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Abstract Creating a convincing affective robot behavior is a challenging task. In
this paper, we are trying to coordinate between different modalities of communica-
tion: speech, facial expressions, and gestures to make the robot interact with human
users in an expressive manner. The proposed system employs videos to induce target
emotions in the participants so as to start interactive discussions between each par-
ticipant and the robot around the content of each video. During each experiment of
interaction, the expressive ALICE robot generates an adapted multimodal behavior
to the affective content of the video, and the participant evaluates its characteristics
at the end of the experiment. This study discusses the multimodality of the robot be-
havior and its positive effect on the clarity of the emotional content of interaction.
Moreover, it provides personality and gender-based evaluations of the emotional ex-
pressivity of the generated behavior so as to investigate the way it was perceived by
the introverted-extroverted and male-female participants within a human-robot inter-
action context.

1 INTRODUCTION
Robots are moving into human social spaces and collaborating in different tasks. An
intelligent social robot is required to adapt the affective content of its generated be-
havior to the context of interaction and to the profile of the user in order to increase
the credibility and appropriateness of its interactive intents. Speech, facial expres-
sions, and gestures can express synchronized affective information that can enhance
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behavior expressivity [18]. Gestures and facial expressions play an important role in
explaining speech particularly in case of any speech signal deterioration [28].

Different studies in the literature of Human-Robot Interaction (HRI) and Human-
Computer Interaction (HCI) discussed synthesizing affective speech [40, 58] and fa-
cial expressions [13, 65] in addition to gesture generation [20, 61]. Besides, other
studies investigated the effect of multimodal information of speech and facial expres-
sions on emotion recognition (compared to unimodal information) [17]. However, to
our knowledge, these studies, among others, have not proposed a general framework
to bridge between affective speech1 (Section 3.1) on one side and both adaptive ges-
tures [3, 4] and facial expressions (Section 3.2) on the other side, as illustrated in
our current study. The proposed framework allows for an explicit control on prosody
parameters so as to better express emotion. In addition, it considers the relationship
between emotion and gestures, which allows for adapting the generated robot gestu-
ral behavior to the characteristics of the synthesized affective speech2 according to
the proposed context of interaction in this study. The illustrated system architecture
in Section (3) guarantees a direct human-robot interaction context3, which allows for
generating and evaluating affective speech, adaptive gestures, and facial expressions
so as to address the effect of the robot behavioral multimodality on interaction with
a wide scope (Section 5.1). Additionally, we discuss another evaluation for the gen-
erated affective behavior of the robot based on the behavioral determinant factors of
the participants: personality extraversion [33] and gender (Sections 5.2 and 5.3).

The important role that affective speech, gestures, and facial expressions could play
in enhancing the robot behavior expressivity during social interaction is investigated
through three experimental hypotheses of interaction between the participants and
ALICE robot, where the robot behaviors with combined - at least two modalities of -
speech, gestures, and/or facial expressions are compared to those with less affective
cues4 (Section 4.2). During the experiments, each participant watches a set of videos
that aims at eliciting specific target emotions upon which interactive discussions with
the robot start, where the participant evaluates the characteristics of the generated
robot behavior (Section 5.1). Moreover, we report personality and gender-based eval-
uations for the robot behavior to find out any differences in the way it was perceived
by the introverted-extroverted and male-female participants within a human-robot in-

1Mary-TTS, an open-source multilingual text-to-speech engine, is used to synthesize affective speech
in the experiments.

2We generated adapted gestures [5, 81] to the synthesized affective speech instead of using human
speech directly because not all the participants are able to show an affective content in speech when
describing a scene, unless they are describing a personal experience they have been through (this describes
the difference between emotion perception and emotion experience as explained in Schreuder et al. [74]),
which is not the case in this study.

3Unlike the case if the participants were evaluating offline videos for the robot doing different behav-
iors without any interaction, which is out of interest in this study. Considering that we need to generate
and model affective behavior on the robot, we decided to create a context of affective interaction. Con-
sequently, we used videos with affective content from the database of Hewig et al. [36] whose content is
centered around emotion elicitation as a base for interaction between each participant and the robot.

4For example, the robot behavior that employs combined speech, facial expressions, and gestures is
compared to the robot behaviors expressed through speech only, speech and facial expressions, and speech
and gestures so as to examine their effects on interaction.
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teraction context so as to bridge between affective perception of the robot behavior
and human profile (Sections 5.2 and 5.3). Last but not least, we discuss the findings
of this study and propose research directions for future work (Section 6).

