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Abstract12

A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of13

resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those14

sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure,15

through a rewriting system acting both on resource and MELL proof-structures.16
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1 Introduction20

Resource λ-calculus and the Taylor expansion Girard’s linear logic (LL, [15]) is a refine-21

ment of intuitionnistic and classical logic that isolates the infinitary parts of reasoning in22

two (dual) modalities: the exponentials ! and ?. They give a logical status to the operations23

of memory management such as copying and erasing: a linear proof corresponds—via Curry–24

Howard isomorphism—to a program that uses its argument linearly, i.e. exactly once, while25

an exponential proof corresponds to a program that can use its argument at will.26

The intuition that linear programs are analogous to linear functions (as studied in linear27

algebra) while exponential programs mirror a more general class of analytic functions got a28

technical incarnation in Ehrhard’s work [9, 10] on LL-based denotational semantics for the29

λ-calculus. This investigation has been then internalized in the syntax, yielding the resource30

λ-calculus [5, 11, 14]: there, copying and erasing are forbidden and replaced by the possibility31

to apply a function to a bag of resource λ-terms which specifies how many times an argument32

can be linearly passed to the function, so as to represent only bounded computations.33

The Taylor expansion associates with an ordinary λ-term a (generally infinite) set of34

resource λ-terms, recursively approximating the usual application: the Taylor expansion of35

the λ-term MN is made of resource λ-terms of the form t[u1, . . . , un], where t is a resource36

λ-term in the Taylor expansions of M , and [u1, . . . , un] is a bag of arbitrarily finitely many37

(possibly 0) resource λ-terms in the Taylor expansion of N . Roughly, the idea is to decompose38

a program into a set of purely “resource-sensitive programs”, all of them containing only39

bounded (although possibly non-linear) calls to inputs. The notion of Taylor expansion has40

many applications in the theory of the λ-calculus, e.g. in the study of linear head reduction41

[12], normalization [23, 26], Böhm trees [4, 18], λ-theories [19], intersection types [21]. More42

generally, understanding the relation between a program and its Taylor expansion renews the43

logical approach to the quantitative analysis of computation started with the inception of LL.44
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23:2 Glueability of resource proof-structures

A natural question is the inverse Taylor expansion problem: how to characterize which45

sets of resource λ-terms are contained in the Taylor expansion of a same λ-term? Ehrhard and46

Regnier [14] defined a simple coherence relation such that a finite set of resource λ-terms is47

included in the Taylor expansion of a λ-term if and only if the elements of this set are pairwise48

coherent. Coherence is crucial in many structural properties of the resource λ-calculus, such49

as in the proof that in the λ-calculus normalization and Taylor expansion commute [12, 14].50

We aim to solve the inverse Taylor expansion problem in the more general context of LL,51

being aware that for LL no coherence relation can solve the problem (see below).52

Proof-nets, proof-structures and their Taylor expansion: seeing trees behind graphs In53

the multiplicative-exponential fragment of LL (MELL), linearity and the sharp analysis of54

computations naturally lead to represent proofs in a more general graph-like syntax instead55

of a term-like or tree-like one.1 Indeed, linear negation is involutive and classical duality56

can be interpreted as the possibility of juggling between different conclusions, without a57

distinguished output. Graphs representing proofs in MELL are called proof-nets: their syntax58

is richer and more expressive than the λ-calculus. Contrary to λ-terms, proof-nets are special59

inhabitants of the wider land of proof-structures: they can be characterized, among proof-60

structures, by abstract (geometric) conditions called correctness criteria [15]. The procedure61

of cut-elimination can be applied to proof-structures, and proof-nets can also be seen as the62

proof-structures with a good behavior with respect to cut-elimination [1]. Proof-structures63

can be interpreted in denotational models and proof-nets can be characterized among them64

by semantic means [24]. It is then natural to attack problems in the general framework of65

proof-structures. In this work, correctness plays no role at all, hence we will only consider66

proof-structures and not only proof-nets. Proof-structures are a particular kind of graphs,67

whose edges are labeled by MELL formulæ and vertices by MELL connectives, and for which68

special subgraphs are highlighted, the boxes, representing the parts of the proof-structure that69

can be copied and discarded (i.e. called an unbounded number of times). A box is delimited70

from the rest of a proof-structure by exponential modalities: its border is made of one !-cell,71

its principal door, and arbitrarily many ?-cells, its auxiliary doors. Boxes are nested or disjoint72

so as to add a tree-like structure to proof-structures aside from their graph-like nature.73

As in λ-calculus, one can define [13] box-free resource proof-structures2 where !-cells make74

resources available boundedly, and the Taylor expansion of MELL proof-structures into these75

resource proof-structures, that recursively copies the content of the boxes an arbitrary number76

of times. In fact, as somehow anticipated by Boudes [3], such a Taylor expansion operation can77

be carried on any tree-like structure. This primitive, abstract, notion of Taylor expansion can78

then be pulled back to the structure of interest, as shown in [17] and put forth again here.79

The question of coherence for proof-structures The inverse Taylor expansion problem80

has a natural counterpart in the world of MELL proof-structures: given a set of resource81

proof-structures, is there a MELL proof-structure the expansion of which contains the set?82

Pagani and Tasson [22] give the following answer: it is possible to decide whether a finite set of83

resource proof-structures is a subset of the Taylor expansion of a same MELL proof-structure84

(and even possible to do it in non-deterministic polynomial time); but unlike the λ-calculus,85

the structure of the relation “being part of the Taylor expansion of a same proof-structure”86

is much more complicated than a binary (or even n-ary) coherence. Indeed, for any n > 1, it87

1 A term-like object is essentially a tree, with one output (its root) and many inputs (its other leaves).
2 Also known as differential proof-structures [6] or differential nets [13, 20, 7] or simple nets [22].
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is possible to find n+ 1 resource proof-structures such that any n of them are in the Taylor88

expansion of some MELL proof-structure, but there is no MELL proof-structure whose Taylor89

expansion has all the n+1 as elements (see our Example 21 and [25, pp. 244-246]).90

