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Abstract
This article focuses on the time-domain propagation of elastic waves through a 1D periodic

medium that contains non-linear imperfect interfaces. The array considered is generated by a,
possibly heterogeneous, cell repeated periodically and bonded by interfaces that are associated with
transmission conditions of non-linear “spring-mass” type. More precisely, the imperfect interfaces
are characterized by a linear dynamics but a non-linear elasticity law. The latter is not specified
at first and only key theoretical assumptions are required. In this context, we investigate transient
waves with both low-amplitude and long-wavelength, and aim at deriving homogenized models
that describe their effective motion. To do so, the two-scale asymptotic homogenization method is
deployed, up to the first-order. To begin, an effective model is obtained for the leading zeroth-order
contribution to the microstructured wavefield. It amounts to a wave equation with a non-linear
constitutive stress-strain relation that is inherited from the behavior of the imperfect interfaces at
the microscale. The next first-order corrector term is then shown to be expressed in terms of a
cell function and the solution of a linear elastic wave equation. Without further hypothesis, the
constitutive relation and the source term of the latter depend non-linearly on the zeroth-order field,
as does the cell function. Combining these zeroth- and first-order models leads to approximation
of both the macroscopic behavior of the microstructured wavefield and its small-scale fluctuations
within the periodic array. Finally, particularizing for a prototypical non-linear interface law and
in the cases of a homogeneous periodic cell and a bilaminated one, the behavior of the obtained
models are then illustrated on a set of numerical examples and compared with full-field simulations.
Both the influence of the dominant wavelength and of the wavefield amplitude are investigated
numerically, as well as the characteristic features related to non-linear phenomena.

Keywords: Homogenization – Correctors – Imperfect interfaces – Non-linear waves – Time-domain
numerical simulations

1 Introduction
This study concerns the propagation of elastic waves in structured media. When the waves are asso-
ciated with wavelengths much smaller than the characteristic length-scale of the propagating medium
then some effective models can be derived to advantageously circumvent the complete description
and computation of the fields at the microscopic scale. In such low-frequency and low-wavenumber
settings, the field of dynamic homogenization has reached maturity and the macroscopic description of
waves in periodic or random microstructures characterized by linear constitutive relations have been
extensively studied, with techniques ranging from the two-scale homogenization method [8, 39], which
we consider here, the Willis approach [45, 44, 34], or numerical multiscale methods, see e.g. the review
in [1].

In the present work, we focus more specifically on periodic media that are structured by imperfect
interfaces, which are associated with discontinuities of the displacement and stress fields along some
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internal contact areas, bonds or cracks. There exists a variety of models for such interfaces, which have
been designed for applications to, e.g., composite materials, geophysics or non-destructive testing,
see [42] for a comparative study. On the one hand, in the linear case, imperfect interface models
amounts to typical “spring-mass” transmissions conditions, see [41, 6, 4, 38]. Note that some of these
phenomenological models can also be seen as effective models for thin interphase bonds between solids,
which has been demonstrated by asymptotic analysis [28, 26]. On the other hand, the use of non-linear
transmission conditions can be necessary to model more complex interface phenomena, such as the
generation of higher- or sub-harmonics, DC response, hysteretic or chaotic behaviors, slow dynamics,
see e.g. [35, 9, 14]. In addition, non-linear parameters are generally more sensitive to the health state
of materials than linear ones, which makes the modeling and measurements of non-linear phenomena
appealing for non-destructive evaluation [43]. A widely considered non-linear model is the non-smooth
unilateral contact model [37, 17]. For the present study, we rather focus on smooth non-linear interface
laws, such as those that model elastic interphases or joints, see [2, 7]. Such compliant constitutive
laws generally lead to problems that are mathematically well posed and that, as thus, can be properly
handled numerically [31].

In the static regime the homogenization of heterogeneous media containing imperfect interfaces
has been the subject of a number of studies, see e.g. [15, 16, 32]. In the dynamic regime however,
the literature focusing on their effective behaviors is scarce, see [36, 33] and [3]. The latter study
investigates theoretically the macroscopic motion of waves in a 1D periodic array of coated inclusions
and matrix, with both the constituents and the interfaces behaving non-linearly. Here, we rather
consider a 1D periodic array composed of a linear, and possibly heterogeneous material, bonded by
imperfect interfaces that are governed by a smooth non-linear law. In this context, our primary
objective is to describe the associated effective wave motion, both at the macroscopic and microscopic
scales, in the long-wavelength regime and for low-amplitude forcings. At high-frequency, but only in the
case of linear interfaces, the reader is kindly referred to our complementary study [5]. Our secondary
objective is to analyze the mathematical properties of the homogenized models obtained and assess
them based on time-domain numerical simulations and comparisons with full-field simulations.

This article is organized as follows. The governing equations for the microstructured medium are
introduced in Section 2 and our main homogenization results are stated. We proceed with some theo-
retical requirements on the constitutive parameters and functions, and provide an energy analysis of
the microstructured wavefield. Considering both the macro- and micro-scale fluctuations of the latter
relatively to a single parameter, namely the ratio of the period of the array to a characteristic wave-
length, and low-amplitude excitations, then the two-scale homogenization method is deployed, while
the non-linear interface law is kept generic during this analysis. The leading zeroth-order contribu-
tions to the microstructured wavefield are first derived in Section 3 and some properties of the effective
model obtained are studied in Section 3.3. To approximate not only the macroscopic wave motion
but also local fluctuations at the scale of the microstructure, first-order corrector terms are considered
and studied in Section 4. To illustrate and assess the obtained effective models, at the zeroth- and
first-order, Section 5 proposes a set of numerical experiments, with comparisons between full-field
simulations in microstructured media and simulations involving their homogenized counterparts.

2 Wave propagation in a periodic array of interfaces

2.1 Research objectives

2.1.1 Formulation of the microstructured problem

We consider the propagation of transient waves in a 1D periodic elastic medium containing imperfect
interfaces. The latter have spacing h and, for simplicity but with no loss of generality, we consider
that they are located at Xn = nh with n ∈ Z. The elastic medium is supposed to be h-periodic and
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linear elastic with mass density ρh(X) and Young’s modulus Eh(X). Given a source term F , the
displacement field Uh is governed by the time-domain wave equation

ρh(X)∂
2Uh
∂t2

(X, t) = ∂Σh

∂X
(X, t) + F (X, t) where Σh(X, t) = Eh(X)∂Uh

∂X
(X, t), (1)

with Σh being the stress field. Moreover, the interfaces are assumed to be characterized by the
interface mass and rigidity parameters M and K, respectively, together with the, possibly non-linear,
constitutive relation R, so that the following transmission conditions apply at any interface point Xn:

M

〈〈
∂2Uh
∂t2

(·, t)
〉〉
Xn

= JΣh(·, t)KXn (2a)

〈〈Σh(·, t)〉〉Xn = KR
(
JUh(·, t)KXn

)
, (2b)

where, for any function g(X), we define the jump and mean operators J·KXn and 〈〈·〉〉Xn as

JgKXn = g(X+
n )− g(X−n ) and 〈〈g〉〉Xn = 1

2
(
g(X+

n ) + g(X−n )
)
. (3)

In addition, both the displacement Uh and the stress field Σh are continuous on the open intervals
(Xn, Xn+1).

2.1.2 Main homogenization results

We now consider a reference wavelength λ∗ = 2π/k∗, with associated reference wavenumber k∗, and
introduce the parameter η = hk∗. In this study it is assumed that η � 1 and that the source term
F is of relatively low-amplitude (an issue that will be returned to hereinafter). The objective is to
derive an effective dynamical model, up to the first-order, for the waves propagating in the periodic
interface array considered. More precisely, we seek an approximation U (1) of the solution Uh to (1–2)
of the form:

Uh(X, t) = U (1)(X, t) + o(h).

The main results of this study is that the sought-after approximation is given by

U (1)(X, t) = U0(X, t) + hU1(X, t), (4)

where the zeroth-order field U0 in (4) is continuous and is solution of the problem

ρeff
∂2U0
∂t2

(X, t) = ∂Σ0
∂X

(X, t) + F (X, t) with Σ0(X, t) = Geff
(
E0(X, t)

)
.

Here, E0 = ∂U0/∂X and Geff is an effective strain-stress relation that is local and, generally speaking,
non-linear, while ρeff is an effective mass density. This homogenized model is derived and detailed in
Section 3. Moreover, the first-order corrector field U1 in (4) can be written as

U1(X, t) = U1(X, t) + P
(
y, E0(X, t)

)
E0(X, t)

with y = (X − nh)/h for X ∈
(
nh, (n + 1)h

)
and where the cell function P is, generally speaking, a

non-linear function of E0. The mean field U1 is solution to the linear problem:

ρeff
∂2U1
∂t2

(X, t) = ∂Σ1
∂X

(X, t) + S
(
U0(X, t)

)
with Σ1(X, t) = G′eff

(
E0(X, t)

)
E1(X, t),

where E1 = ∂U1/∂X, while both the parameter G′eff
(
E0(X, t)

)
, which is the derivative of Geff, and the

source term S
(
U0(X, t)

)
depend explicitly on the zeroth-order field, locally in space and time, and in

a non-linear fashion. This first-order homogenized model is derived in Section 4.

3



2.2 Main hypotheses

The constitutive parameters and functions characterizing the microstructured medium considered are
assumed to satisfy the following mathematical assumptions.

Assumptions 1. The mass density is expressed as ρh(X) = ρ(X/h) and the Young’s modulus reads
Eh(X) = E(X/h) where

ρ,E ∈ L∞per(0, 1) :=
{
g ∈ L∞(R), g(y + 1) = g(y), a.e. y ∈ R

}
,

with ρ ≥ ρmin > 0, E ≥ Emin > 0.

Assumptions 2. The imperfect interfaces are such that M ≥ 0 and K > 0, while R is a smooth
function satisfying

R : (−d,+∞) −→ R such that R(0) = 0, R′ > 0 and (R′′ < 0 or R′′ = 0),

where d ∈ R+ ∪ {+∞} is a maximum compressibility length and R′, R′′ are the first and second
derivatives of R, respectively.

In this article, the problem (1–2) will be investigated for a generic constitutive relation R but the
particular case below will be considered in Section 5 for illustrative purposes.

Non-linear elastic interface model. A variety of non-linear interface models can be formulated
within the framework of Assumptions 2. Without seeking to be exhaustive, we will be considering in
Section 5 a non-linear model that is simple, but whose behavior is rich enough for illustrative purposes.
The chosen model is a hyperbolic one, see [2, 7], with the function R being defined as

R(ζ) = ζ

1 + ζ/d
, (5)

where the compressibility length is finite with d > 0, see Figure 1. When this parameter degenerates
as d→ +∞, or when ζ → 0, then the non-linear model considered degenerates to a simple spring-like
linear behavior for which the function R writes as

R(ζ) = ζ. (6)
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(z

e
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nonlinear

linear

Figure 1: Hyperbolic interface law (5) and linear approximation. The dotted lines are placed at ζ = −d and
R = d.
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Figure 2 illustrates the wave phenomena associated with the prototypical non-linear constitutive
relation (5), by comparing snapshots of the (normalized) velocity field, defined as Vh = ∂Uh/∂t and
simulated within a microstructured medium with a homogeneous periodic cell. These are full-field
simulations performed using the numerical methods described in Section 5. The amplitude of the
generated waves is controlled by an amplitude parameter A in the source term F of (1). The interface
are either linear or non-linear, i.e. characterized by (6) or (5), respectively. Figure 2 highlights
that, at a small amplitude, the waveform within the non-linear microstructured medium is almost
undistinguishable from that propagating within the linear one. Differences manifest themselves at
larger amplitudes that sharpen the wave-fronts and increase dispersive, i.e. frequency-dependent,
effects. In other words increasing the forcing amplitude induces larger strains and thus stronger non-
linear phenomena. Note that the wavefield is asymmetrical, unlike in the linear case, a phenomenon
related to the asymmetry of the non-linear constitutive relation R in (5) that, because of a vertical
asymptote at −d, is much stiffer in compression than in traction.

