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Almost periodic solutions in distribution to affine stochastic
differential equations driven by a fractional Brownian motion

with Hurst parameter H > 1
2

Tassadit AKEB∗, Nordine CHALLALI†, Omar MELLAH‡

Abstract

The few works devoted to the existence of almost periodicity (or almost automorphy) so-
lutions to stochastic differential equations driven by a fractional Brownian motion impose the
condition: the coefficient of fractional stochastic part is deterministic. In this work, without
this condition, by using the chaos decomposition approach and the representation of the frac-
tional Brownian motion in terms of a standard Brownian motion, we obtain the existence and
uniqueness of almost periodic solution in distribution to affine stochastic differential equation
driven by a fractional Brownian motion with Hurst parameter H > 1

2 .

Keywords: Fractional Brownian motion, multiple stochastic integral, almost periodic solution,
chaos decomposition.

1 Introduction

Since the introduction of the theory of almost periodic functions by Harald Bohr [9, 10] in the
1920s, it has aroused great interest. In recent years, it has become one of the most attractive topics
in the qualitative theory of differential equations because of their significance and applications in
physics, mathematical biology, telecommunication net work, finance, control theory, and others
related fields. For more details on this theory, see for instance [2, 4, 15, 24].

The extension of almost periodicity theory given by Bochner [7] for functions with values in
Polish spaces and especially in Banach spaces, allowed to generalize this theory for a wider class of
functions, in particular for the class of random functions (stochastic processes): almost periodicity
in p-mean, in probability, in distribution (one-distribution, finite distribution and infinite distri-
bution), almost periodicity of moments, ... . Some characterizations of almost periodic functions
with values in a Polish space, especially in probability measures space, are given in [3, 28, 33].

It is well known that natural application of the concept of almost periodic random functions is
the study of stochastic differential equations, with almost periodic coefficients, driven by different
noises (standard Brownian motion, fractional Brownian motion, Lévy, etc.). During the last 30
years, the class of stochastic differential equations driven by standard Brownian motion, W =
{Wt , t ∈R} is the most studied. The existence and uniqueness of almost periodic solution is carried
out by several authors, we quote among others: L. Arnold, C. Tudor, T. Morozan and G. Da Prato
(see e.g. [1, 16, 28]). All these authors deal with almost periodicity in distribution. O. Mellah and
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P. Raynaud De Fitte [27] show, by counterexamples, that the almost periodicity in p-mean is a
strong property for solutions of stochastic differential equations, which means the nonexistence
of almost periodic solution in p-mean in general. However in the class of stochastic differential
equations driven by fractional Brownian motion (fBm for short), until now, to our knowledge,
there are only few works dedicated to the study of existence and uniqueness of almost periodic
solutions. We can cite for example, P. Bezandry [5] has attempted to show the existence and
uniqueness of almost periodic solutions. Recently, F. Chen and X. Yang [12] show the existence
and uniqueness of almost automorphic (which is a generalization of almost periodicity) solutions
in distribution, F. Chen and X. Zhang [13] obtain the same result for another class of differential
equations: mean-field stochastic differential equations driven by fBm. Note that in all the works
cited above, the authors assume that the coefficient of fractional stochasctic part is deterministic.
In this work, without this condition, we will show the existence and uniqueness of almost periodic
solution to affine stochastic differential equations driven by fBm.

A fBm, with Hurst parameter H ∈ (0,1), introduced by Kolmogorov [23] and studied by
Mandelbrot and Van Ness [26], is a centered Gaussian process BH = {BH(t), t ∈ R} which has
stationary increments and with the covariance function

E(BH(t)BH(s)) = RH(t,s) =
1
2
(
|s|2H + |t|2H −|t− s|2H), (1)

notice that if H = 1
2 , we recover the standard Brownian motion. For H 6= 1

2 the increments of
the fBm are no longer independent (i.e. they are positively correlated if H > 1

2 , and negatively
correlated if H < 1

2 ). Furthermore, when H > 1
2 , the fBm exhibits long-range dependence: at large

time lags, the dependence is so strong, which results the divergence of the series ∑
∞
k=1 RH(1,k).

Also the fBm is neither a Markov process nor a semimartingale, as result one cannot use the usual
Itô stochastic calculus, and alternate methods are required in order to define stochastic integrals
with respect to fBm. For this, several different ways of a defining stochastic integral with respect
to fBm,

∫ t
0 f (s)dBH (s), have been suggested:

• pathwise approach, using the results of Young [34], Ciesielski [14] and Zähle [35]. In
general, in this case, the property E(

∫ t
0 f (s)dBH(s)) = 0 is not satisfied, we cite for example

Lin, SJ [25] and Gripenberg and Norros [22].

• Malliavin calculus approach, introduced by Decreusefond and Üstünel [18], Carmona and
Coutin [11]. In this approach, the property E(

∫ t
0 f (s)dBH(s)) = 0 is satisfied, we see for

instance Duncan, Hu and Pasik-Duncan [21] (using Wick calculus), Pérez-Abreu and Tudor
[31] (using transfer principle), the two definitions given in these two papers are equivalent.
In some cases, this integral is called Skorohod integral with respect to fBm. It is well known
that on the case H = 1

2 , the Skorohod integral may be regarded as an extention of the Itô
integral to integrands that are not necessarily adapted, see [19, Theorem 2.9].

We consider the following affine stochasctic differential equation:

dX(t) =
(
a0(s)−X(s)

)
ds+

(
b0(s)+b(s)X(s)

)
dBH(s), (2)

where a0, b0 and b are almost periodic continuous real functions. The aim of this paper is to show
the existence and uniqueness of almost periodic solution in distribution to (2). For this, to facilitate
the understanding, we keep the same notations as in the work of Pérez-Abreu and Tudor [31]. To
remedy to the difficulties engender by the fact that integrand part is random function, the basic
tools we used in this paper are:

1. The representation of the fractional Brownian motion in terms of standard Brownian motion:

BH(t) =
∫
R

K(t,s)dWs, (3)
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where K(t,s) is a non random fractional kernel. This equality is given in finite distribution
and it is shown in [18] and [26] that it holds in trajectorial sense with a fixed standard
Brownian motion.

2. The chaos expansion, where each term is given by the multiple fractional stochastic inte-
grals.

3. By using the representation (3) of fBm, we define multiple fractional stochastic integrals
in terms of the classical Itô multiple integrals of the standard Brownian motion. What will
allow us to recover the interesting properties of the Itô integral, as Itô isometry, change of
variable,... .

