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Abstract

This paper introduces topology finding of patterns for shell structures such as beam grids for gridshells or
voussoir tessellations for vaults, among others. The authors refer to topology finding, by analogy and in
complement to form finding, as the design of the connectivity of these patterns in order to follow architectural,
structural and construction requirements. This paper presents a computational approach relying on a
specific design space and data structures based on singularity meshes, which encode the information about
the singularities in patterns. The designed patterns are structured, i.e. with a low number of singularities,
can include high-valency pole points, and respect alignment to surfaces, curves and points. A feature-
based exploration approach is introduced with a generation procedure for singularity meshes following the
boundaries of a surface as well as point and curve features, using a topological skeleton or medial axis.
These features can stem from statics heuristics, whose efficiency is assessed in a case study. A rule-based
editing approach for singularity meshes supplements feature-based topology finding, using a grammar of
strip rules as parameters to further explore the singularity design space. This conceptual design approach
and its algorithms are an aid for topological exploration of patterns for shell-like structures by architects
and engineers.

Keywords: conceptual design, structural design, shell structures, patterns, meshes, topology, singularity,
topological skeleton, grammar.

1. Introduction 1.2. Designing patterns

1.1. Context Design strategies tackle the topology and geom-
etry of patterns for shell-like structures in different
Shell structures span efficiently large areas manners.
thanks to their double curvature that provides ge-
ometrical stiffness. These structures are discretised
in a pattern, which integrates the load-bearing and
the cladding systems to be fabricated and assem-
bled. Beam networks for gridshells, voussoir tes-

sellations for vaults, cable layouts for cable nets

1.2.1. Form finding

Form finding explores the geometry of a pat-
tern to achieve diverse criteria, using strategies such

and beam networks for nexorades are such exam-
ples of patterns for shells, as shown in Figure 1.
The topology and geometry of these patterns in-
fluence and are influenced by many project aspects
such as aesthetics, statics, fabrication, assembly, as
well as sustainability and cost.
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as force-based methods (Force Density Method [5],
Dynamic Relaxation [6], Thrust Network Analy-
sis [7], Update Reference Strategy [8], etc.) and
fabrication-based methods (Scale-Trans Surfaces
[9], Marionette Meshes [10], etc.). However, the
pattern has a predefined topology, which constrains
the form-found geometries to the same geometrical
design space, which heavily depends on the expe-
rience of the designer with regard to the choice of
topology.
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(a) Beam grid of the Ephemeral Cathedral in
Créteil, France [1] (Photo credits: thinkshell.fr)
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(c) Cable layout of the prototype for the NEST
HiLo roof in Diibendorf, Switzerland [3]
(Photo credits: Naida Iljazovic)

(b) Voussoir tessellation of the Armadillo Vault in

Venice, Italy [2] (Photo credits: Iwan Baan)

[

(d) Beam network of a shell-nexorade hybrid at
Ecole des Ponts, Champs-sur-Marne, France [4]
(Photo credits: Romain Mesnil)

Figure 1: Examples of patterns for shell-like structures.

1.2.2. Form optimisation

Form optimisation of the shape of the shell can
be performed on the coordinates of the vertices of
a surface or a mesh with a predefined topology [11,
12].

1.2.3. Field integration

Some design strategies generate the topology of
the pattern as well. More specifically, vector- or
cross-field integration methods generate the geom-
etry as well as the topology of the pattern, whose
singularities correspond to the ones of the field.
These integration procedures can be applied to the
principal stress directions for mechanical efficiency
[13, 14] or to the principal curvature directions for
fabrication properties [15].

1.2.4. Topology optimisation

Topology optimisation generates both the ge-
ometry and the topology of the pattern [16]. The
resulting designs are highly optimised regarding
mechanics but not necessarily feasible regarding
construction considerations, as discussed by Bor-
gart [17].

Although the last approaches do not consti-
tute exploration strategies for the designer, such
methods can be used as a collaboration means
between architects and engineers for integrated
design [18].

1.8. Research statement

In practice, architects and engineers resort to
heuristics to draw a topology for a pattern, in a
tedious project-specific procedure without automa-
tion process [19]. Although common practice in
other industries like computer graphics, topological
mesh modelling is not well spread in architecture,
engineering and construction, and existing methods
are not designed for this specific domain. Yet, the
topology of a pattern matters because it sets the
bounds of the available geometrical design space,
within the more general design space. This geomet-
rical space, which represents all the possible geome-
tries for a given topology, may not contain efficient
or even feasible designs. For this reason, design-
ers need conceptual and practical tools for topology
finding to deepen the design space, to allow them



to efficiently explore the topology of patterns for
structural design at the early stages of the project,
as already investigated for other architectural and
structural concepts [20, 21, 22]. Topology finding
empowers the existing geometrical design and opti-
misation algorithms to achieve efficient structures.

1.4. Contributions

This paper introduces topology finding of pat-
terns for shell-like structures. A focus is set on the
singularities in structured quad-based patterns,
via the exploration of singularity meshes, which
encode the information about the singularities in
the pattern, including high-valency pole points.
The presented algorithms allow to generate pat-
terns that are structured, i.e. with a small number
of singularities, justified by the implications of
designing unstructured patterns on aesthetics,
statics and construction [23]. Furthermore, they
are aligned with features like surface boundaries,
points and curves, which can stem from different
aspects, like a column or a fold to integrate in the
pattern in order to follow statics-aware heuristics.

Section 2 defines the approach with the de-
sign space and data structures for the exploration
of singularity meshes. Section 3 develops feature-
based topology finding with a skeleton-based
generation procedure for singularity meshes via
the shape’s topological skeleton. The integration
of point and curve features is validated as statics-
aware heuristics in a case study. Section 4 presents
a rule-based editing strategy for singularity
meshes using a strip grammar to explore differ-
ent topologies that still include the desired features.

This research is implemented in compas_pattern
[24] as a Python package of COMPAS [25], an
open-source Python-based computational frame-
work for collaboration and research in architecture,
engineering and digital fabrication.

2. Approach

This section shows how the design spaces and the
related data are structured to tackle the design of
patterns with a focus on their singularities.

2.1. Design space structure

The design spaces related to patterns can be
structured as in Figure 2, with the ones related to

topology (the singularities, the density and the gen-
eral connectivity of the pattern) upstream from the
one related to geometry.