2 RELATED WORK
The correlation between emotion and speech has been extensively investigated in the
related literature [26]. Speech prosody can reflect human emotion through variations
in the basic features, like pitch, volume, and intensity [2, 59]. The variations in the
characteristics of voice prosody that can influence the conveyed affective meaning
of speech in case of different emotions, such as anger, disgust, fear, pleasure and
sadness, were studied in Sauter et al. [72]. Emotion perception and the needed time
for emotion recognition using prosodic features were discussed in Pell and Kotz [62].

The literature reveals different approaches towards synthesizing speech so as to im-
prove both Human-Robot Interaction (HRI) and Human-Computer Interaction (HCI).
Murray and Arnott [58] discussed a primary initiative to synthesize affective speech
using a rule-based formant synthesis technique but the quality was low. Edgington
[27] presented a concatenation based-technique that attained a little success in emo-
tion expression. This last approach was further developed so that it employed the unit
selection technique that avoids interference with the recorded voice to obtain a better
quality of speech, and it reported some success in expressing anger, happiness, and
sadness [40]. Similarly, deep learning approaches for speech synthesis have attracted
attention over the last decade [31, 66, 92]; however, these approaches focused mainly
on neutral speech synthesis. Moreover, end-to-end models (e.g., Tacotron model [90])
have been recently used in affective speech synthesis [51, 86]. However, these sys-
tems imitate a generic style of speaking in a few predefined emotions with a limited
ability to control the affective expressivity of speech, which deprives them of flexi-
bility and ease of use in our study considering the required large amount of data for
training them. Generally, the previously discussed techniques, among others, do not
have explicit control on the parameters of speech prosody to better express emotion.
Therefore, in this work, we use the well-known pre-trained text-to-speech engine,
Mary-TTS [75], to generate affective robot behavior expressed through speech (be-
side other modalities of communication, such as facial expressions and/or head-arm
gestures) during interaction.

The basic definition of gesture was given by Kendon [45] and McNeill [56]. They
defined a gesture as a synchronized body movement with speech, which is related in
a parallel or complementary way to the meaning of an utterance. Ekman and Friesen
[29] proposed a primary categorization of gestures: (1) affect displays (e.g., facial ex-
pressions), (2) adaptors (e.g., scratching), (3) regulators (e.g., using arm-hand move-
ments to control turn-taking within a conversation), (4) illustrators (e.g., pointing),
and (5) emblems (e.g., waving). This categorization was further adapted by Kendon
[46] - due to neglecting language while it is a fundamental interactive phenomenon
- who proposed a new gesture categorization: (1) signs (i.e., sign language), (2) pan-
tomime (i.e., sequence of gestures with a narrative structure), (3) emblems, and (4)
gesticulation. McNeill [56] named the continuum of Kendon’s gesture categorization
as ‘Kendon’s Continuum’ in his honor, and proposed another widely cited gesture
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typology of four categories, which could be considered as gesticulations (accord-
ing to Kendon’s classification): (1) metaphorics (i.e., gestures referring to abstract
ideas), (2) beats (e.g., rhythmic finger movements), (3) iconics (i.e., gestures with a
close semantic correlation with speech that refer to images of specific entities), and
(4) deictics (e.g., pointing). These categories represent the evolution of the described
images and ideas in a speaker’s mind.

The related literature in Human-Computer Interaction (HCI) and Human-Robot In-
teraction (HRI) shows active research towards generating iconic and metaphoric ges-
tures that constitute a major part of the human nonverbal behavior during interaction
[56]. Pelachaud [61] introduced the rule-based 3D agent GRETA that can generate
a multimodal synchronized behavior using an input text. It can generate gestures of
different categories regardless of the context and domain of interaction, contrarily to
other 3D conversational agents (e.g., MAX agent) [48]. Cassell et al. [20] introduced
a rule-based gesture generator; BEAT toolkit that can produce an animation script for
both virtual agents (e.g., the agent REA) [19] and robots [7] from an input text. This
toolkit can synthesize gestures of different categories such as iconic gestures, except
for metaphoric gestures. Le et al. [50] proposed a rule-based framework for generat-
ing synchronized multimodal behaviors using the agent GRETA and robots. Gener-
ally, the majority of the rule-based gesture generation approaches do not consider the
effect of emotion on body language, which could introduce a difficulty when adapt-
ing the generated robot behavior to human emotion detected through speech prosody
[57] and gesture characteristics. Similarly, several deep learning approaches focused,
increasingly, on gesture synthesis over the last years. Chiu et al. [22] proposed a
data-driven framework for predicting gestures from speech; however, the model uses
only predefined categories of annotated gesture data, which limits the shape of the
produced gestures to those used in training with their language dependencies. More-
over, the model outputs gesture category labels rather than motion curves; therefore,
it can not be used directly with 3D agents and robots. Hasegawa et al. [34] discussed
a data-driven model for metaphoric gesture motion synthesis for a stick figure based
on a speech input in Japanese; however, the generated gestures were rated relatively
lower than the original gestures in semantic consistency. This model was further im-
proved through motion representation learning to ameliorate gesture motion synthesis
[49] but using the same language. Yoon et al. [91] introduced a data-driven end-to-
end robot model for generating different categories of gestures (including iconic and
metaphoric gestures) based on an input text and not a direct speech, which is similar
to the rule-based gesture generators explained earlier. Besides, this model requires a
very large amount of data for training. Therefore, in this paper, we present a comple-
mentary human-robot interaction study to our work [4] that discussed a framework
for generating arm and head gestures adapted to speech prosody that correlates with
emotion. These gestures are modeled on the robot in parallel with affective speech
and/or facial expressions to examine the effect of the robot behavioral multimodality
on interaction with human users.