The organisation of this paper is as follows: in Section 2, we recall some basic definitions
related to fBm, almost periodcity and multiple fractional stochastic integrals. In Section 3, we
study the existence and uniqueness of almost periodic solution in one dimensional distribution to
affine fractional stochastic differential equation (2).

2 Notations and preliminaries

This section is dedicated to the different spaces involved in this work: space of almost periodic
functions, the space of integrands with respect to fBm, the sapce of multiple integrands with
respect to fBm. the last part of this section is devoted to the chaos expansion.

2.1 Space of almost periodic functions

Let (E,d) be a Polish space. A continuous function f : R→ E is said to be almost periodic if for
each ε > 0 there exists l(ε)> 0 such that any interval of lenght l(ε) contains at least a number τ

for which
sup
t∈R

d
(

f (t + τ), f (t)
)
< ε. (4)

We denote by AP(R,E) the space of E-valued almost periodic functions.
This definition is not always easy to use in practice. The following theorem gives two characteri-
zations, due to Bochner, of the almost periodicity, which are usually used.

Theorem 2.1 ( [8]) Let f : R→ E be a continuous function. The following statements are equiv-
alent

1. f is almost periodic.

2. The set of translated functions { f (t+ .); t ∈R} is totally bounded in the space of continuous
functions C(R;E) endowed with the topology of uniform convergence.

3. f satisfies Bochner’s double sequences criterion, that is, for every pair of sequences (α′n)⊂
R and (β′n)⊂R, there are subsequences (αn)⊂ (α′n) and (βn)⊂ (β′n) respectively with same
indexes such that, for every t ∈ R, the limits

lim
n→∞

lim
m→∞

f (t +αn +βm) and lim
n→∞

f (t +αn +βn), (5)

exist and are equal.

Remark 2.2 A striking property of Bochner’s double sequence criterion is that the limits in (5)
exist in any of the three modes of convergences: pointwise, uniform on compact intervals and
uniform on R. This criterion has thus the advantage that it allows to establish uniform convergence
by checking pointwise convergence.
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2.1.1 Space of probability measures

We denote by Cb(E) the Banach space of continuous and bounded functions f : E→ R endowed
with the uniform norm

‖ f‖∞ = sup
x∈E
| f (x)|,

Let f ∈Cb(E) we define:

‖ f‖L = sup
{

f (x)− f (y)
dE(x,y)

: x 6= y
}
,

| f |BL = max{‖ f‖∞,‖ f‖L} ,

and

BL(E) = { f ∈Cb(E);‖ f‖BL < ∞} .

The space of all probability measures onto σ-Borel field of E, denoted by P (E) and endowed with
the metric: for µ,ν ∈ P (E),

dBL(µ,ν) = sup
‖ f‖BL≤1

∣∣∣∣∫E f d(µ−ν)

∣∣∣∣ ,
which generates the weak topology on P (E), is Polish space [20].
Almost periodcity in distribution
Let X = (Xt)t∈R be a stochasctic process defined on probability space (Ω,F ,P) with values in R.
We say that X is stochastically continuous if for every s ∈ R,

lim
t→s

E |X(t)−X(s)|= 0.

We denote by law(X)(t) the distribution of the random variable X(t) : Ω→ R, which means
law(X(t)) ∈ P (R). The following defintions are introduced by C. Tudor.

• A stochastically continuous process X is said to be almost periodic in one-dimensional
distributions if the function {

R → P (R)
t 7→ law(X(t))

is almost periodic.

• A stochastically continuous process X is said to be almost periodic in finite dimensional
distributions if for any n≥ 1 and t1 < t2 < ... < tn, the function{

R → P (Rn)
t 7→ law

(
X(t + t1),X(t + t2), ...,X(t + tn)

)
is almost periodic.

• A stochastic process X with continuous trajectories is said to be almost periodic in distri-
bution (or in infinite dimentional distributions) if the function{

R → P (Ck(R,R))
t 7→ law

(
X(t + .)

)
is almost periodic (the space of continuous fonctions Ck(R,R) is endowed with the topology
of uniform convergence on compact sets).

A comparative study between different almost periodicity of stochastic process is given by C.
Tudor [33] and completed by F.Bedouhene et al. [3].
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2.2 Integrand space

We fix a fBm {BH
t }t∈R with Hurst parameter H ∈

(1
2 ,1
)

defined on probability space (Ω,F ,P)
such that F = σ

(
BH

t , t ∈ R
)
. We denote by E the space of elementary (or step) functions defined

on real line by all functions of the form

f (u) =
n

∑
k=1

fk11[uk,uk+1)(u), ∀u ∈ R,

where fk ∈ R. The integral on this space with respect to the fBm is defined by:

IH ( f ) =
n

∑
k=1

fk
(
BH (uk+1)−BH (uk)

)
:=

∫
R

f (u)dBH(u),

which is a centred Gaussian random variable. The linear Gaussian space{
IH( f ); f ∈ E

}
is subset of

I(BH) := {X ∈ L2
H(Ω,F ,P); s.t. ∃( fn)n∈N ⊂ E , IH( fn)

L2

−→ X}

which is also a linear space of centred Gaussian random variables with variance: for every X ∈
I(BH),

var(X) = E(X2) = lim
n→∞

E(IH( fn)
2) = lim

n→∞
var(IH( fn)).

If f is an element of equivalence class of sequences of elementary functions ( fn)n∈N such that

IH( fn)
L2

−→ X ( X ∈ I(BH)), then X can be defined as the integral of f with respect to the fBm:

X :=
∫
R

f (u)dBH(u).

For every X ∈ I(BH), the existence of function (or integrand) f such that X =
∫
R f (u)dBH(u) is

assured according to the values of H:

1. In the case H = 1
2 (which means that B

1
2 =W ) the set of of all functions f forms the whole

Hilbert space L2(R) which is isometric to I(W ).

2. In the case H 6= 1
2 , the problem is dealt by V. Pipiras and M.S. Taqqu [32, Proposition 2.1]:

for H ∈ (0, 1
2), the authors show the existence of functional space which is a Hilbert space

isometric to I(BH). However, for H ∈ (1
2 ,1), they show the existence of functional space

which is incomplete and isometric to subspace (strict) of I(BH).