1. The pattern singularity space encodes the data
related to the singularities of the pattern
with singularity meshes in the form of coarse
pseudo-quad meshes (see Sections 2.2 and 2.3.1

);

2. The pattern density space encodes the data re-
lated to the density of the pattern in the form
of quad meshes, with optional pseudo-quads
for poles. It is based on the selected singu-
larity mesh and setting the density parameters
per quad face strip (see Section 2.3.2);

3. The pattern connectivity space encodes the
data related to the general connectivity of the
pattern in the form of general meshes. It is
based on the selected density mesh and defin-
ing global and/or local topological modifica-
tions (see Section 2.3.3);

4. The pattern geometry space encodes the data
related to the geometry of the pattern in the
form of general meshes as well. It is based
on the selected connectivity mesh and modify-
ing the coordinates of the vertices (see Section
2.3.4).

With this hierarchy, the singularity design pace is
the most upstream, therefore, the most influential
one, as it sets the limits of the downstream design
spaces.

The pattern data structure needed to explore these
design spaces is detailed in the next section.

2.2. Data structure

The data structure used to explore the topol-
ogy of a pattern relies on the singularity mesh as a
coarse pseudo-quad mesh, a specific type of mesh,
as shown in Figure 3:

1. Meshes can be defined with a list of vertices
as point coordinates for geometry, and a list
of faces as lists of vertex keys for topology,
from which a more efficient half-edge mesh
data structure can be computed [26], as im-
plemented in COMPAS;

2. Quad meshes are meshes in which all faces
are quads, as lists of exactly four vertex keys,
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Figure 2: Design space structure of a pattern’s singularities, density, connectivity and geometry, where each design space is
defined by the design choices in the upstream spaces.

coarse quad mesh

mesh quad mesh

pseudo-quad mesh

Figure 3: From the data structure of general meshes to the one of coarse pseudo-quad meshes for singularity meshes. Meshes
are represented in black and their densified meshes in grey, boundaries in red, strips in blue, density parameters in capital
letters and poles as filled dots.

which allows definition of quad face strips as
lists of edges that are facing each other across
the quad faces;

. Coarse quad meshes are quad meshes with a
density parameter defined for each strip for
densification into a child quad mesh, whose

a double vertex at the location of the pole en-
coded as a list of face vertices in the type [a,
b, ¢, ¢] instead of [a, b, ¢, d];

. Coarse pseudo-quad meshes are the combina-

tion of coarse quad meshes and pseudo-quad
meshes.

vertex, face and edge elements inherit the at-
tributes of the parent elements, such as to
which strip in the coarse quad mesh corre-
sponds a poly-edge in the quad mesh;

The coarse pseudo-quad mesh of the singularity
mesh defines the relationship between the singular-
ities and the poles of the pattern. The strip density
parameters define the pseudo-quad mesh of the
density mesh. Applying topological modifications
result in the general mesh of the connectivity
mesh, whose vertices can be moved to explore the

4. Pseudo-quad meshes are quad meshes with
some pseudo-quad faces that are geometrically
like triangles but topologically like quads, with



geometry of the pattern.

This approach relates to mesh modelling en-
vironments with their low-poly meshes and
subdivision algorithms, which got into structural
design for their lightness compared to directly
modelling a dense mesh [27, 28, 29].

The next section provides specific details for
the exploration of the different design spaces.

2.83. Design spaces

Different parameters and constraints control the
exploration of the different design spaces.

2.8.1. Singularity design space

Approaches to explore the singularity design
space are presented in Sections 3 and 4. The spe-
cific complexity of the singularity space is discussed.

The surfaces representing the shell-like struc-
tures in Figure 1 are classified as compact
two-manifolds [30], which permits to topologically
characterise their mesh representations by their
Euler’s characteristic X, computed as:

X=V-E+F, (1)

where V' is the number of vertices, F the number
of edges and F' the number of faces of the mesh.
The Euler’s characteristic of such surfaces is actu-
ally independent from its mesh representation and
can be directly computed as:

X=2-29—N, (2)

where g is the number of handles — or genus —
and N the number of boundaries, in the case of an
orientable surface. The Euler’s characteristic sets a
constraint on the choice of singularities in the mesh
via the Poincaré-Hopf theorem:

X = iy, (3)

veV

where V' is the set of all the vertices and i, the
index of a vertex v. The index of a singularity re-
lates to the deviation it induces in the orientation

of the faces: )
fy = — do, 4
=5 (4)

v

where df is the signed anticlockwise angular de-
viation of the quad faces during an anticlockwise

loop around the vertex v, as illustrated in Figure 4
for two negative singularities.

(b) —1/4-index boundary
singularity

(a) —1/2-index
singularity

Figure 4: Computing vertex indices in a quad mesh with
the direction deviation (in red) during a loop (in orange
)around the vertex.

(c) 0-index partial pole

(d) +1/2-index partial
pole

Figure 5: Computing indices of poles and partial poles in
pseudo-quad meshes.

These vertex indices can be directly computed in
quad meshes from the valency n,,:

. o — Ny
vy = 4 s (5)
where ng is the regular valency, equal to 4 and
3 for a non-boundary and a boundary vertex,
respectively.

In pseudo-quad meshes, the index of non-boundary
and boundary poles are independent of their
valency and are equal to 1 and 1/2, respectively,
as shown in Figures 5a and 5b. The index of a
partial pole in a quad mesh, which is adjacent to
both pseudo-quads and quads, is computed as a
non-pole vertex using Equation 5 after collapsing



the pseudo-quads, as in Figures 5¢ and 5d.

While applying topological modifications to a
mesh, the Poincaré-Hopf theorem still applies and
can be differentiated as:

0= iv= Y i+ 3 din (6)

veVy veV_ veV*

where V. is the set of added vertices, V_ the set
of deleted vertices, V* the set of modified vertices
and Ai, is the variation of the index.

The singularity design space of coarse pseudo-quad
meshes is rich, even restricted to a shape with a
given Euler’s characteristic, but complex: topo-
logical modifications applied to the singularities
have to be considered globally because of the
relation between them, on the contrary to local
modifications of a vertex coordinates. Therefore,
this design space necessitates specific exploration
approaches.

Nevertheless, thinking in terms of singularity
indices directly informs the designer what topo-
logical modifications are possible according to the
differential Poincaré-Hopf theorem in Equation 6.
For instance, a 6-valent singularity of index —1/2
and a 3-valent singularity of index +1/4 can be
merged in a 5-valent singularity of index —1/4,
because the sum of the indices is preserved.