In this work, we introduce a new combinatorial criterion, glueability, for deciding whether91

a set of resource proof-structures is a subset of the Taylor expansion of some MELL proof92

structure, based on a rewriting system on sequences of MELL formulæ. Our criterion is more93

general (and, we believe, simpler) than the one of [22], which is limited to the cut-free case with94

atomic axioms and characterizes only finite sets: we do not have these limitations. We believe95

that our criterion is a useful tool for studying proof-structures. We conjecture that it can be96

used to show that, for a suitable geometric restriction, a binary coherence relation does exist97

for resource proof-structures. It might also shed light on correctness and sequentialization.98

As the proof-structures we consider are typed, an unrelated difficulty arises: a resource99

proof-structure might not be in the Taylor expansion of any MELL proof-structure, not100

because it does not respect the structure imposed by the Taylor expansion, but because101

its type is impossible.3 To this means, we enrich the MELL proof-structures’ syntax with a102

“universal” proof-structure: a special z-cell (daimon) which can have any number of outputs103

and any type, and we allow it to appear inside a box, representing information plainly missing104

(see Section 8 for more details and the way this matter is handled by Pagani and Tasson [22]).105

2 Outline and technical issues106

The rewritings The essence of our rewriting system is not located on proof-structures but107

on lists of MELL formulæ (Definition 9). In a very down-to-earth way, this rewriting system is108

generated by elementary steps akin to rules of sequent calculus read from the bottom up: it acts109

on a list of conclusions, analogous to a monolaterous right-handed sequent. These steps are110

actually more sequentialized than sequent calculus rules, as they do not allow for commutation.111

For instance, the rule corresponding to the introduction of a ⊗ on the i-th formula, is defined112

as ⊗i : (γ1, . . . , γi−1, A⊗B, γi+1, . . . , γn)→ (γ1, . . . , γi−1, A,B, γi+1, . . . , γn).113

A A⊥

ax

⊗

A⊗A⊥

⊗1
A A⊥

axThese rewrite steps then act on MELL proof-structures, coherently114

with their type, by modifying (most of the times, erasing) the cells115

directly connected to the conclusion of the proof-structure. Formally,116

this means that there is a functor qMELLz from the rewriting steps117

into the category Rel of sets and relations, associating with a list of formulæ the set of118

MELL proof-structures with these conclusions, and to a rewriting a relation implementing it119

(Definition 12). The rules deconstruct the proof-structure, starting from its conclusions. The120

rule ⊗1 acts by removing a ⊗-cell on the first conclusion, replacing it by two conclusions.121

These rules can only act on specific proof-structures, and indeed, capture a lot of their122

structure: ⊗i can be applied to a MELL proof-structure R if and only if R has a ⊗-cell in123

the conclusion i (as opposed to, say, an axiom). So, in particular, every proof-structure is124

completely characterized by any sequence rewriting it to the empty proof-structure.125

Naturality The same rules act also on sets of resource proof-structures, defining the functor126

PqDiLLz0 from the rewrite steps into the category Rel (Definition 17). When carefully127

defined, the Taylor expansion induces a natural transformation from PqDiLLz0 to qMELLz128

3 Similarly, in the λ-calculus, there is no closed λ-term of type X → Y with X 6= Y atomic, but the
resource λ-term (λf.f)[ ] can be given that type: the empty bag [ ] kills any information on the argument.

CVIT 2016



23:4 Glueability of resource proof-structures

(Theorem 18). By applying this naturality repeatedly, we get our characterization (The-129

orem 20): a set of resource proof-structures Π is a subset of the Taylor expansion of a MELL130

proof-structure iff there is a sequence rewriting Π to the singleton of the empty proof-structure.131

The naturality property is not only a mean to get our characterization, but also an132

interesting result in itself: natural transformations can often be used to express fundamental133

properties in a mathematical context. In this case, the Taylor expansion is natural with134

respect to the possibility to build a proof-structure (both MELL or resource) by adding a cell135

to its conclusions or boxing it. Said differently, naturality of the Taylor expansion roughly136

means that the rewrite rules that deconstruct a MELL proof-structure R and a set of resource137

proof-structures in the Taylor expansion of R mimic each other.138

Quasi-proof-structures and mix Our rewrite rules consume proof-structures from their139

conclusions. The rule corresponding to boxes in MELL opens a box by deleting its principal140

door (a !-cell) and its border, while for a resource proof-structure it deletes a !-cell and141

separates the different copies of the content of the box (possibly) represented by such a !-cell.142

This operation is problematic in a twofold way. In a resource proof-structure, where the143

border of boxes is not marked, it is not clear how to identify such copies. On the other side,144

in a MELL proof-structure the content of a box is not to be treated as if it was at the same145

level as what is outside of the box: it can be copied many times or erased, while what is146

outside boxes cannot, and treating the content in the same way as the outside suppresses147

this distinction, which is crucial in LL. So, we need to remember that the content of a box,148

even if it is at depth 0 (i.e. not contained in any other box) after erasing the box wrapping149

it by means of our rewrite rules, is not to be mixed with the rest of the structure at depth 0.150

π

· · ·

In order for our proof-structures to provide this information, we need to151

generalize them and consider that a proof-structure can have not just a tree of152

boxes, but a forest: this yields the notion of quasi-proof-structure (Definition 1).153

In this way, according to our rewrite rules, opening a box by deleting its principal door154

amounts to taking a box in the tree and disconnecting it from its root, creating a new tree.155

We draw this by surrounding elements having the same root with a dashed box, open from156

the bottom, remembering the phantom presence of the border of the box, below, even if it157

were erased. This allows one to open the box only when it is “alone” (see Definition 11).158