On the following, we will briefly give the idea of the construction of the integrand space,
we became interested only in the last case (H > 1

2 ) (for more details see [32]). The following
representation of fBm will allow us to define the integrand space. But before, let’s recall the
definition of fractional integral.
For a function φ : R→ R, we denote by Iα

−(φ) the fractional integral, of order α > 0, of φ, which
is defined by:

(Iα
−φ)(s) =

1
Γ(α)

∫
R

φ(u)
(
s−u

)α−1
− du, s ∈ R (6)

=
1

Γ(α)

∫
R

φ(u)
(
u− s

)α−1
+

du, s ∈ R, (7)

where

a+ =

{
a if a > 0
0 if a≤ 0

and a− =

{
−a if a < 0
0 if a≥ 0

.
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Remark 2.3 If φ ∈ L
1
H (R), then Iα

−φ ∈ L2(R) with α = H− 1
2 (see e.g. [31, Theorem 2.3]).

The following representation holds in trajectorial sense.

Proposition 2.4 ( [29] Proposition 2.3) Let W be a standard Brownian motion and H ∈ (1
2 ,1).

Then the process BH = (BH
t )t∈R, defined as

BH
t =

1
cH

∫
R

(
(t− s)

H− 1
2

+ − (−s)
H− 1

2
+

)
dW (s), (8)

where

cH =
(∫ ∞

0

(
(1+ s)H− 1

2 − sH− 1
2
)2ds+

1
2H

) 1
2
,

is fBm of Hurst parameter H.

Remark 2.5 • The fractional kernel K can be expressed as a function of I
H− 1

2
− , more exactly,

we have

K(t,s) =

(
(t− s)

H− 1
2

+ − (−s)
H− 1

2
+

)
cH

=
(H− 1

2)

cH

∫
R

1[0,t)(u)(u− s)
H− 3

2
+ du

=
Γ(H + 1

2)

cH
I

H− 1
2

−
(
1[0,t)

)
(s),

where 1[0,t) is interpreted as −1[t,0), if t < 0

• Using the representation (8) of fBm, for every f ∈ E , we have

IH( f ) =
∫
R

f (s)dBH(s) =
Γ(H + 1

2)

cH

∫
R

(
I

H− 1
2

− ( f )
)
(s)dW (s).

(The last integral is the Wiener Itô integral with respect to the standard Brownian motion
W ).

• For every f ,g ∈ E ,

E
(
IH( f )IH(g)

)
=

Γ(H + 1
2)

2

(cH)2

∫
R

(
I

H− 1
2

− ( f )
)
(s)
(
I

H− 1
2

− (g)
)
(s)ds.

The space of integrands with respect to the fBm BH , denoted L2
H(R), is defined as follows:

L2
H(R) =

{
f ; I

H− 1
2

− ( f ) ∈ L2(R)
}
=

{
f ;
∫
R

(∫
R

f (u)(u− s)
H− 3

2
+ du

)2

ds < ∞

}
(9)

Proposition 2.6 ( [32]Proposition 3.2) The space L2
H(R), defined in (9), is linear space with the

inner product

〈 f ,g〉H =
Γ(H + 1

2)
2

(cH)2

∫
R

(
I

H− 1
2

− ( f )
)
(s)
(
I

H− 1
2

− (g)
)
(s)ds, f ,g ∈ L2

H(R). (10)

The set of elementary functions E is dense in L2
H(R). The space L2

H(R) is not complete
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Remark 2.7 From the defintion of the inner product (10), the following isometry holds

〈 f ,g〉H =
Γ(H + 1

2)
2

(cH)2 〈IH− 1
2

− ( f ), I
H− 1

2
− (g)〉L2(R).

We observe that the elements of the integrand space L2
H(R) are not very explicitly defined. In

what follows, we will see an explicit form of the elements of L2
H(R).

Lemma 2.8 ( [22]Page 404) We have the following identity(
H− 1

2
)2d2

H

∫ t∧s

−∞

(s−u)H− 3
2 (t−u)H− 3

2 du = ϕ(s, t), (11)

where

dH =
( 2HΓ(3

2 −H)

Γ(H + 1
2)Γ(2−2H)

) 1
2
,

and
ϕ(s, t) = H(2H−1)|s− t|2H−2; s, t ∈ R.

Proposition 2.9 Let f : R→ R be a function. Then f ∈ L2
H(R) if and only if∫

R2
f (t) f (s)ϕ(t,s)dtds < ∞.

Proof Let f ∈ L2
H(R). We have by Fubini Theorem and Lemma 2.8∫

R

(∫
R

f (u)(u− s)
H− 3

2
+ du

)2ds =
∫
R

(∫
R

f (r)(r− s)
H− 3

2
+ dr

∫
R

f (t)(t− s)
H− 3

2
+ dt

)
ds

=
∫
R

(∫∫
R2

f (r)(r− s)
H− 3

2
+ f (t)(t− s)

H− 3
2

+ drdt
)

ds

=
∫∫

R2
f (r) f (t)

(∫ r∧t

−∞

(r− s)H− 3
2 (t− s)H− 3

2 ds
)

drdt

=
1(

H− 1
2

)2d2
H

∫∫
R2

f (r) f (t)ϕ(r, t)drdt.

Remark 2.10 1. The space L2
H(R) can be endowed with an another scalar product

〈 f ,g〉H,R =
∫∫

R2
f (r)g(t)ϕ(r, t)drdt

with the associated norm
| f |2H,R = 〈 f , f 〉H,R. (12)

2. The operator ΓH defined, from L2
H(R) to L2(R), by: for every f ∈ L2

H(R),

ΓH( f )(u) = dH
(
H− 1

2
)∫

R
f (t)(t−u)

H− 3
2

+ dt = dHΓ(H +
1
2
)
(
I

H− 1
2

− f
)
(u), (13)

is an isometry

3. The stochastic integral with respect to the fBm BH is defined by:

IH( f ) =
∫
R

f (s)dBH(s) =
∫
R

ΓH( f )(s)dW (s) = I
1
2 (ΓH( f )). (14)
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4. The fractional kernel, which fits to the definition (14), still denoted by K, is given by:

KH(t,s) = dHΓ(H +
1
2
)
(

I
H− 1

2
− 11[0,t[

)
(s).

For more details, see [22]

5. The set
|L2

H(R)| :=
{

f : R→ R;
∫∫

R2
ϕ(r, t) | f (r) f (t)|drdt < ∞

}
(15)

is a strict subspace (dense) of L2
H(R), endowed with the norm

|| f ||2H,R :=< | f |, | f |>H,R (16)

is Banach space. For more details on this space, see for instance [32].