These simulations highlight that, for a relatively low source amplitude, the wavefield exhibits small-
scale fluctuations within the microstructure that are superposed to a large-scale non-linear macroscopic
behavior. Capturing these features within effective models is the objective of the present study.
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Figure 2: Snapshots of the wavefields Vh normalized at t = 0.16 s, which are simulated within a microstructured
medium with a homogeneous periodic cell and containing either linear or non-linear interfaces (represented by
vertical dashed lines). The corresponding physical parameters are provided in Section 5.3. The medium is
excited by a source of central frequency fc = 10Hz and a varying amplitude A.

2.3 Energy analysis of the microstructured problem

Under the assumptions 1 and 2 considered, the existence and uniqueness of a solution to (1–2) has
been proven in [18] for the case of a single interface and for a time-harmonic forcing. Here, we perform
an energy analysis to show that these assumptions on the model parameters and constitutive function
are also sufficient for the solution to be stable in the case of an array of interfaces. We consider the
following definition.

Definition 1. Consider an interval I = [a, b] such that there does not exist n ∈ Z such that a = nh or
b = nh. We denote as {XI

n} the set of interface points Xn that are contained in I. Then, for all time
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t ≥ 0, we define 
Em
h (t) = 1

2

∫
I

{
ρh(X)Vh(X, t)2 + 1

Eh(X)Σh(X, t)2
}

dX, (7a)

Ei
h(t) =

∑
XI
n

1
2M〈〈Vh(·, t)〉〉2XI

n
+K

∫ R−1
(
〈〈Σh(·,t)〉〉

XIn
/K
)

0
R
(
ζ
)

dζ

 , (7b)

and Eh = Em
h +Ei

h.

With this definition at hand, then we can establish the following property, whose proof is deferred
to Appendix A.

Property 1. Owing to the assumptions 1 and 2 thenEm
h andEi

h define respectively a lineic mechanical
energy and an interface energy for the system considered, with Em

h (t) ≥ 0 and Ei
h(t) ≥ 0 for all t ≥ 0.

Moreover, Eh = 0 if and only if Vh = 0 and Σh = 0 in I.
Lastly, if Vh and Σh are compactly supported at time t = 0 then in the absence of source term, i.e.

F = 0, it holds d
dtEh = 0 for all time t such that supp(Vh(·, t)) ⊂ I and supp(Σh(·, t)) ⊂ I.

3 Zeroth-order homogenization

3.1 Two-scale expansion

We consider some reference material parameters ρ∗ and E∗ that define the wavespeed c∗ =
√
E∗/ρ∗.

These parameters will be specified later on. Accordingly, we introduce the following non-dimensionalized
space and time variables x = k∗X and τ = k∗c∗t, respectively. Upon introducing the non-dimensionalized
fields

uη(x, τ) = k∗Uh(X, t), vη(x, τ) = 1
c∗
Vh(X, t) and ση(x, τ) = 1

E∗
Σh(X, t),

we have
vη(x, τ) = ∂uη

∂τ
(x, τ) and ση(x, τ) = 1

E∗
E

(
x

η

)
∂uη
∂x

(x, τ).

The wave equation (1) can be recast as

α

(
x

η

)
∂2uη
∂τ2 (x, τ) = ∂

∂x

(
β

(
x

η

)
∂uη
∂x

(x, τ)
)

+ f(x, τ), (8)

where we have defined

α = ρ

ρ∗
, β = E

E∗
in L∞per(0, 1) and f(x, τ) = F (X, t)

k∗E∗
. (9)

Moreover, the interface conditions (2) are recast as
m η

〈〈
∂2uη
∂τ2 (·, τ)

〉〉
xn

=
s
β
∂uη
∂x

(·, τ)
{

xn〈〈
β
∂uη
∂x

(·, τ)
〉〉
xn

= k

h
R
(
h

η
Juη(·, τ)Kxn

) with m = M

hρ∗
, k = Kh

E∗
, (10)

where we have extended the jump and mean notations at xn = nhk∗ = nη. In addition, it is assumed
that the constitutive parameters α, β, m and k do not scale with η.
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As discussed in Section 2.1.2, we assume that η � 1. In this context, the material parameters α
and β vary on a fine scale associated with the rescaled coordinate y = x/η, see Figure 3. The wavefield
is also assumed to have small-scale features that are described by y, and slow continuous variations
as well, which can be described by the variable x, see Figure 2. Accordingly, the field uη is expanded
using the following ansatz:

uη(x, τ) = u0(x, τ) +
∑
j≥1

ηjuj(x, x/η, τ), (11)

where u0(x, τ) embeds large-scale macroscopic variations while the fields uj(x, y, τ) are associated with
micro-scale localized fluctuations.

Remark 1. In the case of linear interfaces, the fact that the leading-order term u0 does not depend
on the variable y can be proven rigorously. This result is here considered as a starting assumption for
the asymptotic analysis.

h

X
<latexit sha1_base64="u+p+QPXLs4pUmvTZ1QylUKUOI3U="></latexit>

x
<latexit sha1_base64="JMjTbapIzv5VUme1AQe1zf8IkeI=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKt6LIgiMsW7ANqkWQ6rcG8yEzEUvQH3Oq3iX+gf+GdcQpqEZ2Q5My595yZe6+fhoGQjvNasObmFxaXisulldW19Y3y5lZbJHnGeIslYZJ1fU/wMIh5SwYy5N00417kh7zj35yqeOeWZyJI4gs5Tnk/8kZxMAyYJ4lq3l2VK07V0cueBa4BFZjVSMovuMQACRhyROCIIQmH8CDo6cGFg5S4PibEZYQCHee4R4m0OWVxyvCIvaHviHY9w8a0V55CqxmdEtKbkdLGHmkSyssIq9NsHc+1s2J/855oT3W3Mf194xURK3FN7F+6aeZ/daoWiSFOdA0B1ZRqRlXHjEuuu6Jubn+pSpJDSpzCA4pnhJlWTvtsa43Qtaveejr+pjMVq/bM5OZ4V7ekAbs/xzkL2gdV97B61KxV6jUz6iJ2sIt9mucx6jhHAy3t/YgnPFtnVmgJK/9MtQpGs41vy3r4AGkqj3Y=</latexit>
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hk⇤ = ⌘

Figure 3: The different coordinates considered: (left) original coordinate, (center) adimensionalized coordinate,
and (right) rescaled coordinate. The dashed boxes delimitate the chosen periodic cells.

The field u0 is assumed to be continuous spatially and, for all j ≥ 1, the fields uj are assumed
to be continuous with respect to the first variable and 1-periodic with respect to the second variable,
i.e. uj(x, y, τ) = uj(x, y + 1, τ) for all y ∈ (0, 1), with the following limit conditions at the endpoints
yn = n:

uj(x, y+
n , τ) = uj(x, y+

n+1, τ) and uj(x, y−n , τ) = uj(x, y−n+1, τ). (12)

The fields uj being potentially discontinuous at the points yn, we extend at the micro-scale the jump
and mean notations (3) as

JujKyn ≡ Juj(x, ·, τ)Kyn = uj(x, y+
n , τ)− uj(x, y−n+1, τ),

〈〈uj〉〉yn ≡ 〈〈uj(x, ·, τ)〉〉yn = 1
2
(
uj(x, y+

n , τ) + uj(x, y−n+1, τ)
)
.

(13)

Remark 2. Thereafter, the index will be dropped when the jump and mean refer specifically to the
point yn = 0, i.e. J·K ≡ J·K0 and 〈〈·〉〉 ≡ 〈〈·〉〉0.

As customary in this two-scale analysis, partial differentiation with respect to x has to be rewritten
as
(
∂/∂x+ 1

η∂/∂y
)
so that the non-dimentionalized wave equation (8) is recast as

α(y)∂
2uη
∂τ2 = 1

η2
∂

∂y

(
β(y)∂uη

∂y

)
+ 1
η

(
∂

∂y

(
β(y)∂uη

∂x

)
+ β(y) ∂

2uη
∂x∂y

)
+ β(y)∂

2uη
∂x2 + f(x, τ), (14)

and the associated interface conditions (10) are
m η

〈〈
∂2uη
∂τ2

〉〉
yn

=
s
β

(
∂uη
∂x

+ 1
η

∂uη
∂y

){

yn

(15a)〈〈
β

(
∂uη
∂x

+ 1
η

∂uη
∂y

)〉〉
yn

= k

h
R
(
h

η
JuηKyn

)
, (15b)
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where the definitions (13) are being considered. Moreover, the continuity of the stress field within
the periodic cells implies that β

(
∂uη
∂x + 1

η
∂uη
∂y

)
is continuous on every intervals (yn, yn+1) and so is the

term β
(
∂uj
∂y + ∂uj−1

∂x

)
for all j ≥ 1.

Lastly, the source term F (resp. f) is also assumed to be of sufficiently low amplitude, a statement
that will be returned to later on, so that the field Uh (resp. uη), exhibits only moderate small-
scale fluctuations within the microstructure, at least at sufficiently short times. In this context, the
equations (14) and (15) will be used in the next section based on the ansatz (11).

3.2 Effective dynamical model

3.2.1 Model derivation

Consider the ansatz (11) in (15b). By definition we have Ju0Kyn = 0 so that, given that the constitutive
relation R characterizing the interface is a smooth function, we get the following relation from a Taylor
expansion

R
(
h

η
JuηKyn

)
=
∑
`≥0

(hη)`

`!

(∑
j≥2

ηj−2 Juj(x, ·, τ)Kyn

)̀
R(`)

(
h Ju1(x, ·, τ)Kyn

)
(16)

where R(`) denotes the `-th derivative of R.

Remark 3. The assumption that the source term f is of low amplitude allows us to consider in the
ensuing developments that, at least at sufficiently short times, the factors of the different powers of η
in the expansion (16) are all of order O(1), i.e. they do not scale with η.

Zeroth-order field. Owing to the assumption that u0 is a macroscopic field independent of the
small-scale variable y then the identification of the terms at order O(η−2) in (14) and O(η−1) in (15a)
and (15b) does not bring additional information to it.