This is not merely a technical remark, as this generalization gives a status to the mix159

rule of LL: indeed, mixing two proofs amounts to taking two proofs and considering them160

one, without any other modifications. Here, it amounts to taking two proofs, each with161

its box-tree, and considering them as one by merging the roots of their trees (see the mix162

step of Definition 11). We embed this design decision up to the level of formulæ, which are163

segregated in different zones that have to be mixed before interacting (see the notion of164

partition of a finite sequence of formulas in Section 3).165

Geometric invariance and emptyness: the filled Taylor expansion The use of forests166

instead of trees for the nesting structure of boxes, where the different roots are thought of167

as the contents of long-gone boxes, has an interesting consequence in the Taylor expansion:168

indeed, an element of the Taylor expansion of a proof-structure contains an arbitrary number169

of copies of the contents of the boxes, in particular zero. If we think of the part at depth170

0 of a MELL proof-structure as inside an invisible box, its content can be deleted in some171

elements of the Taylor expansion just as any other box.4 As erasing completely conclusions172

4 The dual case, of copying the contents of a box, poses no problem in our approach.
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A A⊥ A B A B A · · · A A · · · A

X X⊥ 1 ⊥ A1 . . . Ap

ax
cut

1 ⊥
⊗

A⊗B

`
A`B

?

?A

!

!A

zp

Figure 1 Cells, with their labels and their typed inputs and outputs (ordered from left to right).

would cause the Taylor expansion not preserve the conclusions (which would lead to technical173

complications), we introduce the filled Taylor expansion (Definition 8), which contains not174

only the elements of the usual Taylor expansion, but also elements of the Taylor expansion175

where one component has been erased and replaced by a z-cell (daimon), representing a176

lack of information, apart from the number and types of the conclusions.177

Atomic axioms Our paper first focuses on the case where proof-structures are restricted to178

atomic axioms. In Section 7 we sketch how to adapt our method to the non-atomic case.179

3 Proof-structures and the Taylor expansion180

MELL formulæ and (quasi-)proof-structures Given a countably infinite set of propositional181

variables X,Y, Z, . . . , MELL formulæ are defined by the following inductive grammar:182

A,B ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A183

Linear negation is defined via De Morgan laws 1⊥ = ⊥, (A ⊗ B)⊥ = A⊥ ` B⊥ and184

(!A)⊥ = ?A, so as to be involutive, i.e. A⊥⊥ = A. Given a list Γ = (A1, . . . , Am) of MELL185

formulas, a partition of Γ is a list (Γ1, . . . ,Γn) of lists of MELL formulas such that there are186

0 = i0 < · · · < in = m with Γj = (Aij−1+1, . . . , Aij ) for all 1 6 j 6 n; such a partition of Γ187

is also denoted by (A1, . . . , Ai1 ; · · · ;Ain−1+1, . . . , Am), with lists separated by semi-colons.188

We reuse the syntax of proof-structures given in [17] and sketch here its main features.189

We suppose known definitions of graphs, rooted trees, and morphisms of these structures. In190

what follows we will speak of tails in a graph: “hanging” edges with only one vertex. This191

can be implemented either by adding special vertices or using [2]’s graphs.192

If an edge e is incoming in (resp. outgoing from) a vertex v, we say that e is a input193

(resp. output) of v. The reflexive-transitive closure of a tree τ is denoted by τ	: the operator194

(·)	 lifts to a functor from the category of trees to the category of directed graphs.195

I Definition 1. A module M is a (finite) directed graph with:196

vertices v labeled by `(v) ∈ {ax, cut,1,⊥,⊗,`, ?, !} ∪ {zp | p ∈ N}, the type of v;197

edges e labeled by a MELL formula c(e), the type of e;198

an order <M that is total on the tails of |M | and on the inputs of each vertex of type `,⊗.199

Moreover, all the vertices verify the conditions of Figure 1.5200

A quasi-proof-structure is a triple R = (|R|,F , box) where:201

|R| is a module with no input tails, called the module of R;202

F is a forest of rooted trees with no input tails, called the box-forest of R;203

box : |R| → F	 is a morphism of directed graphs, the box-function of R, which induces a204

partial bijection from the inputs of the vertices of type ! and the edges in F , and such that:205

5 Note that there are no conditions on the types of the outputs of vertices of type z (i.e. of type zp for
some p ∈ N); and the outputs of vertices of type ax must have atomic types.

CVIT 2016



23:6 Glueability of resource proof-structures

for any vertices v, v′ with an edge from v′ to v, if box(v) 6= box(v′) then `(v) ∈ {!, ?}.6206

Moreover, for any output tails e1, e2, e3 in |R| which are outputs of the vertices v1, v2, v3,207

respectively, if e1 <|R| e2 <|R| e3 then it is impossible that box(v1) = box(v3) 6= box(v2).7208

A quasi-proof-structure R = (|R|,F , box) is:209

1. MELLz if all vertices in |R| of type ! have exactly one input, and the partial bijection210

induced by box from the inputs of the vertices of type ! in |R| and the edges in F is total.211

2. MELL if it is MELLz and, for every vertex v in |R| of type z, one has box−1(box(v)) = {v}212

and box(v) is not a root of the box-forest F of R.213

3. DiLLz0 if the box-forest F of R is just a juxtaposition of roots.214

4. DiLL0 (or resource) if it is DiLLz0 and there is no vertex in |R| of type z.215

For the previous systems, a proof-structure is a quasi-proof-structure whose box-forest is a tree.216

Our MELL proof-structure (i.e. a MELL quasi-proof-structure that is also a proof-structure)217

corresponds to the usual notion of MELL proof-structure (as in [8]) except that we also allow218

the presence of a box filled only by a daimon (i.e. a vertex of type z). The empty (DiLL0 and219

MELL) proof-structure—whose module and box-forest are empty graphs—is denoted by ε.220

Given a quasi-proof-structure R = (|R|,F , box), the output tails of |R| are the conclusions221

of R. So, the pre-images of the roots of F via box partition the conclusions of R in a list of222

lists of such conclusions. The type of R is the list of lists of the types of these conclusions.223