The correlation between speech and facial expressions has been extensively investi-
gated in the literature. Kalra et al. [41] showed that speech prosody and the movement
of face muscles can change in a synchronous manner to express different emotions.
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The unimodal perception of human emotion through audio or visual information was
discussed in Silva et al. [79]. Additionally, Busso et al. [17] discussed the comple-
mentarity and combination of both modalities that can increase the perception of
human emotion. Karras et al. [43] presented a Convolutional Neural Network (CNN)
model that can synthesize 3D facial animation from speech - in different languages
- expressing emotion. Other deep learning approaches have been discussed in Tay-
lor et al. [83] and Vougioukas et al. [88] for facial animation synthesis from speech.
These approaches, among others, are mostly limited to animating face models with-
out focusing on generating facial expressions in different affective states.

In robotics and computer-based applications, modeling and synthesis of facial ex-
pressions have attracted much attention over the last decades. Platt and Badler [65]
discussed a 3D face model that controls the responsible muscular actions for facial
expressions following the Facial Action Coding System (FACS). Spencer-Smith et al.
[80] presented a realistic 3D face model that can create different stimuli with 16 FACS
units. Modeling credible facial expressions on robots was a rich topic of research in
the last years due to their mechanical constraints compared to virtual agents that
have a higher flexibility in creating facial expressions. Breazeal [15] presented the
robot-head Kismet that employs eyes, mouth, and ears to model different emotions
expressing sadness, surprise, happiness, disgust, and anger. Breemen et al. [16] intro-
duced the robot iCat that can express fear, anger, sadness, and happiness. Beira et al.
[13] developed the iCub robot that can model different emotions using gestures and
facial expressions, such as happiness, anger, surprise, and sadness. Lutkebohle et al.
[52] presented the robot-head Flobi that can express different emotions, such as fear,
anger, surprise, sadness, and happiness. Hoffman et al. [37] developed the conver-
sation companion Kip1, which can reflect emotion using a few degrees of freedom,
like expressing fear through a shivering motion. Similarly, designing facial expres-
sions on android robots has been a subject of extensive research to investigate the
way to create convincing facial expressions considering the rules of human emotion
expression [64]. Vlachos and Schärfe [87] investigated designing facial expressions
on an android robot, where the findings showed the incapability of the robot to re-
produce the ‘fear’ and ‘disgust’ emotions due to mechanical limitations in the face.
These previous approaches for modeling facial expressions on 3D agents and robots,
among others, show serious efforts towards creating expressive facial behaviors with
specific emotions, and they report in the same time some limitations when modeling
emotions with a wide scope. This indicates the importance of the robot behavioral
multimodality, where each behavior modality enhances the other modalities so as to
improve the clarity of the robot behavior during interaction.