First-order field. Next, identifying the terms of order O(η−1) in (14) together with these of order
O(1) in (15a) and (15b), given (16) and Remark 3, leads to the following system for the first-order
field u1: 

∂

∂y

(
β(y)

(
∂u1
∂y

(x, y, τ) + ∂u0
∂x

(x, τ)
))

= 0, (17a)
s
β

(
∂u1
∂y

+ ∂u0
∂x

)
(x, ·, τ)

{

yn

= 0, (17b)

〈〈
β

(
∂u1
∂y

+ ∂u0
∂x

)
(x, ·, τ)

〉〉
yn

= k

h
R
(
h Ju1(x, ·, τ)Kyn

)
. (17c)

Integration of (17a) with the continuity condition (17b) entails

∂u1
∂y

(x, y, τ) = −∂u0
∂x

(x, τ) + 1
β(y)σ0(x, τ) (18)

where σ0 has to be determined. Considering averaging on the unit periodic cell as

〈g〉 =
∫ 1

0
g(y) dy,
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then for any continuous 1-periodic function on the open interval (0, 1) with limit conditions as in (12),
i.e. with a potential discontinuity only at yn = 0, we have〈dg

dy

〉
= − JgK . (19)

Applying this relation to u1 leads to〈
∂u1
∂y

(x, ·, τ)
〉

= − Ju1(x, ·, τ)K (20)

Moreover, using (18) in (17c) and inverting the resulting equation leads to

Ju1(x, ·, τ)K = 1
h
R−1

(
h

k
σ0(x, τ)

)
. (21)

Averaging the equation (18), we may recall the definition (9) of β in terms of the reference modulus
E∗. Setting the latter as follows

E∗ =
〈 1
E

〉−1
so that

〈 1
β

〉
= 1, (22)

then combining the equation (18) averaged with (20) and (21) finally leads to the following implicit
local equation for σ0:

σ0(x, τ) + 1
h
R−1

(
h

k
σ0(x, τ)

)
= ε0(x, τ),

where ε0 = ∂u0/∂x. Formally, we introduce the inverse operator geff as

σ0(x, τ) = geff
(
ε0(x, τ)

)
, (23)

that constitutes the effective strain-stress relation to be used later on.

Second-order field. Considering the second-order field u2, then identifying the terms of order O(1)
in (14) gives

∂

∂y

(
β(y)

(
∂u2
∂y

(x, y, τ) + ∂u1
∂x

(x, y, τ)
))

+ β(y) ∂
2u1

∂x∂y
(x, y, τ) + β(y)∂

2u0
∂x2 (x, τ)

+ f(x, τ) = α(y)∂
2u0
∂τ2 (x, τ), (24)

and those of order O(η) in (15a) leads to
s
β

(
∂u2
∂y

+ ∂u1
∂x

)
(x, ·, τ)

{

yn

= m

〈〈
∂2u0
∂τ2 (x, τ)

〉〉
yn

. (25)

Note that, for the purpose of deriving an effective model at the zeroth-order, there is no need to
consider the O(η) contribution in equation (15b).

Averaging the equation (24) on the unit periodic cell (0, 1) while using the identity (19), given that
β
(
∂u2
∂y + ∂u1

∂x

)
is continuous on (0, 1), together with the jump condition (25) implies

−m

〈〈
∂2u0
∂τ2 (x, τ)

〉〉
+ ∂

∂x

〈
β

(
∂u1
∂y

(x, ·, τ) + ∂u0
∂x

(x, τ)
)〉

+ f(x, τ) = 〈α〉 ∂
2u0
∂τ2 (x, τ). (26)
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Moreover, as in (22), the reference mass density entering the definition (9) of α is chosen as

ρ∗ = 〈ρ〉 so that 〈α〉 = 1. (27)

Finally, owing to the continuity of the field u0 and using (18) and (23) in (26) we arrive at

(m + 1)∂
2u0
∂τ2 (x, τ) = ∂

∂x

(
σ0(x, τ)

)
+ f(x, τ). (28)

This equation constitutes the sought effective wave equation for the non-dimensionalized macroscopic
field u0 in the rescaled coordinate system.

3.2.2 Final homogenized model

To conclude, the equation (28) is transposed in the original coordinate system. From the definition of
the non-dimensionalized variables and fields introduced in Section 3.1 and owing to (22) and (27), we
consider the mean field U0(X, t) = u0(x, τ)/k∗ that is governed by the equation

ρeff
∂2U0
∂t2

(X, t) = ∂Σ0
∂X

(X, t) + F (X, t), (29)

with the effective mass density being defined as

ρeff =
(
〈ρ〉+ M

h

)
(30)

and the macroscopic stress field Σ0(X, t) = E∗σ0(x, τ) satisfying the following local and non-linear
strain-stress relation 〈 1

E

〉
Σ0(X, t) + 1

h
R−1

( 1
K

Σ0(X, t)
)

= E0(X, t), (31)

where E0 = ∂U0/∂X. The latter macroscopic strain field is therefore related to the macroscopic stress
field Σ0 by the effective constitutive relation (31), which we formally write as Σ0 = Geff(E0).

Remark 4. In the case of the linear interface law (6), the effective strain-stress relation is linear and
writes as

Geff(E0) = C`eff E0 with C`eff =
(〈 1

E

〉
+ 1
Kh

)−1
. (32)

In addition, the case of perfect interfaces can be recovered by setting K → +∞ and M → 0, which
yields the well known result ρeff ∼ 〈ρ〉 and C`eff ∼ 〈1/E〉

−1.

3.3 Properties

Now that the zeroth-order effective model (29–31) has been obtained, we are interested in character-
izing its main properties.

3.3.1 Hyperbolicity

The equations (29–31) can be recast as the following first-order system:
∂E0
∂t

(X, t) = ∂V0
∂X

(X, t)

∂V0
∂t

(X, t) = 1
ρeff

{
∂Σ0

(
E0(X, t)

)
∂X

+ F (X, t)
} (33)
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where the dependence of Σ0 upon E0 through (31) has been emphasized. The non-linear system (33)
can finally be written in condensed form as

∂

∂t
Ψ0(X, t) + ∂

∂X

(
Geff

(
Ψ0(X, t)

))
= F(X, t) with Ψ0 =

(
E0, V0

)>
, (34)

and where Geff is a function from R2 into itself, while F =
(
0, F/ρeff

)>. We then arrive at the main
property below.

Property 2. The non-linear first-order order system (34) for the zeroth-order field
(
E0, V0

)
is a strictly

hyperbolic system whose characteristic speeds, which are the eigenvalues of the Jacobian matrix G′eff,

may be strain-dependent and write as ν±(E0) = ±
√

1
ρeff

∂Σ0
∂E0

.

Moreover, except in the case of linear interfaces, the system (34) is genuinely non-linear.

The genuine non-linearity of hyperbolic systems is a fundamental property. It implies in particular
that there exists a solution to the Cauchy problem, see [12], and that the waves connecting piecewise
constant states are either shocks or rarefaction waves, a property that is at the foundation of some
efficient numerical methods, see [13].

Proof. To prove Property 2, we consider the Jacobian matrix G′eff
(
Ψ0(X, t)

)
associated with (34),

which writes as
G′eff

(
Ψ0(X, t)

)
= −

(
0 1

1
ρeff

∂Σ0
∂E0

0

)
, (35)

and whose eigenvalues are ν±(E0) = ±
√

1
ρeff

∂Σ0
∂E0

. Consider the effective strain-stress relation E0 =
G−1
eff (Σ0) in (31). Since R is both a concave and strictly increasing function then R−1 is convex.

Moreover, R−1 is also strictly increasing so that G−1
eff is both convex and strictly increasing. As a

consequence, Geff is a concave and strictly increasing function. From that latter property, we get

∂Σ0
∂E0

= G′eff(E0) > 0,

which implies that the Jacobian matrix G′eff has two distinct real eigenvalues. Therefore, (34) is a
strictly hyperbolic system and the eigenvalues ν±(E0) defined previously are its characteristic speeds.
The corresponding right eigenvectors and the gradient of the eigenvalues with respect to Ψ0 write as

r±(E0) =
(

1
∓
√

1
ρeff
∂Σ0/∂E0

)
and ∇ν±(E0) =

(
ν ′±(E0)

0

)
,

with

ν ′±(E0) = ± 1
2
√
ρeff∂Σ0/∂E0

G′′eff(E0) = ∓ 1
2
√
ρeff∂Σ0/∂E0

(
G−1
eff
)′′(Σ0

)[(
G−1
eff
)′(Σ0

)]3 .
Now, from the definition (31) of the constitutive relation Geff we have

(
G−1
eff
)′′(Σ0

)
= 1
K2h

(
R−1)′′ ( 1

K
Σ0(X, t)

)
= − 1

K2h

R′′
(
R−1(Σ0(X, t)/K

))
[
R′
(
R−1(Σ0(X, t)/K

))]3 ≥ 0,

which, under Assumptions 2, vanishes if and only if R′′ = 0, a condition that characterizes the case of
linear elastic interfaces. It follows that ∇ν>± · r± 6= 0 for all Ψ0, and thus (34) is a genuinely non-linear
hyperbolic system, see [13].
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Remark 5. At small strains, the effective stress-strain relation can be expanded at the second order
as:

Σ0 ∼
E0→0

G′eff(0) E0 (1− γ E0) + o(E2
0 ) with G′eff(0) > 0 and γ ≥ 0, (36)

since Geff(0) = 0 and given that Geff is a concave and strictly increasing function. It is then possible
to make use of the approximation (36) (resp. a polynomial approximation of R) rather than of the
exact relation Geff (resp. R). Nevertheless, if we do so, then the corresponding system (34) would only
be conditionnally hyperbolic, a property that is questionable from a modeling standpoint and prevent
its use in standard time-domain simulation codes. For these reasons, we prefer to keep the original
constitutive law R in our model derivations.

Remark 6. Note that, if the constitutive relation R is a second-order polynomial, then it can be
checked that the associated effective stress-strain relation (31) reduces to the result of [3].

3.3.2 Energy analysis

To derive an energy conservation principle for the obtained local equations (29–31), we introduce again
the velocity field V0 = ∂U0/∂t and consider the following definition.

Definition 2. Consider an interval I ⊂ R and, for all time t ≥ 0, define

E0(t) =
∫
I

{1
2ρeffV

2
0 + Jeff

}
dX with Jeff(E0) =

∫ E0

0
Geff(Ẽ0) dẼ0.

We can then establish the following property, whose proof is deferred to Appendix B.

Property 3. Owing to the assumptions 1 and 2, E0 defines an effective mechanical energy associated
with the zeroth-order homogenized model, such that E0(t) ≥ 0 for all time t ≥ 0.

Moreover, E0 = 0 if and only if V0 = 0 and E0 = 0 in I. Lastly, if V0 and E0 are both sufficiently
smooth and compactly supported at time t = 0 then in the absence of source term, i.e. F = 0, it holds
d
dtE0 = 0 for all time t such that supp(V0(·, t)) ⊂ I and supp(E0(·, t)) ⊂ I.

Lastly, the effective energy E0 can be decomposed as E0 = Em
0 +Ei

0 with
Em

0 (t) = 1
2

∫
I

{
〈ρ〉V 2

0 +
〈 1
E

〉
Σ2

0

}
dX, (37a)

Ei
0(t) = 1

h

∫
I

{
1
2MV 2

0 +K

∫ R−1(Σ0/K)

0
R(ζ) dζ

}
dX. (37b)

These terms are respectively associated with the bulk and interface energies of the microstructured
problem, and satisfy Em

0 (t) ≥ 0 and Ei
0(t) ≥ 0 for all time t ≥ 0.