We often identify the conclusions of R with a finite initial segment of N.224

By definition of graph morphism, two conclusions in two distinct lists in the type of a225

quasi-proof-structure R are in two distinct connected components of |R|; so, if R is not a226

proof-structure then |R| contains several connected components. Thus, R can be seen as a227

list of proof-structures, its components, one for each root in its box-forest.228

A non-root vertex v in the box-forest F induces a subgraph of F	 of all vertices above it229

and edges connecting them. The pre-image of this subgraph through box is the box of v and230

the conditions on box in Definition 1 translate the usual nesting condition for LL boxes.231

In quasi-proof-structures, we speak of cells instead of vertices, and, for a cell of type l, of232

a `-cell. A z-cell is a zp-cell for some p ∈ N. An hypothesis cell is a cell without inputs.233

I Example 2. The graph in Figure 2 is a MELL quasi-proof-structure. The colored areas234

represent the pre-images of boxes, and the dashed boxes represent the pre-images of roots.235

⊥ 1 Y Y ⊥

⊥ 1

X 1

X⊥

ax

ax

ax

!

!1

!
⊥ 1

!

!1

!
?

?⊥
?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

!

1

!

!1

! •

•

•

•

• •

Figure 2 A MELL quasi-proof-structure R, its box-forest FR (without dotted lines) and the
reflexive-transitive closure F	R of FR (with also dotted lines).

6 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?.
7 This is a technical condition that simplifies the definition of the rewrite rules in Section 4. Note that

box(v1), box(v2), box(v3) are necessarily roots in F , since box is a morphism of directed graphs.
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The Taylor expansion Proof-structures have a tree structure made explicit by their box-236

function. Following [17], the definition of the Taylor expansion uses this tree structure: first,237

we define how to “expand” a tree—and more generally a forest—via a generalization of the238

notion of thick subtree [3] (Definition 3; roughly, a thick subforest of a box-forest says the239

number of copies of each box to be taken, iteratively), we then take all the expansions of the240

tree structure of a proof-structure and we pull the approximations back to the underlying241

graphs (Definition 5), finally we forget the tree structures associated with them (Definition 6).242

I Definition 3 (thick subforest). Let τ be a forest of rooted trees. A thick subforest of τ is a243

pair (σ, h) of a forest σ of rooted trees and a graph morphism h : σ → τ whose restriction to244

the roots of σ is bijective.245

I Example 4. The following is a graphical presentation of a thick subforest (τ, h) of the246

box-forest F of the quasi-proof-structure in Figure 2, where the graph morphism h : τ → F247

is depicted chromatically (same color means same image via h).248

τ =

•

•

•

• •

• •

•

• • • • •
h−→

•

•

•

•

• •
= F

249
250

Intuitively, it means that τ is obtained from F by taking 3 copies of the blue box, 1 copy of251

the red box and 4 copies of the orange box; in the first (resp. second; third) copy of the blue252

box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.253

I Definition 5 (proto-Taylor expansion). Let R = (|R|,FR, boxR) be a quasi-proof-structure.254

The proto-Taylor expansion of R is the set T proto(R) of thick subforests of FR.255

Let t = (τt, ht) ∈ T proto(R). The t-expansion of R is the pullback (Rt, pt, pR) below,256

computed in the category of directed graphs and graph morphisms.257

Rt τ	t

|R| F	R

pt

pR h	t

boxR
258

Given a quasi-proof-structure R and t = (τt, ht) ∈ T proto(R), the directed graph Rt259

inherits labels on vertices and edges by composition with the graph morphism pR : Rt → |R|.260

Let [τt] be the forest made up of the roots of τt and ι : τt → [τt] be the graph morphism261

sending each vertex of τt to the root below it; ι	 induces by post-composition a morphism262

ht = ι	 ◦ pt : Rt → [τt]	. The triple (Rt, [τt], ht) is a DiLL0 quasi-proof-structure, and it is a263

DiLL0 proof-structure if R is a proof-structure. We can then define the Taylor expansion T (R)264

of a quasi-proof-structure R (an example of an element of a Taylor expansion is in Figure 3).265

I Definition 6 (Taylor expansion). Let R be a quasi-proof-structure. The Taylor expansion of266

R is the set of DiLL0 quasi-proof-structures T (R) = {(Rt, [τt], ht) | t = (τt, ht) ∈ T proto(R)}.267

An element (Rt, [τt], ht) of the Taylor expansion of a quasi-proof-structure R has much268

less structure than the pullback (Rt, pt, pR): the latter indeed is a DiLL0 quasi-proof-structure269

Rt coming with its projections |R| pR←− Rt
pt−→ τ	t , which establish a precise correspondence270

between cells and edges of Rt and cells and edges of R: a cell in Rt is labeled (via the271

projections) by both the cell of |R| and the branch of the box-forest of R it arose from. But272

(Rt, [τt], ht) where Rt is without its projections pt and pR loses the correspondence with R.273

CVIT 2016



23:8 Glueability of resource proof-structures

⊥ 1 ⊥ 1 ⊥ 1 Y Y ⊥

⊥ 1 1 1

X 1 1 1 1

X⊥ !1

ax

ax

ax ax ax

!

!1

!

!1

!

⊥ 1 1 1

!

!1?

?⊥

?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

1 1 1 1

!

!1

• •

Figure 3 The element of the Taylor expansion of the MELL quasi-proof-structure R in Figure 2,
obtained from the element of T proto(R) depicted in Example 4.