2.3.2. Density design space

The strips of quad faces are the key structure in
quad meshes, as used in some modelling approaches
[31, 32]. As illustrated in Figure 6, the correspond-
ing strip data is collected as lists of edges as follows:

1. start with the complete list of quad mesh edges;
2. pop one edge from the list (Figure 6a);

3. collect the edges across the adjacent quad faces
and repeat in each direction until the bound-
aries are met in the case of open strips (Figure
6b), or until it forms a loop in the case of closed
strips;

4. mark the collected edges as one strip and re-
move them from the list of edges;

5. repeat from step 2 until the initial list of edges
is empty (Figure 6c).

e
(a) (b) (c)

Figure 6: Collecting the strip data as lists of edges across
the quad mesh faces. The boundaries are highlighted in red
and the strips are represented as dashed blue lines.

Each strip corresponds to one independent den-
sity parameter in the singularity mesh, which is the
subdivision of the strip edges for the density mesh.
The strip density parameters form the densification
degrees of freedom, are strictly positive integers and
can all be different, opposed to a Catmull-Clark
subdivision procedure with a unique global density
parameter [33]. The density parameters d; can be
chosen by the user via the length of the strip edges,
aided by automated computation based on a target
length [y as:

di = [f(l:)/lo] (7)

where f is a function applied to the lengths of the
edges of the strip i, like the average, the minimum
or the maximum. In practice, the average is used
for all the examples in this paper.

Once each strip density parameter is set, each
quad face in the coarse quad mesh is meshed. The
geometry follows the hyperbolic paraboloid S that
linearly interpolates the four face vertices:

Y(u,v) € [0,1]%,
Stu,v)=(1-u)-(1—-v)-A (8
+u-(1—v)-B4+(l—u)-v-D+u-v-C,

where A, B, C and D are the four ordered
vertex coordinates of the face. The surface is
discretised in a mesh with the U and V density
parameters corresponding to the strips which
include the facing edges (A — B) and (D — C), and
the facing edges (B — C) and (A — D), respectively.

These meshes are then joined and their boundary
vertices welded together to form the quad mesh of
the density mesh.
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Figure 7: Exploring quad-based pattern symmetries with equivalent vertex or face singularities highlighted in pink by
applying different Conway operators on a seed quad mesh.

densification
E—

geometry informed
densification
E——

Figure 8: Taking into account geometry during densification for lighter constrained smoothing. The mesh are represented in
black and the target boundaries in red.

2.8.3. Connectivity design space

Based on the density quad mesh, any modifica-
tion can be applied to form the actual connectivity
of the pattern.

Connectivity editing can include local edge opera-
tions, like add, delete, swap, split, or trimming to
fit a landscape, when boundary alignment is not
necessary [34, 35|, for instance.

More specifically, one or multiple Conway opera-
tors [36] can be used to apply global modifications
and allow exploration of different pattern symme-
tries with equivalent singularities, structuredness
and feature-alignment, while not being constrained
to quad patterns. Conway operators have already
been explored in structural design for the optimisa-
tion of space frame structures [37, 38].

As illustrated in Figure 7, the seed quad mesh can
yield a doubly-triangulated pattern with the Con-
way kis operator, a dual diagonal pattern with the
Conway ambo operator or a pentagonal pattern
with the Conway gyro operator, for instance, with
equivalent vertex or face singularities, highlighted
in pink.

2.8.4. Geometry design space

During exploration of the pattern geometry,
any geometrical processing can be performed,
related to form finding or form optimisation, based
on the vertex coordinates as parameters. More
specifically, smoothing or relaxation algorithms can
be used to regularise the geometry after topological
processing.

After setting the actual connectivity of a pat-
tern during a geometry-blind process, relaxation
can improve its geometrical quality using Laplacian
smoothing [26, 39], before further processing. For
a given number of iterations or until convergence
below a given threshold value, each vertex of
the pattern is moved towards the centroid of its
adjacent vertices at:

Vf:Vi+(1_d) ‘(vi_vi)a (9)

where Vg is the final position of the vertex,
V; its initial position, V; the centroid of its
adjacent vertices with optional weights, and d a
user-defined damping value between 0 and 1 for
stability, classically set to 0.5. The values per



vertex are computed at each iteration and the
vertex coordinates updated simultaneously at the
end of the iteration to avoid the bias of starting
from one random vertex.

Additionally, constraints are set on the vertices
to project them back on surfaces, curves and
points after each iteration, to fit a target shape
and optional point and curve features. These
constraints are stored at the level of the singularity
mesh parent elements and then inherited by the
child vertices of the other meshes.

This switch from topological to geometrical spaces
can be a real challenge, as a highly distorted
mesh with overlapping or collapsed elements is
harder to geometrically process. Nevertheless,
early geometrical regularisation with Laplacian
smoothing of the singularity mesh can prevent
these problems later.

To reduce additional smoothing computation
induced by density modification of the singularity
mesh faces, re-densification can be performed
following the existing geometry to almost fit the
smoothing constraints, as illustrated in Figure 8.

Based on the presented design space and data
structures for patterns, the focus is set on the
exploration of the singularity design space.

The next section presents feature-based topology
finding using a skeleton-based generation procedure
of a singularity mesh for an input surface, based
on its topological skeleton, with optional point and
curve features, which can stem from statics-aware
heuristics.

3. Feature-based exploration

A topology-finding algorithm for feature-based
exploration is introduced. The singularity mesh
is generated based on a topological skeleton of the
relevant features such as a surface’s boundaries, as
well as points and curves on the surface. These
features can be modified to generate and explore
different topologies. The main steps of the proce-
dure are presented in Figure 9 to generate a pattern
from the mentioned features. Starting with an in-
put straight or curved surface, with optional point
and curve features (Figure 9a), its topological skele-
ton or medial axis (Figure 9b), introduced by Blum
[40], is generated and modified to yield a singularity
mesh that includes the singular points of the me-
dial axis (Figure 9¢), which are also featured in the
corresponding pattern (Figure 9d).

8.1. Core feature: surface

The input surface, here the geometry of the
courtyard roof of the British Museum in Lon-
don, England, analytically defined by Williams
[41], is mapped to the plan following its UV-
parameterisation. Other surface or mesh mapping
strategies can change the planar map and induce
different results. If the boundaries of the surface
are seen as the core feature, the mapping strategy
should not distort their geometry too much to faith-
fully integrate them in the topology.