Remark 7. The proof of Property 3 in Appendix B is only based on the local equations (29–31)
that define the effective model and the quantities (37a) and (37b) appear naturally in such a proof.
Alternatively, their explicit form may have been deduced from the mechanical and interface energies
characterizing the microstructured problem, see Definition 1. More precisely, provided that an appro-
priate adimensionalization of the latter is performed then the ansatz (11) can be employed directly so
that the leading contribution can in turn be identified as the homogenized, zeroth-order, energy. Note
however, that deriving the local effective equations from such energy quantities requires the use of a
stationary principle, see e.g. the methodology employed in [25, 26].
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As shown in Property 1, which is relative to the microstructured problem, the total energy Eh
is conserved in the absence of external sources. Moreover, the analogy is clearly observed between
the corresponding energy terms in (7) and their counterparts (37) in the zeroth-order homogenized
model, see also Remark 7. However, a fundamental difference occurs between the microstructured and
homogenized models, due to the non-linearity of the partial differential equation (34), which allows
the formation of shocks in a finite time. Note however that, according to Property 3, the total effective
energyE0 is conserved as long as shocks do not appear. To better explain this property, we can exploit
the analogy with another model widely studied in the context of gas dynamics: the so-called p-system,
which describes, e.g., isentropic flows, with p = −Σ0 and u = E0 with the notations of [12, Chapter
7]. Since the constitutive law Geff is a concave and increasing function, the equivalent p-system has a
decreasing and convex state equation p(u). In this context, numerous theoretical results prove that
classical solutions breakdown in a finite time for smooth initial data with compact support, see e.g.
[23, 24, 12].

Considering the small strains quadratic non-linear constitutive law (36), then P. Lax derived an
estimated time t? when shocks would appear, see [23, 24]. Given a Cauchy problem with sinusoidal
strain of amplitude Emax and angular frequency ωc = 2πfc, we obtain

t? ≈ 1
Emaxγ ωc

+ 1
2fc

, (38)

with the additional term 1/(2fc) being the time required for the source to generate a complete sinus
arch. Logically, t? is inversely proportional to both the non-linearity coefficient γ of (36) and to the
amplitude Emax, as the larger these parameters are the stronger the non-linear effects are. Shocks
occur beyond t? and the total energy E0 then decreases, contrary to the case of the microstructured
medium, see Section 3.3.1. Consequently, (38) can be interpreted as an upper bound of the duration
of validity of the derived effective models. This issue will be illustrated by the numerical results of
Section 5.

4 First-order homogenization
While the effective model obtained in Section 3.2 only involves the zeroth-order mean field U0, the
purpose of this section is to derive an enriched effective model up to the first-order. The derivation of
this model follows the lines of Section 3.2 at the next order.

4.1 Model derivation

Identifying the terms of order O(η) in (14) gives

∂

∂y

(
β(y)

(
∂u3
∂y

(x, y, τ) + ∂u2
∂x

(x, y, τ)
))

+ β(y) ∂
2u2

∂x∂y
(x, y, τ) + β(y)∂

2u1
∂x2 (x, y, τ)

= α(y)∂
2u1
∂τ2 (x, y, τ), (39)

and, at the order O(η2), the equation (15a) leads to
s
β

(
∂u3
∂y

+ ∂u2
∂x

)
(x, ·, τ)

{

yn

= m

〈〈
∂2u1
∂τ2 (x, ·, τ)

〉〉
yn

. (40)

Moreover, given (16) and Remark 3, the O(η) contribution in equation (15b) is〈〈
β

(
∂u2
∂y

+ ∂u1
∂x

)
(x, ·, τ)

〉〉
yn

= k Ju2(x, ·, τ)Kyn R
′
(
h Ju1(x, ·, τ)Kyn

)
(41)
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Averaging the equation (39) on the chosen unit periodic cell (0, 1) leads to

−m

〈〈
∂2u1
∂τ2 (x, ·, τ)

〉〉
+ ∂

∂x

〈
β

(
∂u2
∂y

(x, ·, τ) + ∂u1
∂x

(x, ·, τ)
)〉

=
〈
α
∂2u1
∂τ2 (x, ·, τ)

〉
, (42)

where we have made use of (19), given that β
(
∂u3
∂y + ∂u2

∂x

)
is continuous on (0, 1), and (40). The

identity will be used to derive an equation for the mean field 〈u1〉 but, first, it leads us to make use of
an explicit expression for the field u1. To find one, the equation (18) is integrated as

u1(x, y, τ) = −∂u0
∂x

(x, τ) y + σ0(x, τ)b(y) + q1(x, τ) (43)

where σ0 is given by (23), q1 is to be determined, and the function b(y) is defined as

b(y) =
∫ y

0

1
β(z) dz.

Averaging the identity (43) gives

〈u1(x, ·, τ)〉 = −1
2
∂u0
∂x

(x, τ) + B σ0(x, τ) + q1(x, τ) (44)

with
B = 〈b〉 =

∫ 1

0

∫ y

0

1
β(z) dz dy.

Now, considering the first term in (42) we have〈〈
∂2u1
∂τ2 (x, ·, τ)

〉〉
= ∂2

∂τ2
〈〈
u1(x, ·, τ)

〉〉
,

where owing to (13), (43) and (22), we have〈〈
u1(x, ·, τ)

〉〉
= 1

2
(
u1(x, 0+, τ) + u1(x, 1−, τ)

)
,

= −1
2
∂u0
∂x

(x, τ) + 1
2σ0(x, τ) + q1(x, τ),

= 〈u1(x, ·, τ)〉+
(1

2 − B
)
σ0(x, τ),

(45)

with the identity (44) being used at the last line to replace the as yet undetermined function q1.

Next, in order to deal with the second term in (42), integrate the equation (24) and use the identity
(18) to obtain the following:

β(y)
(
∂u2
∂y

(x, y, τ) + ∂u1
∂x

(x, y, τ)
)

+
(
∂σ0
∂x

(x, τ) + f(x, τ)
)
y = a(y)∂

2u0
∂τ2 (x, τ) + p2(x, τ), (46)

where the function p2(x, τ) is to be determined and a(y) is defined as

a(y) =
∫ y

0
α(z) dz.

To determine the function p2, divide (46) through by β, average the resulting equation on the unit
cell (0, 1) and use the identities (19) and (22) to obtain

− Ju2(x, ·, τ)K + ∂

∂x
〈u1(x, ·, τ)〉+

(
∂σ0
∂x

(x, τ) + f(x, τ)
)〈

y

β

〉
= ∂2u0

∂τ2 (x, τ)
〈
a

β

〉
+ p2(x, τ). (47)
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Moreover, considering the left-hand side of equation (41), then from (13), (46) and (27) we get〈〈
β

(
∂u2
∂y

+ ∂u1
∂x

)
(x, ·, τ)

〉〉
= 1

2
∂2u0
∂τ2 (x, τ)− 1

2

(
∂σ0
∂x

(x, τ) + f(x, τ)
)

+ p2(x, τ),

which, once replaced in (41), entails

Ju2(x, ·, τ)K = 1
kR′ (h Ju1(x, ·, τ)K)

{
1
2
∂2u0
∂τ2 (x, τ)− 1

2

(
∂σ0
∂x

(x, τ) + f(x, τ)
)

+ p2(x, τ)
}
. (48)

Making use of (48) in (47) leads to the following expression for the sought function p2:

p2(x, τ) = ceff(ε0)
{
∂

∂x
〈u1(x, ·, τ)〉 − d0(ε0)∂

2u0
∂τ2 (x, τ) + d1(ε0)

(
∂σ0
∂x

(x, τ) + f(x, τ)
)}

(49)

where we have introduced the quantities

ceff
(
ε0(x, τ)

)
=
(

1 + 1
kφ

(
ε0(x, τ)

))−1

d0
(
ε0(x, τ)

)
=
〈
a

β

〉
+ 1

2kφ
(
ε0(x, τ)

)
d1
(
ε0(x, τ)

)
=
〈
y

β

〉
+ 1

2kφ
(
ε0(x, τ)

)
with φ

(
ε0(x, τ)

)
= R′ (h Ju1(x, ·, τ)K) ,

which all depend on the zeroth-order strain field ε0 through Ju1(x, ·, τ)K owing to the identities (21)
and (23). Note that these quantities may be employed while omitting the x and τ variables for
conciseness. Moreover, using the link between geff and R, and the formula for derivatives of inverse
functions, it is straightforward to show the following.

Property 4. It holds ceff(ε0) = g′eff(ε0).

Back to the calculation of the second term in (42), the equation (46) is averaged on the unit cell
(0, 1) and (49) is used to obtain

〈
β

(
∂u2
∂y

(x, ·, τ) + ∂u1
∂x

(x, ·, τ)
)〉

= g′eff(ε0) ∂
∂x
〈u1(x, ·, τ)〉+

(
A− g′eff(ε0)d0(ε0)

)∂2u0
∂τ2 (x, τ)

+
(
g′eff(ε0)d1(ε0)− 1

2

)(
∂σ0
∂x

(x, τ) + f(x, τ)
)
,

where we have defined
A = 〈a〉 =

∫ 1

0

∫ y

0
α(z) dz dy.

Finally, making use of the expression (23) for σ0 and of the zeroth-order equation (28) yields〈
β

(
∂u2
∂y

(x, ·, τ) + ∂u1
∂x

(x, ·, τ)
)〉

= g′eff(ε0) ∂
∂x
〈u1(x, ·, τ)〉

+
(
A− g′eff(ε0)d0(ε0) +

(
g′eff(ε0)d1(ε0)− 1

2

)
(m + 1)

)
∂2u0
∂τ2 (x, τ). (50)
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In a last step we focus on the right-hand side term in (42). As the unit cell is not necessarily
homogeneous in terms of mass density then that term is recast as follows〈

α
∂2u1
∂τ2 (x, ·, τ)

〉
= ∂2

∂τ2 〈αu1(x, ·, τ)〉 .

Moreover, we can make use of the identity (43) for u1 together with (27) and (44) to obtain

〈αu1(x, ·, τ)〉 = −∂u0
∂x

(x, τ) 〈α y〉+ σ0(x, τ) 〈α b〉+ q1(x, τ)

= 〈u1(x, ·, τ)〉+
(1

2 − 〈α y〉
)
∂u0
∂x

(x, τ) +
(
〈α b〉 − B

)
σ0(x, τ)

(51)

To conclude, the identities (45), (50) and (51) are used back in (42). Doing so we obtain the
equation below for the mean field 〈u1〉:

(m + 1) ∂
2

∂τ2 〈u1(x, ·, τ)〉 = ∂

∂x

(
σ1(x, τ)

)
+ s

(
u0(x, τ)

)
(52)

with σ1 being a macroscopic stress defined as

σ1(x, τ) = g′eff
(
ε0(x, τ)

) ∂
∂x
〈u1(x, ·, τ)〉 ,

and where the source term s
(
u0(x, τ)

)
is given by

s
(
u0(x, τ)

)
= ∂

∂x

(
g′eff(ε0)

{
(m + 1)d1(ε0)− d0(ε0)

}∂2u0
∂τ2 (x, τ)

)

+
{
A+ 〈α y〉 − m

2 − 1
}

∂3u0
∂x∂τ2 (x, τ) +

{
B − 〈α b〉+ m

(
B − 1

2

)}
∂2σ0
∂τ2 (x, τ). (53)

In the present form, the source term (53) is not quite tractable. However, based on the calculations
of Appendix C, it turns out to satisfy the following property.