I Remark 7. By definition, the Taylor expansion preserves conclusions: there is a bijection ϕ274

from the conclusions of a quasi-proof-structure R to the ones in each element ρ of T (R) such275

that i and ϕ(i) have the same type; and the types of R and ρ are the same (as a list of lists).276

The filled Taylor expansion As discussed in Section 2 (p. 4), our method needs to “represent”277

the emptyness introduced by the Taylor expansion (taking 0 copies of a box) so as to preserve278

the conclusions. So, an element of the filled Taylor expansion T z(R) of a quasi-proof-structure279

R (an example is in Figure 4) is obtained from an element of T (R) where a whole component280

can be erased and replaced by a z-cell with the same conclusions (hence T (R) ⊆ T z(R)).281

I Definition 8 (filled Taylor expansion). The emptying of a DiLL0 quasi-proof-structure282

ρ = (|ρ|,F , box) relatively to some roots r1, . . . , rn of F is the same as ρ but with the283

components of r1, . . . , rn replaced by a z-cell with the same conclusions as in ρ.284

The filled Taylor expansion T z(R) of a quasi-proof-structure R is the set of all the285

emptyings of the elements of its Taylor expansion T (R).286

1 1

X⊥ X ⊗ ?⊥ ?!1 !(?Y ` Y ⊥)

z !

1 1

!

!1

• •

Figure 4 An element of the filled Taylor expansion of the MELL quasi-proof-structure in Figure 2.

4 Means of destruction: unwinding MELL quasi-proof-structures287

Our aim is to deconstruct proof-structures (be they MELLz or DiLL0) from their conclusions.288

To do that, we introduce a category of rules of deconstruction. The morphisms of this category289

are sequences of deconstructing rules, acting on lists of lists of formulæ. These morphisms290

act through functors on quasi-proof-structures, exhibiting their sequential structure.291

I Definition 9 (the category Path). Let Path be the category whose292

objects are lists Γ = (Γ1; . . . ; Γn) of lists of MELL formulæ;293

arrows are freely generated by the elementary paths in Figure 5.294

We call a path any arrow ξ : Γ→ Γ′. We write the composition of paths without symbols and295

in the diagramatic order, so, if ξ : Γ→ Γ′ and ξ′ : Γ′ → Γ′′, ξξ′ : Γ→ Γ′′.296
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(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) exci−−→ (Γ1; · · · ; Γk, c(i+1), c(i),Γ′k; · · · ; Γn)
(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) mixi−−→ (Γ1; · · · ; Γk, c(i); c(i+1),Γ′k; · · · ; Γn)

(Γ1; · · · ; Γk; c(i), c(i+1); Γk+2; · · · ; Γn) axi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; · · · ; Γn) cuti

−−→ (Γ1; · · · ; Γk, c(i), c(i+1); · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; Γk+1, c(i); Γk+2; · · · ; Γn) zi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn)
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) 1i−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = 1
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ⊥i−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ⊥

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ⊗i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A⊗B
(Γ1; · · · ; Γk, c(i); · · · ; Γn) `i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A`B

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?ci−→ (Γ1; · · · ; Γk, ?A, ?A; · · · ,Γn) with c(i) = ?A
(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?di−→ (Γ1; · · · ; Γk, A; · · · ; Γn) with c(i) = ?A

(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ?wi−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ?A
(Γ1; · · · ; ?Γk, c(i); · · · ; Γn) Boxi−−−→ (Γ1; · · · ; ?Γk, A; · · · ; Γn) with c(i) = !A

Figure 5 The generators of Path. In the source Γ = (A1, . . . , Ai1 ; · · · ;Aim−1+1, . . . , Ain ) of each
arrow, c(i) denotes the ith formula in the flattening (A1, . . . , Ai1 , . . . , Aim−1+1, . . . , Ain ) of Γ.

I Example 10. `1 `2 `3 ⊗1 ⊗3 exc1 exc2 mix2 ax1 exc2 mix2 ax1 ax1 is a path of type297 (
(X ⊗ Y ⊥) ` ((Y ⊗ Z⊥) ` (X⊥ ` Z))

)
−→ ε.298

We will tend to forget about exchanges and perform them silently (as it is customary, for299

instance, in most presentations of sequent calculi).300

The category Path acts on MELLz quasi-proof-structures, exhibiting a sequential struc-301

ture in their construction. For Γ a list of list of MELL formulæ, qMELLz(Γ) is the set of302

MELLz quasi-proof-structures of type Γ. To ease the reading of the rewrite rules acting on a303

MELLz quasi-proof-structures R, we will only draw the parts of R belonging to the relevant304

component; so, for instance, if we are interested in an ax-cell rooted in the conclusions i and305

i+1, which is the only cell in a component, we will write i i+1

ax

ignoring the rest.306

I Definition 11 (action of paths on MELL quasi-proof-structures). An elementary path a : Γ→307

Γ′ defines a relation a ⊆ qMELLz(Γ)× qMELLz(Γ′) (the action of a) as the smallest308

relation containing all the cases in Figure 6, with the following remarks:309

mix read in reverse, a quasi-proof-structure with two components is in relation with a proof-310

structure with the same module but the two roots of said components merged.311

hypothesis if a ∈ {axi,zi,1i,⊥i, ?wi}, the rules have all in common to act by deleting a cell312

without inputs that is the only cell in its component. We have drawn the axiom case in313

Figure 6c, the others vary only by their number of conclusions.314

cut read in reverse, a quasi-proof-structure with two conclusions i and i+ 1 is in relation315

with the quasi-proof-structure where these two conclusions are cut. This rule, from left to316

right, is non-deterministic (as there are many possible cuts).317

binary multiplicatives these rules delete a binary connective. We have only drawn the ⊗318

case in Figure 6e, the ` case is similar.319

contraction splits a ?-cell with h+k+2 inputs into two ?-cells with h+1 and k+1 inputs,320

respectively.321

dereliction only applies if the ?-cell (with 1 input) does not shift a level in the box-forest.322

box only applies if a box (and its frontier) is alone in its component.323

This definition of the rewrite system is extended to define a relation ξ ⊆ qMELLz(Γ)×324

qMELLz(Γ′) (the action of any path ξ : Γ→ Γ′) by composition of relations.325

CVIT 2016



23:10 Glueability of resource proof-structures

Γk i i+1 Γ′
k

exci

Γk i+1 i Γ′
k

(a) Exchange

Γk i i+1 Γ′
k

mixi

Γk i i+1 Γ′
k

(b) Mix
· · · i i+1 · · ·

ax
axi

· · · · · ·

(c) Hypothesis (ax,z,1,⊥, ?w)

Γk

cut

cuti

i+1iΓk

(d) Cut

Γk

⊗

i

⊗i

Γk i i+1

(e) Binary multiplicative (⊗,`)

Γk · · · · · ·

?

i

?ci

Γk · · ·

?

i

· · ·

?

i+1

(f) Contraction

Γk

?

i

?di

Γk i

(g) Dereliction

!

i

?