Proposition 2.11 ( [32]) We have the following spaces inclusions:

L1(R)∩L2(R)⊂ L
1
H (R)⊂ |L2

H(R)| ⊂ L2
H(R).

2.3 Multiple integrand space

All results and definitions seen in the below subsection are naturally generalized to the case of
multiple integrals with respect to the fBm, but with some difference properties, as the Gaussian
property (multiple integral is not gaussian random variable in general). In this subsection we
will just recall the most important definitions and results for our work. For more details we refer
readers to the work of V. Pérez-Abreu and C. Tudor [31].

We denote by L2
H(Rp) the class of all functions f ∈ L2(Rp) such that∫

R2p

p

∏
j=1

ϕ(x j,y j) | f (x1, . . . ,xp) f (y1, . . . ,yp)|dx1 . . .dxpdy1 . . .dyp < ∞,

with an inner product defined, for f ,g ∈ L2
H(Rp), by

〈 f ,g〉H,Rp =
∫
R2p

p

∏
j=1

ϕ(x j,y j) f (x1, . . . ,xp)g(y1, . . . ,yp)dx1 . . .dxpdy1 . . .dyp, (17)

and the associated norm
| f |2H,Rp = 〈 f , f 〉H,Rp . (18)

The space
(
L2

H(Rp),〈., .〉H,Rp
)

is incomplete separable pre-Hilbert space. We have the inclusions

L2(Rp)∩L1(Rp)⊂ L2
H(Rp)⊂ L1

loc(Rp).

We denote by L2
s,H(Rp) the subspace of all symetric function f ∈ L2

H(Rp). Every function f ∈
L2

H(Rp) is symetrizable, we denote sym( f ) its symetrization. In [31, Lemma 3.4], the following
inequality is proved:

|sym( f )|H,Rp ≤ | f |H,Rp . (19)

The operator
Γ
(p)
H : L2

H(Rp)→ L2(Rp),

defined, for every f ∈ L2
H(Rp), by

Γ
(p)
H ( f )(x1, . . . ,xp) =

[
dH

(
H− 1

2

)]p ∫ +∞

x1

. . .
∫ +∞

xp

f (t1, . . . , tp)

∏
p
j=1(t j− x j)

3
2−H

dt1 . . .dtp

8



=

[
dHΓ

(
H +

1
2

)]p 1
Γ(H− 1

2)
p

∫ +∞

x1

. . .
∫ +∞

xp

f (t1, . . . , tp)

∏
p
j=1(t j− x j)

3
2−H

dt1 . . .dtp

=

[
dHΓ

(
H +

1
2

)]p(
I

H− 1
2 ,p

− f
)
(x1, . . . ,xp)

is an isometry (see [31, Lemma 3.4]).

We denote by I
1
2
p ( f ) the multiple Wiener Itô integral of f ∈ L2(Rp) with respect to the standard

Brownian motion W (for more details on multiple Wiener Itô integral see [30] and [19]), that is,

I
1
2
p ( f ) =

∫
Rp

f (t1, . . . , tp)dW (t1) . . .dW (tp). (20)

The following definition of the multiple integral with respect to the fBm BH is one of the most
important tools in this work.
If f ∈ L2

H(Rp) then we define the multiple fractional integral of order p with respect to the fBm BH

by

IH
p ( f ) = I

1
2
p (Γ

(p)
H f ), (21)

that is

IH
p ( f ) =

∫
Rp

f (t1, . . . , tp)dBH(t1) . . .dBH(tp)

=
∫
Rp
(Γ

(p)
H f )(t1, . . . , tp)dW (t1) . . .dW (tp).

This definition is the same as that given in [21] and [17], for the proof see [31, Theorem 3.14].
Thus one can define the iterated integral

IH
p ( f ) := p!

∫
t1<...<tp

f (t1, . . . , tp)dBH(t1) . . .dBH(tp). (22)

Notice that for p = 0 and f = f0 (constant), we set IH
0 ( f0) = f0. For more details on multiple

integrals with respect to fBm see [6].

2.4 Chaos Expansion

We denote by L2
H(Ω,F ,P) the space of all random variables F which has an orthogonal fractional

chaos decomposition of the form

F = E(F)+
+∞

∑
p=1

IH
p ( fp), (23)

where fp ∈ L2
s,H(Rp) and

+∞

∑
p=1

p!| fp|2H,Rp <+∞. (24)

Theorem 2.12 ( [31]) The chaos decomposition (23) is unique, which means:

L2
H(Ω,F ,P) =⊕+∞

p=0IH
p (L

2
s,H(Rp)), (25)

and the subspace L2
H(Ω,F ,P) is total in L2(Ω,F ,P). Moreover, for every p ≥ 1, the fractional

chaos of order p, IH
p (L

2
s,H(Rp)) is not closed. In particular L2

H(Ω,F ,P) is not closed and it is
strictly included in L2(Ω,F ,P).
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2.4.1 Fractional anticipating integral

We denote by L2
(
Ω,F ,P,L2

H(R)
)

the space of all measurable processes with trajectories in Ba-
nach space

(
|L2

H(R)|, ||.||H,R
)

(defined in (15) and (16) and still denoted by L2
H(R) ), such that for

every X ∈ L2
(
Ω,F ,P,L2

H(R)
)
, we have: for a.a t ∈ R, X(t) ∈ L2

H(Ω,F ,P), i.e. for each p ∈ N,
there exists fp(., t) ∈ L2

s,H(Rp) such that

X(t) =
+∞

∑
p=0

IH
p ( fp(., t)),

with fp ∈ L2
H(Rp+1) (t is considered here as variable) , for all p≥ 1 and

+∞

∑
p=1

p!‖ fp‖2
H,Rp+1 <+∞.

We consider the operator

δ
ch
H :
{

L2
H
(
Ω,F ,P,L2

H(R)
)
→ L2(Ω,F ,P)

X 7→ δch
H (X) = ∑

+∞

p=0 IH
p+1(sym( fp))

.

The domain of definition of this operator, denoted by Dch
H , is all processes X ∈ L2

(
Ω,F ,P,L2

H(R)
)

such that the series
+∞

∑
p=0

IH
p+1(sym( fp))

converges in L2(Ω,F ,P).