Property 5. For all x and τ , the source term (53) is identically equal to

s(u0) = C g′′eff(ε0)


(
∂2u0
∂x∂τ

)2

− ∂2u0
∂x2

∂2u0
∂τ2


where C =

{
B − 〈α b〉+ m

(
B − 1

2

)}
. Moreover, when the periodic cell is homogeneous (without re-

striction on the linearity or non-linearity of the interface) we have C = 0, while for linear interfaces
we have g′′eff = 0. Hence, s(u0) = 0 in both of these cases.

Finally, once the mean field is computed using the equation (52), then the local corrector u1 at
the micro-scale within the periodic array can be reconstructed by combining the equations (43) and
(44) as

u1(x, y, τ) = 〈u1(x, ·, τ)〉+
(1

2 − y
)
ε0(x, τ) +

(
b(y)− B

)
geff
(
ε0(x, τ)

)
. (54)
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4.2 First-order homogenized model

4.2.1 Final model

Now that the model has been obtained for the first-order term u1 in the rescaled coordinate system,
the final step is to formulate the sought first-order approximation of the solution Uh in the original
coordinate system, as discussed in Section 2.1.2. Considering the ansatz (11), then from u0 and u1 we
can define the approximation u(1) as

u(1)(x, τ) = u0(x, τ) + ηu1(x, x/η, τ) = u0(x, τ) + hk∗u1(x, x/η, τ),

which, transposed in the original coordinate system, is expressed as

U (1)(X, t) = U0(X, t) + hU1(X, t), (55)

where U (1)(X, t) = u(1)(x, τ)/k∗ and, by a slight abuse of notation, U1(X, t) = u1(x, x/η, τ). The
equations satisfied by U1 are now provided below.

Considering the mean displacement field U1(X, t) = 〈u1(x, ·, τ)〉, the latter is governed by the
following equation

ρeff
∂2U1
∂t2

(X, t) = ∂Σ1
∂X

(X, t) + S
(
U0(X, t)

)
, (56)

where (30) has been used. Here the macroscopic stress field Σ1(X, t) = k∗E∗ σ1(x, τ) satisfies the
following linear and heterogeneous constitutive relation

Σ1(X, t) = G′eff
(
E0(X, t)

)∂U1
∂X

(X, t), (57)

while, according to Property 5, the source term S(U0) is given by

S
(
U0(X, t)

)
= 〈ρ〉

〈 1
E

〉{
B − 〈α b〉+ M

h 〈ρ〉

(
B − 1

2

)}
G′′eff(E0)


(
∂2U0
∂X∂t

)2

− ∂2U0
∂X2

∂2U0
∂t2

 .
Moreover, once the mean field U1(X, t) has been computed then the associated local corrector, i.e.
the total field U1(X, t) = u1(x, y, τ) can be found by expressing (54) in the original coordinate system
with y = (X − nh)/h when X belongs to a given interval

(
nh, (n+ 1)h

)
, so that

U1(X, t) = U1(X, t) + P
(
y, E0(X, t)

)
E0(X, t),

with P
(
y, E0(X, t)

)
=
(1

2 − y
)

+
(
b(y)− B

) 〈 1
E

〉 Geff(E0(X, t)
)

E0(X, t) .
(58)

Note that, in the above, P is a cell function that, generally speaking, depends explicitly and in a
non-linear fashion on E0(X, t). Given the definition (31) of Geff that features the interface law R and
owing to Assumptions 2, then we immediately arrive at the property below.

Property 6. The parameter G′eff
(
E0(X, t)

)
entering the effective constitutive relation (57) satisfies

G′eff
(
E0(X, t)

)
> 0 at all point X and time t so that the problem (56–57) is well posed.

Remark 8. In the case of linear interfaces, see (6) and Remark 4, then we get G′eff
(
E0(X, t)

)
= C`eff

and S
(
U0(X, t)

)
= 0. In addition, since Geff(E0)/E0 = C`eff then the cell function P in (58) only depends

on the coordinate y and reduces to a known form, see e.g. [10].
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4.2.2 Hyperbolic system

As previously done in Section 3.3.1 with the zeroth-order model, the equations (56–57) for the mean
field U1(X, t) can be recast as the following first-order system:

∂E1
∂t

(X, t) = ∂V 1
∂X

(X, t),

∂V 1
∂t

(X, t) = 1
ρeff

{
∂

∂X

(
G′eff
(
E0(X, t)

)
E1(X, t)

)
+ S

(
U0(X, t)

)} (59)

with V 1 = ∂U1/∂t and E1 = ∂U1/∂X. In turn, and with the notation of (34), the linear system (59)
can be written in condensed form as

∂

∂t
Ψ1(X, t) + ∂

∂X

(
G′eff

(
Ψ0(X, t)

)
Ψ1(X, t)

)
= S

(
Ψ0(X, t)

)
with Ψ1 =

(
E1, V 1

)>
, (60)

and where G′eff
(
Ψ0(X, t)

)
is the Jacobian matrix (35) of the system (34) governing the zeroth-order

field Ψ0 =
(
E0, V0

)>, while S =
(
0,S(U0)/ρeff

)>. As a consequence, the Jacobian matrix of the system
(60) is also equal to the matrix G′eff

(
Ψ0(X, t)

)
, so that, owing to Property 2, we immediately arrive at

the following result.

Property 7. The first-order system (60) for the first-order mean field
(
E1, V 1

)
is a linear and strictly

hyperbolic system, whose characteristic speeds are identically equal to these of the first-order system
(34), namely ν±(E0), for the zeroth-order field

(
E0, V0

)
.

5 Numerical experiments
In this section, the zeroth- and first-order effective models derived previously for any constitutive
relation R are illustrated using time-domain numerical simulations and considering the hyperbolic
non-linear constitutive relation (5), which is both simple and rich enough to highlight typical non-
linear phenomena. Moreover, in all of the numerical examples considered hereafter, we place ourselves
in the particular case where M = 0 in (2a), so as to focus on the non-linear effects that stems only
from the transmission condition (2b). Physically, this corresponds to configurations where the mass
density of the elastic interphase or joint is much smaller than that of the bonded materials, so that it
can thus be neglected.

5.1 Effective model

Starting with the zeroth-order homogenized model, then making use of (5) in (31) leads to a quadratic
equation for Σ0 whose solution satisfying Σ0 = 0 when E0 = 0 writes as an effective constitutive relation
Σ0 = Geff(E0) of the form:

Σ0 = 1
2C`eff

〈 1
E

〉−1
{
Kd+ C`eff E0 −

[(
Kd+ C`eff E0

)2
− 4

〈 1
E

〉
Kd(C`eff)2 E0

]1/2
}
, (61)

with C`eff being the effective stiffness (32) of the linear interface case, see Figure 4-(b). We can deduce
the following limit behaviors:

Σ0 ∼
E0→−∞

〈 1
E

〉−1
E0 and lim

E0→+∞
Σ0 = Kd. (62)

These limits can easily be interpreted from a phenomenological viewpoint. On the one hand, given
that the hyperbolic law (5) has a vertical asymptote at ζ = −d, see Figure 1, then the secant mod-
ulus of the interfaces, i.e. the ratio R(ζ)/ζ, tends to infinity in compression. It then becomes very
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expensive energetically to deform them, so that the deformation of the microstructured medium con-
centrates in the elastic cells in compression. Therefore, it is only the elasticity of the latter that is seen
macroscopically in the limit E0 → −∞. On the other hand, the law (5) has a horizontal asymptote at
R = +d with the associated secant modulus tending to zero when E0 → +∞. As a consequence, when
solicited in traction, the deformation localizes in the interfaces rather than in the elastic cells, as it
is more advantageous energetically. Asymptotically, it is thus only the stiffness of the former that is
seen macroscopically.

In the case of (61), the small strains second-order Taylor expansion (36) writes as

Σ0 ∼
E0→0

C`eff E0 (1− γ E0) + o(E2
0 ) with γ = 1

hd

(
C`eff
K

)2

> 0. (63)

As a consequence, at small strains, the effective behavior is linear, with modulus C`eff, and non-linear
effects are governed by the parameter γ and increase with the strain amplitude, comparatively.
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(a) Non-linear constitutive relation Σ0 = Geff(E0) in
(61) and linear case Σ0 = C`eff E0 in (32).
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(b) Sound speeds ν+(E0) in (64) and ν`+ for the linear
case.

Figure 4: Properties of the zeroth-order homogenized model. The numerical values of the associated physical
parameters are provided in Section 5.3. The dotted lines denote the theoretical asymptotic behaviors.

The characteristic speeds, see Property 2, associated with (61) depend explicitly on the strain E0
and write as:

ν±(E0)2 = 1
2ρeff

〈 1
E

〉−1
1− Kd+ C`eff E0 − 2 〈1/E〉Kd C`eff[(

Kd+ C`eff E0
)2 − 4 〈1/E〉Kd (C`eff)2 E0

]1/2
 . (64)

Remark 9. In the particular case of linear interfaces, i.e. when R(ζ) = ζ, we recover the linear
constitutive law Σ0 = C`eff E0 of Remark 4, whose associated characteristic speeds are ν`± = ±

√
C`eff/ρeff.

As theoretically analyzed, the ν± in (64) are real-valued for all E0. Moreover, from (62–63), we
get:

lim
E0→−∞

ν±(E0) = ±

√
1
ρeff

〈 1
E

〉−1
, ν±(0) = ν`±, lim

E0→+∞
ν±(E0) = 0.

The constitutive law (61) and the linear approximation (32) are illustrated on Figure 4a, using the
physical parameters that characterize the homogeneous periodic cell described in Section 5.3. The
associated wave speeds are illustrated on Figure 4b.
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Regarding the first-order homogenized model, see (55) together with the first-order corrector (58),
then we have Geff(E0)/E0 ∼ C`eff both for the non-linear law (5) in the limit of small strains, see (63),
and in the linear case (6). Hence, the cell function P in (58) does not depend on E0 in such cases. In
the non-linear case and at larger strains then E0 acts as a parameter for P. To illustrate this, and in
accordance with the numerical results presented hereafter, we consider its companion velocity-based
cell function PV , which is defined through the following identity:

V (1)(X, t) = ∂U (1)

∂t
(X, t) = V0(X, t) + hV 1(X, t) + hPV

(
y, E0(X, t)

) ∂V0
∂X

(X, t)

with PV
(
y, E0(X, t)

)
=
(1

2 − y
)

+
(
b(y)− B

) 〈 1
E

〉
G′eff
(
E0(X, t)

)
,

(65)

and where V0 = ∂U0/∂t and V 1 = ∂U1/∂t. Then the behavior of PV is illustrated on Figure 5 for two
different material configurations, namely a homogeneous periodic cell and a bilaminated one.
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Figure 5: Velocity-based cell function PV

(
y, E0(X, t)

)
in (65) for various strain amplitudes E0. The corre-

sponding physical parameters are provided in the sections 5.3 and 5.4, respectively. In (b), the vertical dashed
line indicates the position of the perfect interface between the two phases that constitute the bilaminated
periodic cell.