?Γk

Boxi

i

?

?Γk

(h) Box

Figure 6 Actions of elementary paths on MELLz quasi-proof-structures.

Given two MELLz quasi-proof-structures R and R′, we say that a rule a applies to R if326

there is a finite sequence of exchanges exci1 · · · excin such that R exci1 ···excina R′.327

I Definition 12 (the functor qMELLz). We define a functor qMELLz : Path→ Rel by:328

on objects: qMELLz(Γ) is the set of MELLz quasi-proof-structures of type Γ;329

on morphisms: for ξ : Γ→ Γ′, qMELLz(ξ) = ξ (see Definition 11).330

Our rewrite rules enjoy two useful properties, expressed by Propositions 13 and 15.331

I Proposition 13 (co-functionality). Let ξ : Γ→ Γ′ be a path. The relation ξ is a co-function332

on the sets of underlying graphs, that is, a function ξ
op

: qMELLz(Γ′)→ qMELLz(Γ).333

I Lemma 14 (applicability of rules). Let R be a non-empty MELLz quasi-proof-structure.334

There exists a conclusion i such that:335

either a rule in {axi,1i,⊥i,⊗i,`i, ?c i, ?d i, ?wi, cuti,zi,Boxi} applies to R;336

or R mixi R′ (where the conclusions affected by mixi are i−k, . . . , i, i+1, . . . , i+`) and337

i−k, . . . , i are all the conclusions of either a box or an hypothesis cell, and one of the338

components of R′ coincides with this cell or box (and its border).339

Proposition 13 and Lemma 14 are proven by simple inspection of the rewrite rules of Figure 6.340

I Proposition 15 (termination). Let R be a MELLz quasi-proof-structure of type Γ. There341

exists a path ξ : Γ→ ε such that R ξ ε342

To prove Proposition 15, it is enough to apply Lemma 14 and show that the size of MELLz343

quasi-proof-structures decreases for each application of the rules in Figure 6, according to344

the following definition of size. The size of a proof-structure R is the couple (p, q) where345

p is the multiset of the number of inputs of each ?-cell in R;346

q is the number of cells not labeled by z in R.347

The size of a quasi-proof-structure R is the (finite) multiset of the sizes of its components.348

Multisets are ordered as usual, couples are ordered lexicographically.349
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Γk i i+1 Γ′
k

z
mixi

{
Γk i i+1 Γ′

k

z z
}

(a) Mix

. . . i i+1 . . .

z
axi

{
. . . . . .

}
(b) Hypothesis (ax,z,1,⊥, ?w)

Γk

z
cuti

{
Γk i i+1

z
}

(c) Cut

Γk i

z ?ci

{
Γk i i+1

z
}

(d) Binary rule (⊗,`, ?c )
Γk i

z ?di

{
Γk i

z
}

(e) Dereliction

?Γk i

z
Boxi

{
?Γk i

z
}

(f) Daimoned box

?Γk i

? !
Boxi

{
?Γk i

z
}

(g) Empty box

. . .

ρn

ρ1

!

i

?

?Γk

Boxi


. . .ρj

i?

?Γk


16j6n

(h) Non-empty box (n > 0)

Figure 7 Actions of elementary paths on z-cells and on a box in qDiLLz0 .

5 Naturality of unwinding DiLLz
0 quasi-proof-structures350

For Γ a list of lists of MELL formulæ, qDiLLz0 (Γ) is the set of DiLLz0 quasi-proof-structures351

of type Γ. For any set X, its powerset is denoted by P(X).352

I Definition 16 (action of paths on DiLLz0 quasi-proof-structures). An elementary path353

a : Γ → Γ′ defines a relation a ⊆ qDiLLz0 (Γ) ×P(qDiLLz0 (Γ′)) (the action of a) by the354

rules in Figure 6 (except Figure 6h, and with all the already remarked notes) and in Figure 7.355

We extend this relation on P(qDiLLz0 (Γ))×P(qDiLLz0 (Γ′)) by the monad multiplication356

of X 7→ P(X) and define ξ (the action of any path ξ : Γ→ Γ′) by composition of relations.357

Roughly, all the rewrite rules in Figure 7—except Figure 7h—mimic the behavior of the358

corresponding rule in Figure 6 using a z-cell. Note that in Figure 7g a z-cell is created.359

The non-empty box rule in Figure 7h requires that, on the left of Boxi , ρj is not connected360

to ρj′ for j 6= j′, except for the !-cell and the ?-cells in the conclusions. Read in reverse, the361

rule associates with a non-empty finite set of DiLL0 quasi-proof-structures {ρ1, . . . , ρn} the362

merging of ρ1, . . . , ρn, that is the DiLL0 quasi-proof-structure depicted on the left of Boxi .363

I Definition 17 (the functor PqDiLLz0 ). We define a functor PqDiLLz0 : Path→ Rel by:364

on objects: for Γ a list of lists of MELL formulæ, PqDiLLz0 (Γ) = P(qDiLLz0 (Γ)), the365

set of sets of DiLLz0 proof-structures of type Γ;366

on morphisms: for ξ : Γ→ Γ′, PqDiLLz0 (ξ) = ξ (see Definition 16).367

I Theorem 18 (naturality). The filled Taylor expansion defines a natural transformation368