8.1.1. Algorithm

As shown in Figure 10, the planar map is
procedurally decomposed in four sided patches
based on the medial axis, which consists of a set
of curves called medial branches that serve as
dimensional reduction of the shape, which are
connected together at singular points.

The boundaries of the planar map are subdi-
vided into a set of points that serve as vertices
for Delaunay triangulation with deletion of the
faces lying outside the boundaries, as shown in
Figure 10a. The discretisation parameter of each
curve d; should be tailored to capture the relevant
curvature changes without inducing unnecessary
heavy computation. A dg... value as a percentage
of the scale, the scale being the length of the
bounding box diagonal D of the planar map, and
a dpin value as a minimum number of subdivision
are combined:

di == min(dscalea dmzn)a (]—O)

with values of 5 for d,,;, and 1% to 5% of D for
dscale yielding good results in practice.

Three types of faces must be distinguished
depending on the number of adjacent faces: faces
with two neighbours are regular faces, with three
neighbours singular faces, and with one neighbour
corner faces.

Additionally, three types of points must be distin-
guished: singular points S are the circumcentres
of the singular faces, boundary points B are the
vertices of the singular faces, and corner points C
are the two-valent boundary vertices.

The medial axis is constituted by the branches con-
necting the circumcentres of the adjacent Delaunay



(a) Input (b) Medial axis

(c) Singularity
mesh

(d) Pattern

Figure 9: Skeleton-based generation of a singularity mesh and a pattern on an input shape based on the singularities of its
medial axis. The input surface is marked in red, the Delaunay triangulation in dark grey, the topological skeleton in pink, the
singularity mesh in black, the density mesh in light grey and the pattern in black.

(a) Key points

(b) Medial axis (¢) Pruning

®
2
® egll

(d) Grafting (e) Closing (f) Coarse mesh

Figure 10: Skeleton-based generation procedure of a singularity mesh based on the medial axis. The input surface is marked
in red, the Delaunay triangulation in grey with the key points labelled in black, the modified topological skeleton in pink and
the singularity mesh in black.

faces, as shown in Figure 10b. The medial axis re-
sults in the S-S branches, connecting S points, and
the S-C branches, connecting S points and C points.

The medial axis is then modified to achieve a
set of four-sided patches. The topological opera-
tions applied here are similar to the ones in the
work of Rigby [42], to yield coarser quad meshes
than other skeleton-based block decomposition
approaches [43]. These topological operations only
depend on the connectivity of the Delaunay mesh:
pruning to remove the S-C branches (Figure 10c),
grafting to add the S-B branches (Figure 10d),
closing to add the B-B and B-C branches (Figure
10e). This decomposition yields four-sided patches
which are all composed of one S-S element, two
S-B elements and one B-B element, except for the
corner patches which are composed of two S-B
elements and two B-C elements.

The adjacency of the patches is extracted to
define the coarse quad mesh of the singularity
mesh, as shown in Figure 10f, and in Figure 11 on

benchmark examples. The planar singularity mesh
is finally mapped back onto the input, planar or
curved, surface.

Further processing to form a pattern can include
densification based on a target length combined
with constrained relaxation on the input shape, as
described in Sections 2.3.2 and 2.3.4, respectively.
Another mesh modelling approach involves geomet-
rical exploration of the singularity mesh combined
with a Catmull-Clark subdivision procedure, as
illustrated in Figure 12, after skeleton-based gen-
eration of a singularity mesh for a planar surface
with multiple openings.

3.1.2. Corrections

Some additional corrections are needed on the
set of patches during the decomposition algo-
rithm to ensure the validity and the quality of
the singularity mesh in capturing features, even
though these corrections reduce the coarseness of
the resulting singularity meshes, as some elements



(a) Topological skeletons

(b) Singularity meshes

Figure 11: Benchmark surfaces for skeleton-based generation of singularity meshes. Boundaries in red, Delaunay mesh in
grey, skeleton in pink and singularity mesh in black.
Parameters: dgeqre = 0.02D, dpyin = 10, Ogink = 7/8, Osupg = 7/2.

(a) Input surface

(b) Singularity mesh

(¢) Geometrical exploration

(d) Pattern

Figure 12: Mesh modelling starting with a planar surface for skeleton-based generation of a singularity mesh, which can be
geometrically modified to form a curved pattern using a Catmull-Clark subdivision procedure. Boundaries in red, singularity
mesh in black and mesh in grey.

could be removed without loosing any data about
the singularities, but loosing features, like openings
or kinks.

In the following descriptive figures, the meshes are
represented by continuous lines and the surface
boundaries by dashed curves.

Some straight faces differ a lot and can be
even flipped compared to their curved patch,
resulting in strong distortions or overlaps of the
elements in the singularity mesh, thus a loss of
readability in spite of topological validity, as shown
in Figure 13a. If so, such patches are subdivided, as
shown in Figure 13b. The number of subdivisions
is computed based on the total rotation of a medial
branch between two S points as:

10

. Uziei

esubd

=

where 6; for the vertex V; is the angle between
the adjacent edges F;_1; and Ej; ;41 and Ogypq is
the critical angle value for which one subdivision
must occur. A recommended value 8gypq of /2
yields good results, as used in the benchmark
examples in Figure 11.

(11)

A subdivision criterion #4,,q equal or smaller
than 7/2 also avoids boundary collapses. Other-
wise, some boundaries could be subdivided by two
vertices or less and disappear in the singularity
mesh, as show in Figure 14a, and corrected in



Figure 14b.

(a) Before correction (b) After correction
Figure 13: Correcting distorted faces by subdividing
patches. Mesh in black with boundaries in red and input
surface as dashed red curves.

(a) Before correction

(b) After correction

Figure 14: Correcting collapsed boundaries by subdividing
patches. Mesh in black with boundaries in red and input
surface as dashed red curves.

I %

(a) Before correction

) After correction
Figure 15: Correcting missed concavities by subdividing

patches. Mesh in black with boundaries in red and input
surface as dashed red curves.

AaVa

Before correction

) After correction

Figure 16: Correcting triangular faces by inserting a
zero-length fourth edge. Mesh in black with boundaries in
red and input surface as dashed red curves.