Lastly, and to follow up on Section 3.3.1, we can particularize the estimated time t? in (38).
In the linear case, i.e. in the small strain limit, a monochromatic forcing of amplitude A leads to
Emax = A/(ν`+)2. Given the coefficient γ in (63), this yields an estimate t? in the case of small
amplitudes and a monochromatic forcing as

t? ≈ hK2d

Aρeff C`eff ωc
+ 1

2fc
. (66)

Note that t? decreases with d, as the smaller d is the stronger the non-linear effects are. The estimate
(66) will be used in the ensuing examples as an upper bound on the duration of validity of the proposed
effective models.

Remark 10. In linear dynamical homogenization, it is known that the long-term behaviors of the
microstructured wavefields are not well captured by effective models, in particular due to the dispersive
nature of the former that develops with time, see e.g. [40, 22]. It is all the more so in the non-linear
case as what can be qualified as “long-term” is directly correlated to the amplitude of the source, as
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discussed previously. The effective models derived in the present study are thus valid at relatively
low source amplitudes and correspondingly short times. This issue will be illustrated in the numerical
results below.

5.2 Numerical set-up

5.2.1 Numerical schemes

In the following subsections, comparisons are made between full-field simulations in the microstruc-
tured configurations and simulations involving their homogenized counterparts (at the zeroth- and
first-order). All the numerical simulations are based on a uniform grid, with space and time dis-
cretization parameters ∆X and ∆t. A finite-volume scheme with flux limiters is implemented [27]
both for the simulations in the microstructured configurations and in the homogenized ones. This
non-linear scheme is of order 2 when the solution is sufficiently smooth, and it efficiently captures
possible sharp wave-fronts in the microstructured configurations, as well as the shocks that can form
in their homogenized counterparts.

For the microstructured configurations, the time step is adjusted based on the usual Courant-
Friedrichs-Lewy (CFL) stability condition. The characteristic speeds being constant, so is ∆t. More-
over, the interface transmission conditions (2) are handled using the so-called Explicit Simplified
Interface Method, for technical details see [30] in the linear case and [31, 19, 20] in the non-linear one.

Concerning the homogenized models, the two hyperbolic systems (34) and (60) are solved sequen-
tially, i.e. with Ψ0 =

(
E0, V0

)> being already computed when solving for Ψ1 =
(
E1, V 1

)>, while the
complete first-order approximation U (1) is computed afterwards by adding the corrector contribution
as in (55) and (58). In addition, since the characteristic speeds ν± depend non-linearly on the solu-
tion, see (64), then a time step ∆tn is computed at a given time iteration tn so as to satisfy the CFL
condition

max
Xj

ν+
(
E0(Xj , tn)

)∆tn
∆X ≤ 1,

where {Xj} denotes the grid points.
The choice of the discretization parameter ∆X for the microstructured configurations is based

on two criteria: (i) a sufficient number of computation points per wavelength; (ii) a sufficiently fine
discretization of each cell in order to capture the fields evolving at the small scale. Given the aim
of assessing the quality of the obtained effective models then criterion (ii) is the most penalizing: to
neglect the discretization effects then we typically consider 20 grid points in each cell, which leads,
for the example considered below, to a number of grid points per wavelength at the central frequency
of the order of 300, which is significantly oversampled in regard to (i). Note that, to illustrate the
local effect of the first-order corrector, then the same discretization is employed here for the numerical
simulations in the homogenized configurations.

PPPPPPPPPA
CPU (s) microstructured homogenized

0.1 7.1 1.9
40 28.5 2.1
80 33.2 2.2

Table 1: CPU times for simulations in the microstructured and homogenized configurations.

Table 1 presents the CPU computation times measured for the numerical simulations associated
with the figures 7–10. The simulations are performed on a single processor 3.6 GHz Intel Xeon PC. In
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the microstructured case, the CPU time depends strongly on the amplitude of the forcing. This is due
to the discretization of the non-linear interface conditions in the immersed interface method employed
here and that involves the resolution of non-linear systems with a Newton-Raphson scheme, see [31].
At low amplitudes, this resolution typically converges in 1 or 2 iterations. At higher amplitudes, the
systems of equations become stiffer and finding a solution requires more iterations. In the mean time,
the CPU time is almost independent of the forcing amplitude in the homogenized case. In practice,
we could perfectly use a much coarser grid for the latter than that considered here. This, in turn,
would significantly reduce the computation time and take full advantage of the effective models.

In the results presented hereafter, we will compare the velocity field Vh within the microstructured
medium, with the velocity fields V0 and V (1), which are associated with the zeroth- and first-order
homogenized models, respectively. These quantities will be refereed to as the microstructured and
homogenized fields, respectively.

5.2.2 Forcing
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Figure 6: Source function (67) with amplitude A = 1 and central frequency fc = 10Hz.

In dynamic homogenization, it is known that the validity of the effective models is subject to the
smoothness of the initial data or of the source term, see e.g. [21]. Investigating these issues are beyond
the scope of this study and we consider the initial data to be zero and an excitation by a smooth source
term. The latter is defined as F (X, t) = δ(X −Xs) g(t), with the time evolution g(t) being chosen as
the following combination of sinusoids with bounded support:

g(t) =


A

4∑
m=1

am sin(βm ωc t) if 0 < t <
1
fc
,

0 otherwise,
(67)

where βm = 2m−1 and the coefficients am being a1 = 1, a2 = −21/32, a3 = 63/768, a4 = −1/512.
It entails that g ∈ C6([0,+∞[) and, so defined, g(t) is a wide-band signal with a central frequency
fc = ωc/2π. The source temporal evolution g(t) and its Fourier spectrum are displayed in Figure
6. Note that care is required to incorporate a localized source such as F (X, t) defined above in the
homogenized model [11].
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5.3 Homogeneous periodic cell

5.3.1 Configuration

The computational domain considered is [0, 1000]m, and it contains a number of interfaces with
spacing h = 10m. In the first configuration considered the periodic cell is homogeneous, with con-
stant physical parameters ρ = 1200 kg/m3 and E = 9.408 ·109 Pa. In (2b) and (5), the parameter
characterizing the interfaces are K = 2.45 ·109 Pa/m and d = 10−4 m, respectively, while recall that
M = 0Pa.s2/m. The corresponding value of the effective parameters are ρeff = 1200 kg/m3 and
C`eff = 6.79·109 Pa. The associated velocity-based cell function PV in (65) is displayed in Figure 5a.

Moreover, the source F is defined with Xs = 505m, i.e. at the center of a cell, and the simulations
are stopped before the domain boundaries are reached. Note also that, in the hyperbolic system (60)
for Ψ1, the source term S(Ψ0) vanishes in the case considered, as S(U0) = 0 when the periodic cell
is homogeneous according to Property 5. Lastly, given the chosen source signal (67), we define the
parameter η relatively to the central frequency fc, i.e. η = ωc h/ν

`
+, with ν`+ being the characteristic

wave speed defined in Remark 9.

5.3.2 Numerical results

Comparisons between microstructured and homogenized fields. Figure 7 corresponds to an
excitation at the central frequency fc = 10Hz, associated with the value η = 0.26, and amplitude
A = 0.1. Snapshots of the velocity fields at t = 0.16 s are provided for both the microstructured
medium and the homogenized model. A close-up on the right-going wave highlights the excellent
agreement between the associated fields Vh and V (1). The extra zoomed-in Figure 7d shows that, at
the scale of the microstructure, the local fluctuations of Vh are correctly captured by the first-order
corrector, contrary to the zeroth-order effective field, as expected. Figure 8 corresponds to the same
numerical experiment as in Fig. 7 but with the larger forcing amplitude A = 40. Although non-linear
effects are now being fully solicited, the same conclusions are reached with an excellent agreement
between Vh and V (1), even at the microscale compared to V0.

For the given amplitude value A = 40, Figure 9 now illustrates the influence of the wavelength
by considering relatively larger values of the parameter η. Close-ups are centered on the right-going
wave and show a comparison between the homogenized wavefield V (1) and the microstructured one
Vh. At fc = 15Hz (i.e. η = 0.39) then, on the one hand, the first-order corrector is still able to
capture adequately the main wavefield variations within the microstructure, see Fig. 9a. On the
other hand, the field Vh exhibits high-frequency oscillations after the passing of the main front, and
computations on finer grids have confirmed that these oscillations are not numerical artifacts but a
physical phenomenon, which is typical of a dispersive effect. As such, these cannot be captured by the
first-order homogenized model that is intrinsically non-dispersive. At the higher frequency fc = 20Hz
(i.e. η = 0.52) in Fig. 9b the agreement between Vh and V (1) is deteriorating, as expected, and
dispersive effects also amplify within the microstructure.

Figure 10 illustrate another limitation of the proposed effective model that is the implicit assump-
tion of a relatively low source amplitude. The central frequency is kept as in the figures 7 and 8, i.e.
fc = 10Hz so that η = 0.26, but the source amplitude is now increased to A = 60 and A = 120. As A
increases, the stiffening of the fronts becomes more apparent. Moreover, the dispersive high-frequency
oscillations within the microstructure also increase while they are not captured by the homogenized
model, as previously underlined. More importantly, as the source amplitude increases, the valid-
ity of the former cannot be guaranteed as we find ourselves beyond the assumptions used in the
asymptotic analysis, see Remark 3. Note finally, that for the values considered of the amplitude, i.e.
A = 0.1, 40, 60, 80 and 120, then the maximum magnitudes of the strain field E0 in the zeroth-order
homogenized model are 1.35·10−8, 5.5·10−6, 8.4·10−6, 1.15·10−5 and 1.7·10−5, respectively, at t = 0.16 s.
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(a) Field Vh in the microstructured medium.

0 100 200 300 400 500 600 700 800 900 1000

−3E−5 

−2E−5 

−1E−5 

0 

1E−5 

2E−5 

3E−5 

x (m)

V
 (

m
/s

)

(b) First-order homogenized field V (1).
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Figure 7: Snapshots of the velocity fields at t = 0.16 s in the case of a homogeneous periodic cell and an
excitation by a pulse with central frequency fc = 10Hz (so that η = 0.26) and amplitude A = 0.1.

By reference to the effective stress-strain relation Geff plotted in Figure 4a, these strain values appear
to be relatively low.

Generation of harmonics. In the original microstructured medium, the presence of non-linear
imperfect interfaces generate harmonics of a given source signal. The calculation of their amplitudes
has been performed in [29] in the case of a single interface, while the theoretical analysis of the
case considered here of an array of interfaces is much more involved and is beyond the scope of the
present study. Yet, we compare here numerically these harmonics with those generated when using
the zeroth-order effective model, which is itself non-linear.

For this purpose, we consider simulations both in the microstructured and homogenized media,
with a receiver positioned at Xr = 805m (at the center of a cell) that records the velocity fields Vh
and V0, respectively. The source is monochromatic, i.e. such that am = 0 for all m > 1 in (67)
and with central frequency fc = 10Hz, and the wavefields are recorded once their time evolution has
reached a steady-state at Xr. Note that the computational domain is adapted in these simulations to
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(b) First-order homogenized field V (1).
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(d) Close-up showing the zeroth- and first-order ho-
mogenized fields V0 and V (1), respectively, and Vh.