Tz : PqDiLLz0 ⇒qMELLz : Path→Rel by: (Π, R)∈TzΓ iff Π⊆T z(R) and the type of369

R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′), then370

R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.8371

8 The part of the statement after “moreover” is our way to control the presence of z-cells.
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In other words, the following diagram commutes for every path ξ : Γ→ Γ′.372

PqDiLLz0 (Γ) PqDiLLz0 (Γ′)

qMELLz(Γ) qMELLz(Γ′)

PqDiLLz0 (ξ)

TzΓ

qMELLz(ξ)
TzΓ′

373

It means that given Π Π′, where Π′ ⊆ T z(R′), we can simulate backwards the rewrit-374

ing to R (this is where the co-functionality of the rewriting steps expressed by Proposition 13375

comes handy); and given R R′, we can simulate the rewriting for any Π ⊆ T z(R).376

6 Glueability of DiLL0 quasi-proof-structures377

Naturality (Theorem 18) allows us to characterize the sets of DiLL0 proof-structures that are378

in the Taylor expansion of some MELL proof-structure (Theorem 20 below).379

I Definition 19 (glueability). We say that a set Π of DiLLz0 quasi-proof-structures is glueable,380

if there exists a path ξ such that Π ξ {ε}.381

I Theorem 20 (gluing criterion). Let Π be a set of DiLL0 proof-structures: Π is glueable if382

and only if Π ⊆ T (R) for some MELL proof-structure R.383

Proof. If Π ⊆ T (R) for some MELL proof-structure R, then by termination (Proposition 15)384

R ξ ε for some path ξ, and so Π ξ {ε} by naturality (Theorem 18, as T z(ε) = {ε}).385

Conversely, if Π ξ {ε} for some path ξ, then by naturality (Theorem 18, as T (ε) = {ε}386

and Π is a set of DiLL0 proof-structures) Π ⊆ T (R) for some MELL proof-structure R. J387

I Example 21. The three DiLL0 proof-structures ρ1, ρ2, ρ3 below are not glueable as a388

whole, but are glueable two by two. In fact, there is no MELL proof-structure whose Taylor389

expansion contains ρ1, ρ2, ρ3, but any pair of them is in the Taylor expansion of some MELL390

proof-structure. This is a slight variant of the example in [25, pp. 244-246].391

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

392

An example of the action of a path starting from a DiLL0 proof-structure ρ and ending in393

{ε} can be found in Figures 8 and 9. Note that it is by no means the shortest possible path.394

When replayed backwards, it induces a MELL proof-structure R such that ρ ∈ T (R).395

7 Non-atomic axioms396

From now on, we relax the definition of quasi-proof-structure (Definition 1 and Figure 1) so397

that the outputs of any ax-cell are labeled by dual MELL formulæ, not necessarily atomic. We398

can extend our results to this more general setting, with some technical complications. Indeed,399

the rewrite rule for contraction has to be modified. Consider a set of DiLL0 proof-structures400

consisting of just a singleton which is a z-cell. The contraction rule rewrites it as:401

!A⊥ !A⊥ ?A

z ?c3

{
!A⊥ !A⊥ ?A ?A

z
}

which is then in the Taylor expansion of !A⊥ !A⊥ ?A ?A

ax
ax

402

403
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ρ =
{

??⊥ !!(A⊥`A)

? ! }
Box2

{
??⊥ !(A⊥`A)

z
}

?d1

{
?⊥ !(A⊥`A)

z
}

R = A⊥ A

⊥ ⊥

ax

`
A⊥`A

!

!(A⊥ `A)

⊥ ⊥

?

?⊥

?

??⊥

!

!!(A⊥ `A)

!

Box2
A⊥ A

⊥ ⊥

ax

`
A⊥`A

⊥ ⊥

?

?⊥

!

!(A⊥`A)

!

?

??⊥

?d1
A⊥ A

⊥ ⊥

ax

`
A⊥`A

⊥ ⊥

?

?⊥

!

!(A⊥`A)

!

Box2

{
?⊥ A⊥`A

z
}

`2

{
?⊥ A⊥ A

z
}

mix1

{
?⊥ A⊥ A

z z
}

Box2
⊥ ⊥ A⊥ A

ax

`
A⊥`A

⊥ ⊥

?

?⊥

`2
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

mix1
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

Figure 8 The path Box2 ?d1 Box2 `2 mix1 ax2,3 ?c 1 ?d2 mix1 ⊥2 ?d1⊥1 witnessing that ρ ∈ T (R) (to
be continued on Figure 9).

on which no contraction rewrite rule ?c can be applied backwards, breaking the naturality.404

The failure of the naturality is actually due to the failure of Proposition 13 in the case of the405

rewrite rule ?c : ?c
op

is functional but not total.406

The solution to this conundrum lies in changing the contraction rule for DiLLz0 quasi-407

proof-structures, by explicitly adding ?-cells. Hence, the application of a contraction step ?c408

in the DiLLz0 quasi-proof-structures precludes the possibility of anything else but a ?-cell on409

the MELLz side, which allows the contraction step ?c to be applied backwards.410

In turn, this forces us to change the definition of the filled Taylor expansion into a η-filled411

Taylor expansion, which has to include elements where a z-cell (representing an empty412

component) has some of its outputs connected to ?-cells.413

I Definition 22 (η-filled Taylor expansion). The η-emptying of DiLL0 quasi-proof-structure414

ρ = (|ρ|,F , box) relatively to some roots r1, . . . , rn of F it is the same as ρ but with the415

components of r1, . . . , rn replaced by a z-cell with the same conclusions as in ρ with its416

outputs possibly connected to a ?-cell in conclusion i, if there is a ?-cell in conclusion i in R.417

The η-filled Taylor expansion T zη (R) of a quasi-proof-structure R is the set of all the418

emptyings of the elements of its Taylor expansion T (R), relatively to all components, and all419

possible choices of ?-cells conclusions of R.420

Note that the η-filled Taylor expansion contains all the elements of the filled Taylor421

expansion and some more, such as the one in Figure 10.422
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ax2,3

{
?⊥

z
}

?c1

{
?⊥ ?⊥

z
}

?d2

{
?⊥ ⊥

z
}

mix1

{
?⊥ ⊥

z z
}

ax2,3
⊥ ⊥

⊥ ⊥

?