Proposition 2.13 ( [31][Proposition 3.35) 1. Assuming that the space L2
H (R) is endowed with

the norm |.|H,R and X ∈ Dch
H . Then

E
(
|X |2H,R

)
=

∞

∑
1

p! | f |2H,Rp+1 .

2. The operator δch
H : Dch

H → L2(Ω,F ,P) is closable.

The closure of the operator defined above is denoted again by δch
H . If the process X11]−∞,a] ∈ Dch

H
then we define: ∫ a

−∞

X(s)dBH(s) = δ
ch
H (X11]−∞,a]).

3 Main result

In what follows, we fix a normalized fBm (BH(t))t∈R ( 1
2 <H < 1 and (W (t))t∈R a standard Brown-

ian motion defined on the same stochastic basis (Ω,F ,(Ft)t∈R,P) (i.e (BH(t))t∈R and (W (t))t∈R
generate the same filtration (Ft)t∈R). It is known that there exists the following representation
formula:

BH(t) =
∫
R

KH(t,s)dW (s), where KH(t,s) = dHΓ(H +
1
2
)
(

I
H− 1

2
− 11[0,t[

)
(s).

We consider the fractional affine equation

dX(t) = [a0(t)−X(t)]dt +[b0(t)+b(t)X(t)]dBH(t), (26)

where, a0,b0,b : R→ R are continuous functions. In the sequel we suppose that

10



1. The mappings a0,b0,b are almost periodic.

2. The functions

(t,s) ∈ R2 7→ g(t,s) := 11]−∞,t](s)e
−(t−s)b0(s),

and
(t,s) ∈ R2 7→ h(t,s) := 11]−∞,t](s)e

−(t−s)b(s)

are elements of L2
H(R2).

Theorem 3.1 Under the conditions (1) and (2), the equation (26) has a unique evolution solution
X ∈ Dch

H , which can be expressed as follows:

X(t) =
∫ t

−∞

e−(t−s)a0(s)ds+
∫ t

−∞

e−(t−s) [b0(s)+b(s)X(s)]dBH(s), (27)

and with the chaos decomposition

X(t) =
+∞

∑
p=0

IH
p ( f t

p), (28)

where

f t
0 =

∫ t

−∞

e−(t−s)a0(s)ds; (29)

f t
1(s) = 11]−∞,t](s)e

−(t−s)[b0(s)+b(s) f s
0 ]; (30)

f t
p(t1, . . . , tp) =

1
p

p

∑
j=1

11]−∞,t](t j)e−(t−t j)b(t j) f t j
p−1(t̂ j); p≥ 2. (31)

and f t j
p−1(t̂ j) denote the function of (p−1) variables without the variable t j, more precisely:

f t
p(t1, . . . , tp) = sym{11−∞<t1<...<tp<te−(t−t1)b0(t1)b(t2) . . .b(tp)}

+
1
p!

11]−∞,t]p(t1, . . . , tp)b(t1) . . .b(tp)
∫ t1∧...∧tp

−∞

e−(t−s)a0(s)ds. (32)

Furthermore X is almost periodic in one-dimensional distribution.

To prove this result, we use the following three lemmas. The first is obvious.

Lemma 3.2 The following two-variable function

F(t,s) =
∫ t

−∞

∫ s

−∞

ϕ(r,u)e−
(

t+s−(r+u)
)

drdu

is bounded in R2.

Before introducing the two others lemmas, let us denote by:

M = max
(
sup
R
(b(t),sup

R
(b0(t)

)
, m = sup

R
(a0(t)) and L = sup

R2
(F(t,s). (33)

Lemma 3.3 Let (αn)n∈N be a real sequence, l : R→ R a continuous bounded function such that

11]−∞,t](s)e
−(t−s)l(s) ∈ L2

H(R2).

If the sequence (l(.+αn))n∈N converges uniformly to l∗(.), then

11]−∞,t](s)e
−(t−s)l∗(s) ∈ L2

H(R2)

11



Proof By dominated convergence theorem and Fatou lemma we get:

∫∫
R2

ϕ(t2,s2)
∫ t2

−∞

∫ s2

−∞

ϕ(t1,s1)e−(t2−t1)e−(s2−s1)|l∗(t1)l∗(s1)|dt1ds1dt2ds2 =∫∫
R2

ϕ(t2,s2) lim
n→∞

∫ t2

−∞

∫ s2

−∞

ϕ(t1,s1)e−(t2−t1)e−(s2−s1)|l(t1 +αn)l(s1 +αn)|dt1ds1dt2ds2 ≤

lim
∫∫

R2
ϕ(t2,s2)

∫ t2+αn

−∞

∫ s2+αn

−∞

ϕ(t1,s1)e−(t2+αn−t1)e−(s2+αn−s1)|l(t1)l(s1)|dt1ds1dt2ds2 < ∞,

thus
11]−∞,t](s)e

−(t−s)l∗(s) ∈ L2
H(R2).

Lemma 3.4 The operator ℑH : Dch
H → L2(Ω,F ,P), defined by: for every X ∈ Dch

H , we have

ℑH(X)(t) =
∫ t

−∞

e−(t−s)a0(s)ds+
∫ t

−∞

e−(t−s) [b0(s)+b(s)X(s)]dBH(s); t ∈ R

is well-defined. Moreover, if X ∈ Dch
H with the chaos decomposition

X(t) =
+∞

∑
p=0

IH
p ( f t

p), (34)

then X is a fixed point of ℑH if and only if f t
p satisfy (29), (30) and (31).

Proof Firstly, let us show that the operator ℑH is well-defined. Let X ∈ Dch
H , therefore, for each

p ∈ N, there exist fp(., t) ∈ L2
s,H(Rp) such that

X(t) =
+∞

∑
p=0

IH
p ( fp(., t)), (35)

with fp ∈ L2
H(Rp+1), for all p≥ 1 and

+∞

∑
p=1

p!‖ fp‖2
H,Rp+1 <+∞. (36)

We denote by (Yt) the image of (Xt) by ℑH , that is

Y (t) =
∫ t

−∞

e−(t−s)a0(s)ds+
∫ t

−∞

e−(t−s) [b0(s)+b(s)X(s)]dBH(s), ∀t ∈ R. (37)

By replacing (35) in (37) we get

Y (t) =
∫ t

−∞

e−(t−s)a0(s)ds+δ
ch
H (Zt), ∀t ∈ R, (38)

where

Zt(s) =
∞

∑
p=0

IH
p (g

t
p(.,s))

and

gt
0(s) := 11]−∞,t](s)e

−(t−s)[b0(s)+b(s) f0(s)];

12



gt
p(.,s) := 11]−∞,t](s)e

−(t−s)b(s) fp(.,s), p≥ 1.