Figure 8: Snapshots of the velocity fields at t = 0.16 s in the case of a homogeneous periodic cell and an
excitation by a pulse with central frequency fc = 10Hz (i.e. η = 0.26) and amplitude A = 40.

avoid being polluted by reflections from the boundaries. Finally, the discrete Fourier transforms of the
acquired signals are computed and Figure 11 shows in logarithmic scale the normalized amplitude of
the Fourier coefficients for different forcing amplitudes. When A = 0.1 the amplitude of the harmonics
are relatively low. For the higher amplitudes considered, i.e. A = 40, 60 and 80, then the amplitudes of
the multiple harmonics increase, as expected, which generate stronger non-linear effects as previously
underlined. The main observation here is that there is an overall satisfying agreement between the
amplitude of the harmonics generated using the microstructured model (in blue, thick bars) compared
to its zeroth-order effective counterpart (in red, thin bars).

Formation of shocks. The energy analyses of the microstructured and of the effective zeroth-order
models have been performed in the sections 2.3 and 3.3.2, respectively. Moreover, it has been discussed
in Section 5.1 that the homogenized model allows the formation of shocks in a finite time, unlike the
microstructured media, and a corresponding estimated time t? has been proposed.

This discussion is now illustrated numerically in Figure 12. The computational domain is [0, 2000]m
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(a) fc = 15Hz (i.e. η = 0.39)
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(b) fc = 20Hz (i.e. η = 0.52)

Figure 9: Superposition of the fields Vh and V (1) at t = 0.16 s with close-up on the right-going waves in the
case of a homogeneous periodic cell and a source of amplitude A = 40, for two different central frequencies.
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(a) A = 60.
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(b) A = 120.

Figure 10: Superposition of the fields Vh and V (1) at t = 0.16 s with close-up on the right-going waves in
the case of a homogeneous periodic cell and a source at central frequency fc = 10Hz (i.e. η = 0.26), for two
different amplitudes.

and a source with central frequency fc = 10Hz and amplitude A = 40 (left column) or A = 60 (right
column) is placed at Xs = 1010m, i.e. at the center of a cell. The top (resp. middle) panels cor-
respond to seismograms of the velocity field Vh (resp. V0). The bottom panels show the temporal
evolutions of the energies in the microstructured medium and in the homogenized one, i.e. Eh and E0
respectively. In each case, the dotted lines denote the estimated time t? in (66). For t < t∗ both the
wavefields and their energies agree well. At about t = t?, the effective energy E0 starts to decrease,
which is typical of a shock formation, as can be observed in Fig. 12c and 12d. In the mean time, the
energy Eh in the microstructured media is conserved, as expected. Dispersive effects are again clearly
visible in Fig.12a and 12b, i.e. high-frequency oscillations, which somehow regularize the wavefield
that propagates within the microstructured medium and prevent the formation of shocks.
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Figure 11: Amplitude of the normalized Fourier coefficients of the fields Vh (in blue, thick bars) and V0 (in
red, thin bars) recorded at Xr = 805m in the case of a homogeneous periodic cell and a monochromatic forcing
at fc = 10Hz with a varying amplitude A.

Figure 13 illustrates the influence of the shocks on the spectral content of the waves. Consid-
ering the configuration of Figure 12 then, to do so, two receivers are placed at Xr1 = 1205m and
Xr2 = 1705m, i.e. both at the center of a cell near the source and further away. The propagation
distance at Xr1 (resp. Xr2) is about one (resp. three) wavelength relatively to the central frequency fc.
Figure 13 then represents the discrete Fourier spectra of the recorded time-domain signals for the two
forcing amplitudes A = 40 and A = 60 considered. The waves reach the receiver Xr1 before the time
t?, so that no shock has formed yet in the homogenized media. We then note a satisfying agreement
between the microstructured and the effective spectra at low frequency, see Fig. 13a and 13b. When
recorded at the receiver Xr2, the wavefield V0 has now formed a shock while Vh is characterized by
stronger dispersive effects, as previously observed. Accordingly, we notice significant enrichments of
the associated spectra, see Fig. 13c and 13d. In particular, those associated with V0 now behave as
sinc functions, which is characteristic of the Fourier transforms of discontinuous functions. While at
frequencies f ≥ 37Hz, which corresponds to η = 1, the Fourier contents associated with these two
models are clearly different, they still agree relatively well for lower frequencies f ≤ 37Hz.

5.4 Bilaminated periodic cell

5.4.1 Configuration

In a second example, we consider the case of a bilaminated periodic cell, a configuration which has
been studied in [10] in the case of perfect interfaces. A motivation for this second example is that, in
the hyperbolic system (60) for Ψ1, the source term S(Ψ0) is now non-zero, see Property 5, contrary
to the case considered previously where the periodic cell was homogeneous.

The domain is kept as [0, 1000]m and it contains a set of imperfect interfaces with spacing h = 20m.
Between two interfaces, the periodic cell is composed of two homogeneous elastic phases, respectively
of length h1 = 8m and h2 = 12m and of constitutive parameters ρ1 = 1200 kg/m3, E1 = 9.408·109 Pa
and ρ2 = 1400 kg/m3, E2 = 1.26 ·1010 Pa. On the one hand, the interface between the two phases
within each cell is assumed to be perfect. On the other hand, the interfaces that bound each cell are
imperfect, with K = 2.45·109 Pa/m and d = 10−4 m, while M = 0 Pa.s2/m, as in the homogeneous
case of Section 5.3. The corresponding values of the effective coefficients are ρeff = 1320 kg/m3 and
C`eff = 9.0462 ·109 Pa, and the associated velocity-based cell function PV is displayed in Figure 5b.
Lastly, the parameter η is defined as in Section 5.3 as η = ωc h/ν

`
+, with ν`+ given in Remark 9.
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Figure 12: Case of a homogeneous periodic cell and an excitation by a pulse centered at fc = 10Hz with
amplitude A = 40 (left panels) and A = 60 (right panels). Top: seismograms of Vh in the microstructured
medium. Middle: seismograms of the homogenized field V0. Bottom: superposition and time evolution of the
energies Eh and E0. The dotted lines denote the estimated time t? in (66) for each case.
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(d) A = 60 and Xr2.

Figure 13: Case of a homogeneous periodic cell and an excitation by a pulse centered at fc = 10Hz with
amplitude A = 40 (left panels) and A = 60 (right panels), as in Figure 12. Spectra of the velocity fields Vh and
V0 recorded at two receivers placed at Xr1 = 1205m and Xr2 = 1705m. The vertical dashed line indicates the
value of the frequency that corresponds to η = 1.

5.4.2 Numerical results

Figure 14 is analogous to the figures 7 and 8 and corresponds to an excitation at the central frequency
fc = 5Hz, so that η = 0.24, and with amplitude A = 40. Snapshots of the microstructured velocity
fields Vh and its effective counterparts V0 and V (1) are displayed at time t = 0.2 s. For such a
configuration, and as in the previous one, these numerical results highlight the excellent agreement
of the effective models, which capture both the main variations of Vh and its local fluctuations at the
scale of the microstructure. The source term S(Ψ0) is thus properly handled numerically.

On Figure 15 we illustrate that, as expected, the validity of the effective models deteriorates as the
forcing amplitude increases. In these examples, the source central frequency is kept as in Figure 14,
i.e. fc = 5Hz (i.e. η = 0.24), but the source amplitude is increased to A = 120 and A = 200. For such
amplitudes, the dispersive effects and the distortion of the microstructured wave-fronts are stronger.
The macroscopic wave motion is still relatively well captured but not the small-scale microstructured
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(b) First-order homogenized field V (1).
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(c) Superposition of the fields Vh and V (1).
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(d) Close-up showing the zeroth- and first-order ho-
mogenized fields V0 and V (1), respectively, and Vh.

Figure 14: Snapshots of the velocity fields at t = 0.2 s in the case of a bilaminated periodic cell and an
excitation by a pulse with central frequency fc = 5Hz so that η = 0.24 and amplitude A = 40.

wavefield fluctuations. Note finally, that for the values considered of the amplitude in these examples,
i.e. A = 40, 120 and 200, then the maximum magnitudes of the strain field E0 in the zeroth-order
homogenized model are 4.8 ·10−6, 1.55 ·10−5 and 3 ·10−5, respectively, at t = 0.2 s. The first two
strain maxima are relatively low values given the effective stress-strain relation Geff of the considered
configuration but the third one is rather not.

6 Conclusion
The propagation of transient elastic waves in a 1D periodic array, characterized by linear elastic
cells bonded by non-linear interfaces, has been investigated in the long-wavelength regime using the
two-scale homogenization method. Considering a generic non-linear interface law, subject to certain
appropriate requirements, and limiting ourselves to low-amplitude forcings, then a first-order approx-
imation of the microstructured wavefield has been derived. The main findings of the present study
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Figure 15: Superposition of the fields Vh and V (1) at t = 0.2 s with close-up on the right-going waves in the
case of a homogeneous periodic cell and a source at central frequency fc = 5Hz (i.e. η = 0.24), for two different
amplitudes.

can then be summarized as follows:

1. The microstructured problem is associated with an energy Eh, with bulk and interface contribu-
tions, which is conserved over time in the absence of external sources.

2. The wavefield Uh is characterized by a spectral content that enriches over time and with the
amplitude of the forcing. In other words, dispersive effects increase and wave-fronts sharpen all
the more that the observation time or the amplitude of the source increase.

3. The two-scale homogenization method is deployed, up to the first-order, relatively to the small
geometrical parameter η only. In particular, the amplitude of the source is assumed in the
analysis to not scale with η, which restrains us to the case of sources of relatively low amplitude.

4. The zeroth-order contribution to Uh is a mean field U0 that is solution of a wave equation with
a non-linear constitutive stress-strain relation.

5. The governing equations for U0 can be recast in the form of a non-linear and strictly hyperbolic
first-order system for the strain-velocity variable Ψ0 = (E0, V0)>.

6. The non-linearity of the obtained hyperbolic system allows the formation of shocks in a finite
time and a corresponding estimation t? is provided.

7. The associated macroscopic energy E0 is conserved, in the absence of external source, as long as
shocks do not appear. The model for U0 is a meaningful effective one for Uh for times, at most,
such that t < t?.

8. In the numerical examples considered, U0 approximates well the macroscopic behavior of Uh
spatially. In the Fourier space, the low frequency contents of both fields agree well, even for
times t > t?.

9. The first-order corrector term U1 for Uh is expressed in terms of a cell function P and a mean
field U1 that is solution of a wave equation. Without further assumptions, both P and the
constitutive relation for U1 and its source term depend non-linearly on U0.
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10. The equation for U1 can be recast as a linear and strictly hyperbolic first-order system on the
strain-velocity variable Ψ1 = (E1, V 1)>, whose characteristic speeds are equal to those of the
system for Ψ0.

11. In the numerical examples considered, the field U (1) = U0 + hU1 provides a satisfying approxi-
mation of Uh, up to the fluctuations of the latter at the scale of the microstructure.

12. The dispersive behavior of Uh is not captured by the proposed effective models. Moreover, as
expected, the approximation quality of the latter decreases as the observation time or the source
amplitude increase.