Some boundary concavities — or inward kinks —
are not marked by the medial axis, and are lost in

11

the singularity mesh, as shown in Figure 15a. If so,
the patches are subdivided, as shown in Figure 15b.
The concavities are detected among the boundary
vertices of the Delaunay mesh that are not two-
valent corner points C by comparing the local angle
with the average of the adjacent angles:

0; —

> Opink,

Oi—1+0i41
_ 12
: (12

where 6; at vertex V; is the angle between the
adjacent edges F;_1,; and Ej; ;11 and 8y is the
critical angle value set to define the kink. A rec-
ommended value ;i of 7/8 yields good results,
as used in the benchmark surfaces in Figure 11.

The previous corrections are applied at the
level of the curved patches, as they relate to the
geometry of the medial branches. The following
corrections are applied at the level of the straight
faces, as they relate to the topology. Some faces
can be triangles in the singularity mesh, resulting
either from two S points or two B points at the
same location, as shown in Figure 16a. If so, a
zero-length fourth edge is inserted at the location
of the superimposed points to form a topological
quad, as shown in Figure 16b.

8.2. Additional features

Additionally to the surface, important features
represented as points or curves on the surface can
be integrated in the feature-based topology finding
by taking them into account in the medial-axis gen-
eration. These features can generate pole points to
support statics considerations.

8.2.1. Pole points

As featured in the isostatic ribbed floors of Pier
Luigi Nervi for the Gatti Wool factory in Rome,
Italy [44], and of Hans-Dieter Hecker for the lecture
hall of the zoological department of the University
of Freiburg, Germany [45], principal stresses con-
verge towards columns and walls, often featured by
poles in the pattern, a specific type of singularities
with a high valency that increases with the density.
Therefore, poles attract forces but are harder to
materialise. The designer has to choose whether
to resort to them or not, and adjust their valency,
as illustrated by the courtyard roofs of the Dutch
Maritime Museum [46] in Amsterdam, the Nether-
lands, and of the British Museum [41], which share
similar support conditions allowing thrust only at
their corners: the former features poles, the latter



(a) Input (b) Medial axis

(c) Singularity mesh

Figure 17: Skeleton-based generation of a pattern integrating point features and poles represented as filled dots. The input is
marked in red, the Delaunay triangulation in dark grey, the topological skeleton in pink, the singularity mesh in black, the
density mesh in light grey and the pattern in black.

does not. However, accommodating boundary and
support conditions as for the Rhon-Klinikum cable
net in Bad Neustadt, Germany with many mast
supports [47] to include as pole points in order to
locally have radial patterns in the cable net is not
straightforward when designing a pattern without
procedure.

Moreover, poles in force patterns such as thrust
networks [7] can provide an appropriately high
number of loads paths at the location of concen-
trated loads and improve the results of funicular
form fitting of target shapes [48]. Furthermore,
load paths in thrust networks should also be
aligned to curve features stemming from geometri-
cal discontinuities like folds [49].

Therefore, additional features represented by
points and curves are to be integrated in the design
of patterns, to be able to follow such heuristics.
These features can stem from discontinuities
related to statics (point/line loads/supports), as
well as geometry (peaks or folds). A case study
validates the relevance of these statics-aware
heuristics in Section 3.2.4. Additionally, these
features can be used to influence the topology
of the pattern by exploring different singularity
meshes.

3.2.2. Point features

Point features are included in the input for
skeleton-based generation as points on the surface,
as shown in Figure 17a. These points are added to
the set of vertices for the Delaunay triangulation
for generation of the medial axis, which includes
new singular areas adjacent to the point features,
as shown in Figure 17b. Following the same
algorithm, the resulting singularity mesh yields
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pseudo-quad faces around the point features, as
shown in Figure 17c, resulting in a pattern with
poles, as shown in Figure 17d.

Boundary point features do not directly mod-
ify the singularity mesh, since boundary points
are already part of the Delaunay triangulation,
as in Figure 18a, and additional steps must be
included. First, edges are added if the boundary
point feature is not marked by a vertex in the
singularity mesh, as shown in Figure 18b. Second,
all the quad faces adajcent to the point feature
are split into two pseudo-quads [50] to create the
boundary pole, as shown in Figure 18c.

(a) Initial
generation

(b) Feature
integration

(c) Pole
creation

Figure 18: Adding poles at point features on the boundary,
marked as a filled dot. Input surface as dashed red curves,
singularity mesh in black and density mesh in grey.

Revisiting the pattern of the Rhon Klinikum ca-
ble net with the presented method yields the planar
pattern without poles in Figure 19a, characterised
by structuredness and boundary alignment. Mast
supports are integrated as point features to yield
the planar pattern with poles in Figure 19b. The
pattern is converted into a form diagram to perform
funicular form finding of cable nets with an adapted
Thrust Network Analysis [51], using RhinoVAULT
[52]. The form diagram in Figure 19¢ and the force
diagram in Figure 19d present clear visual identifi-
cation of their reciprocal features, such as the hoop



(¢) Form diagram

(e) Form-found cable net

Figure 19: Revisiting the topology of the pattern of the
Rhén Klinikum cable net in Bad Neustadt, Germany [47]
by including poles through point features at the location of
the mast supports.

cables and the boundary cables, a key aspect for
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this graphical method to explore forms via different
force equilibria. The form-found cable net corre-
sponding to these two diagrams is shown in Figure
19e.

3.2.3. Clurve features

Including curve features allows to orientate a
pattern along specific directions, for instance along
a wall support or a crease to be shaped during
form finding, which have to be represented as a
continuous set of edges. More generally, curve
features can be used to explore different pattern
topologies.

They are included in the input as curves on
the surface, as shown in Figure 20a. These curves
are subdivided into a set of points that are also
added to the set of vertices for the constrained
Delaunay triangulation, where the edges from
the curve features are set as constraints [53], as
shown in Figure 20b. The Delaunay mesh displays
thereby new singular faces adjacent to the curve
features. Additionally, topological cuts are made
in the Delaunay mesh along the curve features
to consider them as boundaries. Otherwise, some
of the faces along these edges would have three
adjacent faces and be considered as singular faces
instead of regular faces and yield unwanted medial
branches crossing the curve feature edges. The
resulting singularity mesh in Figure 20c presents
pseudo-quad faces at the curve feature extremities,
which yield partial pole points that are adjacent to
both pseudo quad and quad faces in the pattern in
Figure 20d.

However, these poles do not systematically oc-
cur, as shown in Figure 21 where some extremities
yield a two-valent singularity in a pattern that
still respects curve feature alignment and edge
path concentration. Nevertheless, the designer can
choose to enforce or remove these partial poles,
automatically or not, as presented in Section 4.1.2
using strip grammar rules. In the case of curve
features spanning from boundary to boundary,
no poles occur, as shown in Figure 22, unless
boundary point features are included at the curve
feature extremities.