As X ∈ Dch
H , b0 and b are bounded (almost periodic), it is straightforward to show that, for every

t ∈ R, Zt ∈ Dch
H and thus

δ
ch
H (Zt) =

∞

∑
p=0

IH
p+1
(
sym(gt

p)
)
,

converges in L2(Ω,F ,P). Then, for every t ∈R, Y (t)∈ L2(Ω,F ,P) with the chaos decomposition:

Y (t) =
∞

∑
p=0

IH
p (h

t
p),

where

ht
0 :=

∫ t

−∞

e−(t−s)a0(s)ds;

ht
1 := 11]−∞,t](s)e

−(t−s)[b0(s)+b(s) f0(s)];

ht
p :=

1
p

p

∑
j=1

11]−∞,t](t j)e−(t−t j)b(t j) f t j
p−1(t̂ j).

With the same arguments as used to prove that Zt ∈ Dch
H , we can also show that for every t ∈ R,

the kernels ht
p ∈ L2

s,H(Rp).
Secondly, let X ∈ Dch

H such that ℑH(X)(t) = X(t) for every t ∈ R. By identifying the kernels we
get identities (29)-(31).
Conversely, assume that f t

p satisfy (29), (30) and (31), it’s straightforward to cheek that X is a
fixed point of ℑH .

Proof of Theorem 3.1. Step 1: existence and uniqueness of evolution in Dch
H . For the existence,

by using Lemma 3.4, it suffices to show that the process X defined in (28)-(32) is an element of
Dch

H . Clearly, by using (19), (22) and Lemma 3.2, for every p∈N and t ∈R, we have f t
p ∈ L2

s,H(Rp)
and

+∞

∑
p=1

p!‖ f t
p‖2

H,Rp <+∞,

which means that for every t ∈R, X(t) ∈ L2
H(Ω,F ,P). Let us show that fp ∈ L2

H(Rp+1) for every
p≥ 1. We denote by gp the multiple function

gp(t1, . . . , tp+1) = 11−∞<t1<...<tp<tp+1e−(tp+1−t1)b0(t1)b(t2) . . .b(tp)

and by hp the multiple function

hp(t1, . . . , tp+1) = 11]−∞,tp+1]p(t1, . . . , tp)b(t1) . . .b(tp)
∫ t1∧...∧tp

−∞

e−(tp+1−s)a0(s)ds.

Thanks to Lemma 3.2 and the condition (2), we can show that gp,hp ∈ L2
H(Rp+1), therefore fp ∈

L2
H(Rp+1) and

‖ fp‖2
H,Rp+1 ≤

2
(p!)2 (M

2L)p−1(‖g‖2
H,R2 +m‖h‖2

H,R2

)
, ∀p≥ 1,

thus

+∞

∑
p=1

p!‖ fp‖2
H,Rp+1 <+∞.
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It remains to show that
∞

∑
p=0

IH
p+1
(
sym( fp)

)
converges in L2(Ω,F ,P). For this purpose, it’s enough to show that

+∞

∑
p=0

(p+1)!‖ fp‖2
H,Rp+1 <+∞.

We have

(p+1)!‖ fp‖2
H,Rp+1 ≤

4
(p−1)!

(M2L)p−1(‖g‖2
H,R2 +m‖h‖2

H,R2

)
, ∀p≥ 1,

which gives the convergence in L2(Ω,F ,P) of the series

∞

∑
p=0

IH
p+1
(
sym( fp)

)
.

Thus X ∈ Dch
H . The unicity is deduced from the explicit form (32).

Step 2: almost periodicity. To prove that X is almost periodic in distribution, we use Bochner’s

double sequences criterion. Let (α′n) and (β′n) be two sequences in R, we show that there are
subsequences (αn)⊂ (α′n) and (βn)⊂ (β′n) with same indexes such that, for every t ∈R, the limits

lim
n→+∞

lim
m→+∞

µ(t +αn +βm) and lim
n→+∞

µ(t +αn +βn), (39)

exist and are equal, where µ(t) := law(X)(t) is the distribution of X(t).
We have asssumed that the functions a0,b0 and b are almost peridiodic, then there are subse-
quences (αn)⊂ (α′n) and (βn)⊂ (β′n) with same indexes such that

lim
n→∞

lim
m→∞

a0(t +αn +βm) = lim
n→∞

a0(t +αn +βn) =: a∗0(t), (40)

lim
n→∞

lim
m→∞

b0(t +αn +βm) = lim
n→∞

b0(t +αn +βn) =: b∗0(t), (41)

and

lim
n→∞

lim
m→∞

b(t +αn +βm) = lim
n→∞

b(t +αn +βn) =: b∗(t), (42)

and these limits exist in any of the three modes of convergences: pointwise, uniform on compact
intervals and uniform on R. We now denote by (γn)n∈N the sequence (αn +βn)n∈N. From step 1,
we can deduce that, for each fixed integer n,

Xn(t) =
∫ t

−∞

e−(t−s)a0(s+ γn)ds+
∫ t

−∞

e−(t−s) [b0(s+ γn)+b(s+ γn)Xn(s)]dBH(s)

is evolution solution of

dXn(t) = [a0(t + γn)−Xn(t)]dt +[b0(t + γn)+b(t + γn)Xn(t)]dBH(t), (43)

with chaos decomposition

Xn(t) =
+∞

∑
p=0

IH
p ( f t,n

p ) =
+∞

∑
p=0

I
1
2
p

(
Γ
(p)
H ( f t,n

p )
)
, (44)
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where

f t,n
p (t1, . . . , tp) = sym{11−∞<t1<...<tp<te−(t−t1)b0(t1 + γn)b(t2 + γn) . . .b(tp + γn)}

+
1
p!

