great interest for the management of *M. pulcherrima* in sequential inoculation in alcoholic fermentation. They pave the way for further investigations on the metabolic and transcriptomic origins of the phenotypic specificities observed, and the interactions taking part between *M. pulcherrima* and *S. cerevisiae*.

Impact on aroma production

Higher alcohols:
- Quadratic effect of lipids
- Negative effect of sugar
- Quadratic effect of nitrogen, as for *S. cerevisiae* (Rollero et al. 2015, Mouret et al. 2014)
- Except for phenylethyl alcohol : no significant effect of nitrogen

Comparison sequential inoculation vs pure culture

Higher alcohols:
- Positive effect of nitrogen with low lipids
- Negative effect of lipids when high nitrogen concentration

Acetate esters:
- Positive effect of nitrogen when high nitrogen concentration
- Negative effect of lipids when medium or low concentrations

Ethyl esters:
- Positive effect of nitrogen

Acids:
- Positivity of the effect of nitrogen and lipids

Acknowledgments

*70th ASEV National Conference – Napa, CA
June 2019*

1. UMR SPO: INRA, Université Montpellier, Montpellier-SupAgro, 34060, Montpellier, France
2. Lallemand SAS, 31700, Blagnac, France