Moreover, the topological cuts in the Delau-
nay meshes along the curve features can induce
discrepancies which are compensated in a new step



(a) Input (b) Medial axis (c) Singularity mesh (d) Pattern

Figure 20: Skeleton-based generation of a pattern integrating curve features with pole extremities. The input surface is
marked in red, the Delaunay triangulation in dark grey, the topological skeleton in pink, the singularity mesh in black, the
density mesh in light grey and the pattern in black.

\
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(a) Input (b) Medial axis (c) Singularity mesh (d) Pattern

Figure 21: Skeleton-based generation of a pattern integrating curve features with hybrid extremities. The input surface is
marked in red, the Delaunay triangulation in dark grey, the topological skeleton in pink, the singularity mesh in black, the
density mesh in light grey and the pattern in black.

(a) Input (b) Medial axis (c) Singularity mesh (d) Pattern

Figure 22: Skeleton-based generation of a pattern integrating boundary-to-boundary curve features without pole extremities.
The input surface is marked in red, the Delaunay triangulation in dark grey, the topological skeleton in pink, the singularity
mesh in black, the density mesh in light grey and the pattern in black.

by adding edges across the curve features in the features from the designer.

singularity mesh, represented as dashed lines in

Figures 21c and 22c. This procedure is detailed in As shown in Figures 20 to 22, additional curves can

Section 4.2.2. be used within the skeleton-based decomposition
algorithm as a means for feature-based topology

These curves can be set as constraints during finding to explore the topology of patterns. These

smoothing, as in Figure 20d, or not, as in Figures features can stem from the a design intent, intu-

21d and 22d, if they are only meant as guiding ition or heuristic, as illustrated in the following
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case study.

3.2.4. Heuristics

Point and curve features have been introduced
in order to comply intuitively to requirements
on the structural patterns. These heuristics are
assessed with a short case study revisiting the
British Museum roof and comparing designs with
different topologies.

The actual shape [41] is used to map the generated
patterns. Only quad mesh patterns are compared,
therefore the actual triangulated pattern is not
considered. Engineering and construction details
are found in Sischka et al. [54]. Thrust is only
permitted at the four corners, as the shell is
supported along its boundary by sliding bearings
to avoid applying thrust on the existing building.
The additional stiffening systems are discarded
to focus on the difference of structural behaviour
due to the topology of the patterns and their
singularities.

The four tested patterns are shown in Figure
23. Four singularity meshes are generated using
feature-based topology finding to assess their effi-
ciency for the given statics system. These quad
mesh patterns stem from:

(a) the singularity mesh based only on the surface
(Figure 23a);

(b) the singularity mesh based on the surface with
four curve features to provide direct edge/force
paths towards the thrust corners along the
longest span following a designer’s intuition
(Figure 23c);

the singularity mesh based on the surface with
four point features to concentrate edge/force
paths to the thrust corners based on the
project’s context (Figure 23b);

(d)

the singularity mesh based on the surface with
both the curve and point features (Figure 23d).

The density is set with a target length of 1.5m,
similar to the real project [54], resulting in 5049
to 6049 beams, to be compared with the 4878 of
the actual triangulated pattern. The quad mesh
pattern is relaxed on the surface using Laplacian
smoothing with constraints to re-project boundary
vertices on the boundaries with fixed corners.

Based on the Eurocodes, the tested load cases are:
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e the structural self-weight G;

e a downwards dead load G’ = 0.6kN/m? for a
24mm thick glazing [54];

e a downwards projected live load @ =
1.5kN/m? for snow loads, without taking into
account geometry factors;

and the relevant load combinations are:

e the Serviceability Limit State (SLS): 1.0(G +
G') +1.0Q;

e the Ultimate Limit State (ULS): 1.35(G+G")+
1.5Q.

The beams of the actual structure have a box
cross section with a width of 80mm and a height
varying from 80mm to 200mm, oriented with the
surface normal. For this case study, the S355 steel
beams all have the same cross section to favour de-
signs with a homogeneous force flow. The beams
must be stiffer, as the quad mesh is not triangu-
lated: they have a width of 250mm, and an as-
sumed wall thickness of 20mm. The height of the
beams is minimised to reduce the structural weight,
while complying with the following structural re-
quirements:

e a maximal SLS deflection of 140mm, corre-
sponding to the maximal span over 200, though
the deflection of the actual structure is com-
pensated with a pre-deformation [54];

e a maximal ULS stress utilisation of 100%;

e a minimal ULS first load buckling factor of 4,
as for the actual structure [54].

The pre-deformation as well as the imperfections,
based on the first buckling mode with a maximal
value of 140mm [54], are not taken into account.
The poor support conditions favour the bending
behaviour of the shell rather than its membrane
behaviour, and therefore buckling is not expected
to be the critical requirement.

A second order mechanical analysis is per-
formed using the Finite Element Analysis tool
Karamba [55], with the results displayed in Table 1.

The structural performance is assessed as the
ratio of the structural mass over the projected area
of the shell. As expected, the buckling require-
ment is secondary, and deflection is the decisive



(a) Standard

(b) With curve features

(c) With point features

(d) With both features

Figure 23: Four patterns for the British Museum roof with different topologies, to assess the relevance of heuristic point and
curve features, shown in red. For readability, the displayed density is reduced from a target length of 1.5m to 5m.

requirement. Except for the topology with the
curve features, for which utilisation is the decisive
requirement because of the stress concentrations
in the hoops close to the corners, not featured
in the other topologies. The unique cross-section
requirement penalises this topology ad makes it
the least efficient one. The most efficient design is
the one including both point and curve features,
with 62% of the weight of the design without
features. This topology is close to an optimum for
the given constraints as it uses 99% of the stiffness
limit, 88% of strength one and 89% of the stability
one. Moreover, including only the poles yields
the second most efficient design, with 66% of the
weight of the topology without features.