?⊥

?c1
⊥ ⊥

⊥ ⊥

?

?⊥

?

?⊥

?d2
⊥ ⊥

⊥ ⊥

?

?⊥

mix1
⊥ ⊥

⊥ ⊥

?

?⊥

⊥2

{
?⊥

z
}

?d1

{
⊥

z
}

⊥1 { ε }

⊥2
⊥

⊥

?

?⊥

?d1
⊥

⊥
⊥1 { ε }

Figure 9 The path Box2 ?d1 Box2 `2 mix1 ax2,3 ?c 1 ?d2 mix1 ⊥2 ?d1⊥1 witnessing that ρ ∈ T (R)
(continued from Figure 8).

X⊥ X ⊗ ?⊥ !1 !(?Y ` Y ⊥) 1 1

z

?

?!1

! 1 1

!

!1

• •

Figure 10 An element of the η-filled Taylor expansion of the MELL quasi-proof-structure in Fig. 2.

Functors qMELLz and PqDiLLz0 are defined as before (Def. 12 and 17, respectively),9423

except that the image of PqDiLLz0 on the generator ?c i (Figure 7d) is changed to424

?[Γk] i

z ?ci

{
?[Γk]

z

?

i

?

i+1

}
425

426

where ?[Γk] signifies that some of the conclusions of Γk might be connected to the z-cell427

through a ?-cell . We can prove similarly our main results.428

I Theorem 23 (naturality with η). The η-filled Taylor expansion defines a natural transform-429

ation Tzη : PqDiLLz0 ⇒ qMELLz : Path→Rel by: (Π, R)∈Tzη Γ iff Π⊆T zη (R) and the430

type of R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′),431

then R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.432

I Theorem 24 (gluing criterion with η). Let Π be a set of DiLL0 proof-structures, not433

necessarily with atomic axioms: Π is glueable iff Π ⊆ T (R) for some MELL proof-structure R.434

9 Remember that now, for Γ a list of list of MELL formulæ, qMELLz(Γ) (resp. qDiLLz
0 (Γ)) is the set

of MELLz (resp. DiLLz
0 ) quasi-proof-structures of type Γ, possibly with non-atomic axioms.
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8 Conclusions and perspectives435

z-cells inside boxes Our gluing criterion (Theorem 20) solves the inverse Taylor expansion436

problem in a “asymmetric” way: we characterize the sets of DiLL0 proof-structures that are437

included in the Taylor expansion of some MELL proof-structure, but DiLL0 proof-structures438

have no occurrences of z-cells, while a MELL proof-structure possibly contains z-cells inside439

boxes (see Definition 1). Not only this asymmetry is technically inevitable, but it reflects on440

the fact that some glueable set of DiLL0 proof-structure might not contain any information441

on the content of some box (which is reified in MELL by a z-cell), or worse that, given the442

types, no content can fill that box. Think of the DiLL0 proof-structure ρ made only of a !-cell443

with no inputs and one output of type !X, where X is atomic: {ρ} is glueable but the only444

MELL proof-structure R such that {ρ} ⊆ T (R) is made of a box containing a z-cell.445

This asymmetry is also present in Pagani and Tasson’s characterization [22], even if446

not particularly emphasized: their Theorem 2 (analogous to the left-to-right part of our447

Theorem 20) assumes not only that the rewriting starting from a finite set of DiLL0 proof-448

structures terminates but also that it ends on a MELL proof-structure (without z-cells, which449

ensures that there exists a MELL proof-structure without z-cells filling all the empty boxes).450

The λ-calculus, connection and coherence Our rewriting system and glueability criterion451

should help to prove the existence of a binary coherence for elements of the Taylor expansion452

of a fragment of MELL-proof-structures, extending the one that exists for resource λ-terms.453

We can remark that the glueability criterion is actually an extension of the criterion for454

resource λ-terms: indeed, in the case of the λ-calculus, there are three rewriting steps,455

corresponding to the abstraction, the application and the variable (which can be encoded456

in our rewriting steps), and coherence is defined inductively: if a set of resource λ-terms is457

coherent, then any set of resource λ-term that rewrites to it is also coherent.458

Presented in this way, the main difference lies not in the rewriting system but in that,459

in the λ-terms’ case, the structure of any resource λ-term determines the rewriting path,460

while, for DiLL0 proof-structures, we have to quantify existentially over all possible paths.461

This can not be avoided and is a consequence of the fact that proof-structures do not have a462

tree-structure, contrary to λ-terms.463

Moreover, it is possible to match and mix different sequences of rewritings. Indeed,464

consider three DiLL0 proof-structures pairwise glueable. Proving that they are glueable as a465

whole amounts to computing a rewriting path from the rewriting paths witnessing the three466

glueabilities. Our paths were designed with that mixing-and-matching operation in mind, in467

the particular case where the boxes are connected. This is reminiscent of [16], where we also468

showed that a certain property enjoyed by the λ-calculus can be extended to proof-structures,469

provided they are connected inside boxes. We leave that work to a subsequent article.470

Functoriality and naturality Our functorial point of view on proof-structures can unify471

many results. Let us cite two:472

a sequent calculus proof of ` Γ can be translated into a path from the empty sequence473

into Γ. This could be the starting point for the formulation of a new correctness criterion;474

the category Path can be extended with higher structure, allowing to represent cut-475

elimination. The functors qMELLz and PqDiLLz0 can also be extended to such higher476

functors, proving the commutation of cut-elimination and the Taylor expansion.477
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