11]−∞,t]p(t1, . . . , tp)b(t1 + γn) . . .b(tp + γn)
∫ t1∧...∧tp

−∞

e−(t−s)a0(s+ γn)ds. (45)

Also from step 1 and Lemma 3.3, we deduce that

X∗(t) =
∫ t

−∞

e−(t−s)a∗0(s)ds+
∫ t

−∞

e−(t−s) [b∗0(s)+b∗(s)X∗(s)]dBH(s)

is evolution solution of

dX∗(t) = [a∗0(t)−X∗(t)]dt +[b∗0(t)+b∗(t)X∗(t)]dBH(t), (46)

with chaos decomposition

X∗(t) =
+∞

∑
p=0

IH
p ( f t,∗

p ) =
+∞

∑
p=0

I
1
2
p

(
Γ
(p)
H ( f t,∗

p )
)
, (47)

where

f t,∗
p (t1, . . . , tp) = sym{11−∞<t1<...<tp<te−(t−t1)b∗0(t1)b

∗(t2) . . .b∗(tp)}

+
1
p!

11]−∞,t]p(t1, . . . , tp)b∗(t1) . . .b∗(tp)
∫ t1∧...∧tp

−∞

e−(t−s)a∗0(s)ds. (48)

We have:

X(t + γn) =
+∞

∑
p=0

IH
p ( f t+γn

p ) =
+∞

∑
p=0

I
1
2
p

(
Γ
(p)
H ( f t+γn

p )
)
. (49)

The changes of variables, σ = t + γn and σ j = t j + γn for all j = 1, p, transform

+∞

∑
p=0

I
1
2
p

(
Γ
(p)
H ( f t+γn

p )
)

to
+∞

∑
p=0

Î
1
2
p

(
Γ
(p)
H ( f t,n

p )
)
, (50)

where
Î

1
2
p

(
Γ
(p)
H ( f t,n

p )
)
=

∫
Rp

Γ
(p)
H ( f t,n

p )(t1, . . . , tp)dW̃ (t1) . . .dW̃ (tp)

and W̃n(t j) = W (t j + γn)−W (γn) is a standard Brownian motion with the same distribution as
W (t j).

Let us show that, for each fixed t ∈R, I
1
2
p

(
Γ
(p)
H ( f t,n

p )
)

converges in quadratic mean to I
1
2
p

(
Γ
(p)
H ( f t,∗

p )
)

.
Note that for p = 0 the process is deterministic and we get the convergence easily. Let M∗ =
max

(
M,sup(b∗0),sup(b∗)

)
. For p > 0, using the Itô isometry and the fact that the operator Γ

(p)
H is

an isometry, we obtain

E
∣∣∣∣I 1

2
p

(
Γ
(p)
H ( f t,n

p )
)
− I

1
2
p

(
Γ
(p)
H ( f t,∗

p )
)∣∣∣∣2 = ∥∥∥Γ

(p)
H

(
f t,n
p − f t,∗

p

)∥∥∥2

L2(Rp)
=
∣∣ f t,n

p − f t,∗
p

∣∣2
H,Rp .

By replacing f t,n
p and f t,∗

p with their explicit forms (45) and (48) respectively, we get∣∣ f t,n
p − f t,∗

p

∣∣2
H,Rp ≤ 2|sym{11−∞<t1<...<tp<te−(t−.1)b0(.1 + γn)b(.2 + γn) . . .b(.p + γn)}
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− sym{11−∞<t1<...<tp<te−(t−.1)b∗0(.1)b
∗(.2) . . .b∗(.p)}|2H,Rp

+2| 1
p!

11]−∞,t]p(.1, . . . , .p)b(.1 + γn) . . .b(.p + γn)
∫ .1∧...∧.p

−∞

e−(t−s)a0(s+ γn)ds

− 1
p!

11]−∞,t]p(.1, . . . , .p)b
∗(.1) . . .b∗(.p)

∫ .1∧...∧.p

−∞

e−(t−s)a∗0(s)ds|2H,Rp

≤ 2p
(
I1 + I2 + . . . Ik + . . .+ Ip

)
+2(p+1)

(
J1 + J2 + . . .+ Jk + . . .+ Jp+1

)
,

where I1, I2, . . . Ik, . . . Ip are such that:

I1 =
∣∣∣sym{11−∞<t1<...<tp<te−(t−.1)

(
b0(.1 + γn)−b∗0(.1)

)
b(.2 + γn) . . .b(.p + γn)}

∣∣∣2
H,Rp

≤ sup
R
|b0(t1 + γn)−b∗0(t1)|

2 L
(p!)2

(
(M∗)2L

)p−1
,

I2 =
∣∣∣sym{11−∞<t1<...<tp<te−(t−.1)b∗0(.1)

(
b(.2 + γn)−b∗(.2)

)
b(.3 + γn) . . .b(.p + γn)}

∣∣∣2
H,Rp

≤ sup
R
|b(t2 + γn)−b∗(t2)|2

L
(p!)2

(
(M∗)2L

)p−1
,

Ik =∣∣∣sym{11−∞<t1<...<tp<te−(t−.1)b∗0(.1)b
∗(.2) . . .b∗(.k−1)

(
b(.k + γn)−b∗(.k)

)
b(.k+1 + γn) . . .b(.p + γn)}

∣∣∣2
H,Rp

≤ sup
R
|b(tk + γn)−b∗(tk)|2

L
(p!)2

(
(M∗)2L

)p−1
,

and

Ip =
∣∣∣sym{11−∞<t1<...<tp<te−(t−.1)b∗0(.1)b

∗(.2) . . .b∗(.p−1
(
b(.p + γn)−b∗(.p)

)
}
∣∣∣2
H,Rp

≤ sup
R
|b(tp + γn)−b∗(tp)|2

L
(p!)2

(
(M∗)2L

)p−1
.

J1 =∣∣∣∣ 1
p!

11]−∞,t]p
(
b(.1 + γn)−b∗(.1)

)
b(.2 + γn) . . .b(.p + γn)

∫ .1∧...∧.p

−∞

e−(t−s)a0(s+ γn)ds
∣∣∣∣2
H,Rp

≤ sup
R
|b(t1 + γn)−b∗(t1)|2

Lm2

(p!)2

(
(M∗)2L

)p−1
,

J2 =∣∣∣∣ 1
p!

11]−∞,t]pb∗(.1)
(
b(.2 + γn)−b∗(.2)

)
b(.3 + γn) . . .b(.p + γn)

∫ .1∧...∧.p

−∞

e−(t−s)a0(s+ γn)ds
∣∣∣∣2
H,Rp

≤ sup
R
|b(t2 + γn)−b∗(t2)|2

Lm2

(p!)2

(
(M∗)2L

)p−1
,

Jk =
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∣∣∣∣ 1
p!