Table 1: Comparison of the structural performance after
sizing optimisation of the designs with different topologies
in Figure 23.

metric (a) (b) (c) (d)
number of edges [-] | 5915 | 5049 | 5743 | 6049
beam height [mm] 430 590 220 180
projected surface

weight [kg/m?] 317 371 210 195
max. SLS
deflection [mm)] 138 95 138 138
max. ULS 83% | 99% | T4% | 88%
utilisation [-]
first ULS buckling
load factor |- 23.6 | 34.6 7.8 4.5

In this example, taking into account the support
conditions via heuristics such as point and curve
features when designing the topology of the pattern
improved the mechanical behaviour of the struc-
tural pattern, especially thanks to poles at the lo-
cation of concentrated forces.
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3.8. Shape topology extension

The presented skeleton-based algorithm applies
only to orientable surfaces with zero handles g and
at least one boundary N (¢ = 0, N > 1), to allow
seamless planar mapping for the Delaunay triangu-
lation.

Edge network thickening approaches [56] can gener-
ate coarse quad meshes for high-genus skeletal sur-
faces.

Yet, the presented algorithm can be extended to
generate shapes with any topology (¢ > 0, N > 0),
as shown in Figure 24. This approach is relevant for
high-genus surfaces that can be defined via a me-
dial surface, as for the ICD/ITKE Research Pavil-
ion 2015-16 [57]:

1. an open null-genus topology (¢ =0, N =a >
1) is generated following the presented algo-
rithm (Figure 24a);

2. the topology is thickened to obtain a closed
non-null-genus topology (9 = a—1 > 0, N = 0)
after offsetting it and adding faces to join the
boundaries together (Figure 24b);

3. the topology becomes an open non-null-genus
(g=a—-12>0, N=">b2>0) by perforating
some of its faces (Figure 24c).

8.4. Algorithm performance

These topology-finding algorithms are meant to
be used at an early design stage for the exploration
of a large variety of designs. Therefore, the
computation time of the algorithms should be
fast enough for efficient application, whether for
fluid user-machine interactivity or for automated
or partially-automated generation of numerous
designs.

The computation time of the singularity mesh



(a) Open null-genus topology
from the medial axis of an input surface

(b) Closed non-null-genus topology
after thickening

(c) Open non-null genus topology
after perforating faces

(d) Open non-null genus pattern
after further mesh modelling

Figure 24: Extension to general orientable compact
manifold topologies with multiple handles and boundaries
(in red): the generated pattern has a topology with 6
handles and 11 boundaries.

of the pattern in Figure 23a takes between 100
and 800ms with the same results for different
Delaunay meshes with 50 to 483 faces, resulting
from subdivision values between 8% and 0.8%
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of the length of the bounding box diagonal. For
comparison, on the same machine, the structural
analysis of the corresponding gridshell with 5915
beam elements took about 350ms for an elastic
linear analysis and 2300ms for a buckling analysis
of the first mode taking into account the axial
forces in the geometrical stiffness matrix, on
an average of 5 computations. The developed
topology-finding algorithm takes less time than
the structural analysis performed by a commercial
software plugin, making it suitable for engineering
design applications.

Skeleton-based generation of the singularities
of a pattern provides an initial topology in the
singularity design space. Even though the sin-
gularities can be modified indirectly using curve
features, more explicit and controlled topological
exploration of the design space can be performed
by combining feature-based topology finding with
rule-based exploration by applying grammar rules
on the lower level of the singularity mesh elements,
and more specifically on its strips.

4. Rule-based exploration

The singularity design space is a topological
space without metric to organise it, on the contrary
to a geometrical space like the one related to the
shape of the pattern, which can be explored
using the vertex coordinates as continuous-valued
parameters. Nonetheless, topological spaces can
be explored via grammars of rules that perform
topological operations, instead of modifying values.

Shape grammars, introduced by Stiny and
Gips [58], evolved into functional grammars
and then into structural grammars to include
non-geometrical data related to structures
[59, 60, 61, 62]. Regarding shell-like struc-
tures, Shea and Cagan introduce a grammar used
for optimisation of triangulated meshes of geodesic
domes using shape annealing [63].

Grammar rules for singularity meshes must
apply specifically to (coarse) pseudo-quad meshes,
to constrain exploration to the singularity design
space, as performed by existing quad mesh sim-
plification operations, like deletion or rotation,
but on dense and unstructured quad meshes
[64, 65, 66, 67]. This grammar must allow both
an increase and a decrease in the complexity of



the singularity meshes, and include pole editing
via pseudo-quads. This section introduces thus a
grammar based on the addition and deletion of
strips, for user- and algorithm-guided exploration
of the singularity design space.

4.1. Lowest-level strip grammar

The fundamental grammar is composed of two
opposite atomic rules that apply at the lowest level
possible on the natural element description of quad
meshes: ’add strip’ and ’delete strip’. Poles are op-
tionally included through pseudo-quad faces at the
strip extremities to extend to pseudo-quad meshes.
These rules ensure:

e to perform exploration constrained to the
space of singularity meshes, unlike rules such
as adding and deleting edges which can gener-
ate any polygonal mesh;

e to achieve any singularity mesh, unlike high-
level rules, such as the ones in et al. [68] that
apply too specific modifications.

These rules can be applied to all orientable quad
meshes with any shape topology (¢ > 0,N > 0)
and used as parameters for the singularity design
space to perform algorithmic search.

4.1.1. Grammar rule algorithm
The two opposite rules are:

e ’add strip’, which inserts a strip along a poly-
edge;

e ’delete strip’, which collapses a strip into a
poly-edge.

The algorithm is illustrated in Figure 25 in
the case of an open boundary-to-boundary strip
or poly-edge. The input to add a strip is the
poly-edge [A, B, C, D]. Starting from a poly-edge
extremity, each edge is unzipped by inserting a
pseudo-quad face with its double vertex towards
the downstream edges, which converts the previous
pseudo-quad into a quad, with an exception for
the last edge that directly generates a quad. If an
extremity of the strip is on the boundary, it can be
converted into poles or not, as in Figure 26, but
an extremity lying outside the boundary has to be
a pole. The zero-length edges from pseudo-quads
can be included in poly-edges along which to add
strips. Deleting a strip follows the reversed steps
of adding a strip.
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Figure 28: Add/delete a self-crossing strip (in blue).

q
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Figure 29: Add/delete a self-overlapping strip (in blue).

Additional specific operations are necessary to
be able to add/delete strips in any configuration.

To add a closed strip from the poly-edge [A,
B, C, D, A] in Figure 27, the extremity from the
last edge (D-A) connects to the one from the first
edge (A-B).

To add a self-crossing strip from the poly-edge
[A, B, C, D, E, B, G] in Figure 28, the multiply
occurring vertex B is updated in the poly-edge
becoming [..., C, D, E, B, B’, G] to integrate the
edges (E-B), (B-B’) and (B-G).