Overall, the present work has led to effective models, in the time-domain, for approximating waves
in a 1D non-linear media. The 1D setting considered is somehow particular in that it might not
be straightforward to extend some parts, such as the explicit derivation of the cell function, of the
adopted approach in higher dimensions. Nevertheless, the presented numerical results highlight the
usefulness of the proposed effective models. A number of questions remain opened and among possible
future developments, it seems important to us to be able to capture the dispersive behavior of the
microstructured wavefield. This might be possible by deploying the homogenization method up to, at
least, the second order. Deriving an effective model for waves of relatively larger amplitudes would
also be interesting, as we have shown that non-linear phenomena are strongly dependent on the source
amplitude. To do so, it might be necessary to consider an additional scaling parameter and its relation
to the geometrical parameter η, which would correspondingly yield a specific model.

A Proof of Property 1
To prove Property 1, the equation (1) is multiplied by Vh and integrated by parts on I. Omitting the
space and time variable for conciseness, it leads to∫

I
ρh
∂Vh
∂t

Vh dX =
[
Σh(·, t)Vh(·, t)

]b
a
−
∑
XI
n

JΣhVhKXI
n

+
∫
I

{
FVh − Σh

∂Vh
∂X

}
dX. (68)

Now, focusing on the jump term at XI
n, we write

JΣhVhKXI
n

= JΣhKXI
n
〈〈Vh〉〉XI

n
+ 〈〈Σh〉〉XI

n
JVhKXI

n
,

which owing to the interface conditions (2) is recast as

JΣhVhKXI
n

= M〈〈Vh〉〉XI
n

〈〈
∂Vh
∂t

〉〉
XI
n

+KR
(
JUhKXI

n

)s
∂Uh
∂t

{

XI
n

. (69)

We assume that the displacement field is sufficiently smooth in time so that, for W = Uh or Vh, it
holds s

∂W

∂t

{

XI
n

= d
dt JW KXI

n
and

〈〈
∂W

∂t

〉〉
XI
n

= d
dt〈〈W 〉〉XI

n
. (70)

Moreover, we have the following identity

KR
(
JUhKXn

) d
dt JUhKXI

n
= d

dtK
∫ JUhK

XIn

c
R(ζ) dζ, (71)
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where c is a constant for the time variable. For definiteness of the energy, we set c = 0. Making use
of (70) and (71) in (69) and inserting that back in (68) finally leads to

d
dt

1
2

∫
I

{
ρh V

2
h + 1

Eh
Σ2
h

}
dX + d

dt
∑
XI
n

{
1
2M〈〈Vh〉〉

2
XI
n

+K

∫ JUhK
XIn

0
R(ζ) dζ

}
−
[
Σh(·, t)Vh(·, t)

]b
a

=
∫
I
FVh dX.

Using the notation of Definition 1 and introducing C(t) = −
[
Σh(·, t)Vh(·, t)

]b
a
, then the previous

equation can be recast as
d
dt
(
Em
h +Ei

h

)
+ C(t) =

∫
I
FVh dX. (72)

Provided that Vh and Σh are compactly supported at t = 0 and if the domain I is sufficiently large
then C(t) = 0. Therefore, owing to (72), if F = 0 we get d

dt(E
m
h +Ei

h) = 0.

Furthermore, according to Assumptions 1 we have that each term in (7a) is positive so that
Em
h (t) ≥ 0. From Assumptions 2 we also have

∫ JUhK
XIn

0
R(ζ) dζ =

∫ JUhK
XIn

0

∫ ζ

0
R′(ξ) dξ dζ ≥ R′min

JUhK2
XI
n

2 ≥ 0, (73)

given that R′(ξ) ≥ R′min > 0 on the interval
[
0, JUhKXI

n

]
. Therefore, each term in (7b) is positive and

thus Ei
h(t) ≥ 0. Finally, we recover explicitly the quantity Ei

h in Definition 1 by noting that, from (2),
we have JUhKXI

n
= R−1(〈〈Σh(·, t)〉〉XI

n
/K
)
.

Lastly, if (Em
h +Ei

h) = 0 then Em
h = 0 hence Vh = 0 and Σh = 0 almost everywhere in I. Moreover,

we have Ei
h = 0, which on the one hand implies that 〈〈Vh〉〉XI

n
= 0 and JΣhKXI

n
= 0. On the other hand

we also have JUhKXI
n

= 0 from (73), which implies in turn that JVhKXI
n

= 0 and 〈〈Σh〉〉XI
n

= 0. As a
consequence, both Vh and Σh vanish on I.

B Proof of Property 3
In this whole proof, the manipulated fields are assumed to be sufficiently regular, typically, differen-
tiable. Similarly to the proof in Appendix A, the equation (29) is multiplied by V0 and integrated by
parts on I = [a, b] as∫

I
ρeff

∂V0
∂t

V0 dX =
∫
I

{
∂Σ0
∂X

+ F

}
V0 dX,

=
[
Σ0(·, t)V0(·, t)

]b
a

+
∫
I

{
FV0 − Σ0

∂V0
∂X

}
dX.

(74)

We now focus on the third right-hand side term in the equation above. Noticing that ∂V0/∂X = ∂E0/∂t
and using the effective strain-stress relation we get∫

I
Σ0
∂V0
∂X

dX =
∫
I
Geff(E0)∂E0

∂t
dX. (75)

Introducing the antiderivative Jeff of Geff that vanishes when E0 = 0, i.e.

Jeff(E0) =
∫ E0

0
Geff(Ẽ0) dẼ0, (76)
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then (75) can be rewritten as∫
I
Geff(E0)∂E0

∂t
dX =

∫
I

∂Jeff(E0)
∂E0

∂E0
∂t

dX = d
dt

∫
I
Jeff(E0) dX. (77)

Going back to (76), then making the substitution Σ̃0 = Geff(Ẽ0) and integrating by parts lead to

Jeff(E0) =
∫ Σ0

0
Σ̃0
(
G−1
eff
)′(Σ̃0) dΣ̃0,

= Σ0E0 −
∫ Σ0

0
G−1
eff (Σ̃0) dΣ̃0,

(78)

since Assumptions 2 imply that the effective strain-stress relation (31) satisfies Geff(0) = 0. Noticeably,
the last identity in (78) amounts to the well known relation between the strain-based mechanical
quantity Jeff(E0), which will be shown to be an energy, and the complementary stress-based one
J ceff(Σ0) =

∫ Σ0
0 G−1

eff (Σ̃0)dΣ̃0. Such a relation can be established using the Legendre-Fenchel transform.
Making use of the explicit form (31) of G−1

eff in (78) entails

Jeff(E0) = 1
2

〈 1
E

〉
Σ2

0 + Σ0
h
R−1

( 1
K

Σ0

)
−
∫ Σ0

0

1
h
R−1

( 1
K

Σ̃0

)
dΣ̃0,

= 1
2

〈 1
E

〉
Σ2

0 +
∫ Σ0

0

Σ̃0
Kh

(
R−1)′ ( 1

K
Σ̃0

)
dΣ̃0.

(79)

In the integrated term of the equation above, making the substitution Σ̃0 = KR(ζ) gives∫ Σ0

0

Σ̃0
Kh

(
R−1)′ ( 1

K
Σ̃0

)
dΣ̃0 = K

h

∫ R−1(Σ0/K)

0
R(ζ) dζ. (80)

Finally, using (80) in (79) and substituting back in (77) and (74) lead to

d
dt

∫
I

{
1
2 〈ρ〉V

2
0 + 1

2

〈 1
E

〉
Σ2

0 + 1
2hMV 2

0 + K

h

∫ R−1(Σ0/K)

0
R(ζ) dζ

}
dX

−
[
Σ0(·, t)V0(·, t)

]b
a

=
∫
I
FV0 dX

Making use of the notation of (37) and setting C0(t) = −
[
Σ0(·, t)V0(·, t)

]b
a
, then the previous equation

can be rewritten as
d
dt
(
Em

0 +Ei
0
)

+ C0(t) =
∫
I
FV0 dX

To conclude, we also have that Em
0 (t) ≥ 0 holds for all time t ≥ 0, as well as Ei

0(t) ≥ 0 since the
integral (80) is positive based on (73). Moreover, if

(
Em

0 +Ei
0
)

= 0 then the fields V0 and Σ0, which
are continuous, vanish in the interval I, and so does E0.

C Proof of Property 5
We need to start by remarking that, using integration by part, we have

A = 1− 〈αy〉, B = 1−
〈
y

β

〉
,

〈
a

β

〉
= 1− 〈αb〉. (81)

We can hence rewrite (53) as

s(u0) = ∂

∂x

(
C1
∂2u0
∂τ2

)
+ C2

∂3u0
∂x∂τ2 + C ∂

2σ0
∂τ2 , (82)
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where, making use of Property 4, we have

C1(x, τ) = g′eff(ε0){(m + 1)d1(ε0)− d0(ε0)}, C2 = −m

2 , C = B − 〈αb〉+ m

(
B − 1

2

)
.

By definition (23) of σ0 and two successive applications of the chain rule, remembering that ε0 = ∂u0/∂x,
we find that

∂2σ0
∂τ2 = g′eff(ε0) ∂

3u0
∂x∂τ2 + g′′eff(ε0)

(
∂2u0
∂x∂τ

)2

,

= ∂

∂x

(
g′eff(ε0)∂

2u0
∂τ2

)
− ∂

∂x

(
g′eff(ε0)

)∂2u0
∂τ2 + g′′eff(ε0)

(
∂2u0
∂x∂τ

)2

. (83)

Moreover, using (83) and the fact that C2 and C are constants, then (82) can be rewritten as

s(u0) = ∂

∂x

((
C1 + C2 + Cg′eff(ε0)

)∂2u0
∂τ2

)
− C ∂

∂x
(g′eff(ε0))∂

2u0
∂τ2 + Cg′′eff(ε0)

(
∂2u0
∂x∂τ

)2

. (84)

Now, it is remarkable that, using (81) and a little algebra, we can show that

C1 + C2 + Cg′eff(ε0) = 0. (85)

Finally, remembering that ε0 = ∂u0/∂x, we have by direct differentiation that ∂
∂x(g′eff(ε0)) = ∂2u0

∂x2 g
′′
eff(ε0),

which, used together with (85) allows us to rewrite (84) as

s(u0) = Cg′′eff(ε0)


(
∂2u0
∂x∂τ

)2

− ∂2u0
∂x2

∂2u0
∂τ2

 ,
as expected.

Simplifications can occur in two particular cases. Firstly, in the case of a homogeneous material
(without restriction on the linearity or non-linearity of the imperfect interface), we have that β(y) =
α(y) = 1, implying that 〈αb〉 = B, b(y) = y and B = 1/2, resulting in C = 0. Hence for a homogeneous
material, such as that dealt with in Section 5.3, the source term s(u0) is identically zero.

Secondly, using again the differentiation formulae for inverse functions, we can show that

g′′eff(ε0) = h

k2

(
g′eff(ε0)
φ(ε0)

)3
R′′(h Ju1(x, ·, τ)K). (86)

In the linear case, where R(ζ) = ζ and R′′ = 0, we therefore have g′′eff(ε0) = 0, and (86) implies that,
for an arbitrary medium, but with linear imperfect interfaces, we can also conclude that the source
term s(u0) is identically zero.
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