11]−∞,t]pb∗(.1) . . .b∗(.k−1)
(
b(.k + γn)−b(.k)

)
b(.k+1 + γn) . . .b(.p + γn)

∫ .1∧...∧.p

−∞

e−(t−s)a0(s+ γn)ds
∣∣∣∣2
H,Rp

≤ sup
R
|b(tk + γn)−b∗(tk)|2

Lm2

(p!)2

(
(M∗)2L

)p−1

and

Jp+1 =

∣∣∣∣ 1
p!

11]−∞,t]pb∗(.1) . . .b∗(.p)
∫ .1∧...∧.p

−∞

e−(t−s)(a0(s+ γn)−a∗0(s)
)
ds
∣∣∣∣2
H,Rp

≤ sup
R
|a0(s+ γn)−a∗0(s)|

2 L(M∗)2

(p!)2

(
(M∗)2L

)p−1
.

From (40)-(42) and the above inequalities, we deduce that

lim
n→∞

E
∣∣∣∣I 1

2
p

(
Γ
(p)
H ( f t,n

p )
)
− I

1
2
p

(
Γ
(p)
H ( f t,∗

p )
)∣∣∣∣2 = 0,

hence I
1
2
p

(
Γ
(p)
H ( f t,n

p )
)

converges in quadratic mean to I
1
2
p

(
Γ
(p)
H ( f t,∗

p )
)

. Using the previous inequal-
ities again, we get the convergence of Xn(t) in quadratic mean to X∗(t) uniformly with respect to
t ∈R, which gives the convergence in distribution of Xn(t) to X∗(t). It remains to show that Xn(t)
and X(t+γn) have the same distribution for every t ∈R. From the transfer principle given by (21),
we are able to define the Skorohod integral with respect to fBm (BH(t)) by Skorohod integral with
respect to standard Brownian motion (W (t)) as follows:

X(t) =
∫ t

−∞

e−(t−s)a0(s)ds+
∫ t

−∞

e−(t−s) [b0(s)+b(s)X(s)]dBH(s) =
+∞

∑
p=0

IH
p ( f t

p)

=
+∞

∑
p=0

I
1
2
p

(
Γ
(p)
H ( f t

p)
)
= f t

0 +
+∞

∑
p=1

I
1
2
p

(
Γ
(p)
H ( f t

p)
)
= f t

0 +
+∞

∑
p=0

I
1
2
p+1

(
Γ
(p+1)
H ( f t

p+1)
)

=
∫ t

−∞

e−(t−s)a0(s)ds+
∫ t

−∞

U t(s)dW (s),

where (U t(s))s∈R, for each t ∈ R, is a process with chaos decomposition

U t(s) =
+∞

∑
p=0

I
1
2
p

(
Γ
(p)
H ( f t

p(.,s))
)
.

If the integrand process (U t(s))s∈R is adapted, we get the classical Itô integral and the change of
variable σ = s+ γn gives another Itô integral with respect to W̃n(t), where W̃n(t) = W (t + γn)−
W (γn) is standard Brownian motion with the same distribution as W (t). From the independence of
the increments of standard Brownian motion, we deduce that the process X(t + γn) has the same
distribution as Xn(t). Thus it suffices to show that the solution X is an adapted process. First, let

us show that for every p ∈ N,
(

I
1
2
p
(
Γ
(p)
H ( f t

p)
))

is an adapted process. It is straightforward to show
that for p = 0 and p = 1, the processes are adapted. For p = 2, by using the iterated Itô integral,
we get:

I
1
2

2

(
Γ
(2)
H ( f t

2)
)
=

∫ t

−∞

Γ
(1)
H

[
e−(t−.2)b(.2)

(∫ .2

−∞

Γ
(1)
H

(
e−(.2−.1)b0(.1)

)
(t1)dW (t1)

)]
(t2)dW (t2)

+
∫ t

−∞

Γ
(1)
H

[
e−(t−.2)b(.2)

(∫ .2

−∞

Γ
(1)
H

(
e−(.2−.1)b(.1)

∫ .1

−∞

e−(.1−s)a0(s)ds
)
(t1)dW (t1)

)]
(t2)dW (t2),

where:

17



•
Γ
(1)
H

(
e−(.2−.1)b0(.1)

)
(t1) = dH(H−

1
2
)
∫ .2

t1

e−(.2−x1)b0(x1)

(x1− t1)(
3
2−H)

dx1,

since this process is deterministic and square mean integrable in ]−∞, .2]×Ω, we deduce
that the process obtained by Itô integral,

∫ .2
−∞

Γ
(1)
H

(
e−(.2−.1)b0(.1)

)
(t1)dW (t1), is adapted and

we denote it by Y (.2).

•
Γ
(1)
H

(
e−(t−.2)b(.2)

)
Y (.2)

)
(t2) = dH(H−

1
2
)
∫ t

t2

e−(t−x2)b(x2)Y (x2)

(x2− t2)(
3
2−H)

dx2,

since Y (.) is adapted and the process
∫ t

t2
e−(t−x2)b(x2)Y (x2)

(x2−t2)
( 3

2−H)
dx2 belongs to L2(]−∞, t]×Ω), we

deduce that the process obtained by Itô integral,
∫ t
−∞

Γ
(1)
H

(
e−(t−.2)b(.2)Y (.2)

)
(t2)dW (t2), is

adapted.

Similarly we can show that the process∫ t

−∞

Γ
(1)
H

[
e−(t−.2)b(.2)

(∫ .2

−∞

Γ
(1)
H

(
e−(.2−.1)b(.1)

∫ .1

−∞

e−(.1−s)a0(s)ds
)
(t1)dW (t1)

)]
(t2)dW (t2)

is adapted process. Thus (I
1
2

2

(
Γ
(2)
H ( f t

2)
)
) is an adapted process. The proof for a general p follows

by induction as above.
The square mean convergence of chaos decomposition series implies that the solution X is adapted.
Thus, for every t ∈ R, the sequence X(t + γn) converges in distribution to X∗(t), i.e.

lim
n→+∞

µ(t +αn +βn) = µ∗(t) := law(X∗(t)),

By analogy we can prove that

lim
m→+∞

lim
n→+∞

µ(t +αm +βn) = µ∗(t).

We have thus proved that X has almost periodic one-dimensional distributions.
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Appl., 7(4):451–474, 1989.

[29] Ivan Nourdin. Selected aspects of fractional Brownian motion, volume 4. Springer, 2012.

[30] David Nualart. The Malliavin calculus and related topics, volume 1995. Springer, 2006.
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