To add a self-overlapping strip from the poly-
edge [A, B, A] in Figure 29, the multiply occurring
edge (A-B) is updated in the poly-edge becoming
[..., B, A7].

4.1.2. Applications

The rules can be applied in different manners, to
generate specific designs or explore multiple ones
combined with feature-based exploration.

Editing curve features extremities. Curve feature
extremities can yield a pole or not using the
skeleton-based generation procedure, as in Figure
30a, where one of the curve feature extremities is
a pole and the other one a two-valent singular-
ity. Strip rules can be applied to either add strips
with poles from the curve feature extremity to the
boundary via the shortest poly-edges, as in Figure
30b, or delete the strips with poles, as in Figure
30c.
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(a) Hybrid

extremities

(b) Poles after
adding strips

(c¢) No poles after
deleting strips

Figure 30: Editing the extremities of curve features (in red)
by adding or removing poles.

Editing skeleton-based singularity meshes. Starting
from the skeleton-based singularity mesh, strip
rules can apply specific and controlled modifi-
cations to explore further the singularity design
space, as illustrated in Figure 31. To preserve
point and curve features, deletions of all the strips
integrating them is prohibited.

Editing point features. Pole points can be gen-
erated using point features in skeleton-based
generation.  Nevertheless, pole points can still
be added wusing strip rules with pseudo-quads
at their extremities, on the boundary or not, as
illustrated in Figure 32. The dual force diagrams
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used to explore force equilibria with Thrust
Network Analysis and RhinoVAULT highlight
the dual modifications of the strip rules, which
modify the degrees of freedom for funicular
form finding. In this example, the topology
of a fully-supported vault is modified by adding
pole point features at the corners and at the centre.

The strip rules are the lowest level of topo-
logical operations that allow to evolve new
singularity meshes, and can be used as parameters
for exploration of the singularity design space.
However, the designer may think in terms of more
specific and local modifications. The next section
proposes thus to combine the lowest-level strip
rules into high-level ones.

4.2. High-level grammar

4.2.1. Extended rules

Strip rules can be combined to develop any high-
level rules that evolve a singularity mesh into an-
other one, as in Figure 33. Such extended rules can
be stored to form a practical grammar [68]. For
the designer, practical grammars are meant to be
efficient, as specific high-level modifications can be
applied faster than multiple low-level modifications,
and flexible, as more rules can be added to the
grammar. A practical rule can be applied locally
to a part of the singularity mesh before propagat-
ing these modifications to the mesh.

4.2.2. Propagation

When applying a local high-level rule, such as
the one from Figure 33, new boundary vertices
modify adjacent quad faces that become pentagons
or general polygons, as in Figure 34. A propa-
gation procedure is necessary to spread the local
modifications from these source points. New edges
are added that subdivide the faces adjacent to
the sources. Termination occurs when the source
points reach a boundary edge in the case of open
strips, as in Figure 34a, or meet another source in
the case of closed strips, as in Figure 34b.

However, if propagation of an asymmetric
number of sources must be spread in a closed strip,
singularities must be added, as seen in Figure 34c.
The patterns developed by Takayama et al. [69]
are used to quadrangulate four-sided polygons
with a given number of edge subdivisions resulting



Figure 31: Editing skeleton-based singularity meshes using rule-based exploration. The singularity meshes are in black with

the newly added strips are highlighted in light blue and the to be deleted strip in light red.

)

boundaries in red

o

I'*

Figure 32: Editing point features sequentially using strip rules with pole extremities. In the context of Thrust Network

Analysis,
and poly-edges

the modifications in the primal form diagram and the dual force diagram are highlighted in blue, as added strips

, respectively. Singularity meshes are in black with boundaries in red, and density meshes and patterns in grey.
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Figure 33: Combining lowest-level strip rules to develop
high-level rules. New strips are highlighted in blue.

(a) Open strip

(g

) Closed strip with symmetric subdivision

(il

) Closed strip with asymmetric subdivision

Figure 34: Propagation procedure from source vertices
resulting from local editing. Boundaries are shown in red
and new edges in blue.

in a minimal number of singularities. Takayama’s
algorithm requires an even number of polygon
edges, ensured by subdividing the strips of one of
these edges, if necessary.

The same propagation procedure is used for
the integration of curve features in the skeleton-
based generation scheme. The unwelding of the
Delaunay mesh along them induces discrepancies,
which are used as propagation sources. More
precisely, the sources result from the B points that
lie on the curve feature instead of the boundary.

4.2.8. Simplification

Whereas the two opposite strip rules can com-
pensate each other, a new simplification rule is
necessary to compensate any of the previously
applied high-level rules, independently from the
sequence history, to allow non-linear exploration
instead of linearly cancelling the previous steps.

The simplification rule is inspired by the ap-
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proach of Verma and Suresh [70] to reduce the
number of singularities in quad meshes but re-
sorts again to the quadrangulated patterns of
Takayama et al. [69], more relevant for coarse
quad meshes. As shown in Figure 35, a closed
poly-edge is selected, the encompassed faces are
merged and one of Takayama’s patterns is applied.
The polygon is defined by the main vertices in the
poly-edge, controlled by the designer to choose
among different topologies.

GE e

Figure 35: Local simplification rule of a singularity mesh
based on Takayama’s patterns et al. [69], yielding a
minimal number of singularities. Singular vertices and faces
are highlighted in pink.

The presented rule-based approach for topolog-
ical exploration of singularity meshes supplements
feature-based exploration, with a lowest-level strip
grammar and an extended high-level grammar.

5. Conclusion and future work

This paper tackled topology finding of patterns
for shell-like structures with a focus on singulari-
ties in quad-based mesh patterns, complementary
to form finding and other geometrical approaches.
The designed patterns are structured, i.e. with a
low number of singularities, and aligned with fea-
tures like surface boundaries, points and curves.
To allow this topological exploration, a specific de-
sign space structure with its data structure and
parameters were introduced, based on singular-
ity meshes as coarse pseudo-quad meshes that en-
code the information related to the singularities
in the pattern, including high-valency pole points.
A skeleton-based generation procedure for feature-
based exploration of singularity meshes on input
surfaces with point and curve features was pre-
sented. These features can heuristically integrate
statics considerations, as illustrated on a case study.
A rule-based exploration means supporting feature-
based exploration was developed with a lowest-level
grammar based on strip editing and a high-level
grammar resulting from the combination of strip
rules.
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