The robot behavioral multimodality refers to coordinating and combining different
modalities of communication in the robot (agent) behavior, which has been a chal-
lenging research topic over the last years [38, 84]. In facial expressions and gestures
coordination, among others, Clavel et al. [23] discussed the positive effect of facial
and bodily expressions on the affective expressivity of a virtual character (and con-
sequently emotion recognition), and Costa et al. [25] proved that gestures can effec-
tively help in recognizing the facial expressions of a robot. In speech and gestures
coordination, among others, Salem et al. [71] discussed the positive effect of gestures
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and speech multimodality on the evaluation of the robot behavior. In speech, ges-
tures, and facial expressions coordination, among others, Castellano et al. [21] and
Schirmer and Adolphs [73] reported the positive effect of multimodal information
on emotion recognition compared to less-modal information. The related literature
on the affective expressivity of the robot behavior has largely focused on unimodal
(and bimodal) behaviors [38] considering the difficulty to generate a synchronized
multimodal behavior, compared to virtual agents, with reasonably expressive speech,
facial expressions, and gestures. This is due to the limited facial expressivity of robots
that restricts generating a wide range of credible facial expressions, mechanical limi-
tations that restrict generating gestures smoothly, and inability to synthesize affective
speech for a wide range of emotions. In this work, we try to take a step forward to-
wards creating a multimodal framework for generating affective robot behavior with
more than two combined modalities of communication. Besides, we propose designs
for modeling affective speech and facial expressions, in addition to gestures5, which
can inspire other researchers in social robotics with solutions when examining hard-
to-model emotions. Furthermore, we discuss the participants’ evaluations of the gen-
erated robot behavior considering their gender and personality, which is useful for
future studies in human-robot interaction.

In this paper, we use the expressive ALICE robot for the purpose of modeling and
evaluating a multimodal robot behavior expressed through combined, at least two
modalities of, speech, facial expressions, and/or head-arm gestures compared to the
robot behaviors with less combined affective cues. The paper is organized as follows:
Section (3) discusses the system architecture, Section (4) illustrates the experimental
hypotheses, design, and scenario of interaction, Sections (5 and 6) provide a descrip-
tion of the experimental results and a discussion of the outcome of the study, and
finally, Section (7) concludes the paper.

3 SYSTEM ARCHITECTURE
This study presents a series of interaction experiments between humans and a robot,
where the generated gestures and facial expressions of the robot depend on the syn-
thesized affective speech (Figure 1) so as to create a multimodal affective robot be-
havior. The proposed framework is coordinated through the following subsystems:

1. Speech Recognition, which is the HTML5 multilingual Google API.

2. Emotion Detection, where predefined emotion-referring keywords are detected
in the recognized speech of the participant, which correspond to his/her opinion
about the projected video during each interaction experiment so as to label the
emotional content of each video6.
5In the proposed framework (Figure 1), facial expressions and gestures are generated adaptively to

speech.
6The robot asks the participant to express his/her opinion about the content of a projected video7.

Afterwards, it detects and segments predefined keywords, in a dictionary, from the comment of the par-
ticipant, such as “This is disgusting!” or “This video is expressing sadness!”. This helps in detecting
the video’s emotional content (from the participant’s point of view) in order to trigger an adaptive robot
behavior.

7We used a video database for emotion induction in the participants [36]. More details are available
in Section (4.1).
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Fig. 1: Overview of the system architecture

3. Mary-TTS Engine, which converts the story texts8 with the detected emotion
labels of the employed videos to affective speech (Section 3.1).

4. Body Gesture Generator, which uses the generated speech by Mary-TTS engine
to generate synchronized head-arm gestures9 [4].

5. Facial Expressions Modeling, where facial expressions are modeled on the robot
face in synchrony with the synthesized speech (Section 3.2).

6. ALICE Robot, which is the test bed platform in the conducted experiments with
the participants (Section 4).

In the following sections of the paper, we illustrate the subsystems of the proposed
framework and describe the experimental setup in detail.

3.1 Affective Speech Synthesis

The text-to-speech Mary-TTS engine is used for adding prosody and accent cues to
a predefined text, which summarizes the storyline of a video under discussion [75].
This engine could help in making the robot able to engage in conversation with each
participant using adaptive affective speech to the displayed story in the video. Mary-
TTS engine uses a high-level markup language (SSML: Speech Synthesis Markup
Language) to define the vocal pattern of the synthesized speech [82] as it provides
different efficient features such as adding periods of silence between words in ad-
dition to providing an easy control on speech characteristics (i.e., pitch contour and
baseline, and speech rate) (Figure 2). This could make it a helpful tool for the vo-
cal design of the target emotions described in this study. It should be recalled that
Mary-TTS engine is not yet prepared for synthesizing emotional speech in English

8Story Comments: are the predefined comments of the robot on the employed videos in the exper-
iments. These story texts help in creating an interaction context between the participant and the robot
associated with an adapted robot behavior - combining at least two modalities of emotional speech, facial
expressions, and/or gestures - to the affective content of each video.

9This provides an implicit validation for the expressivity of the synthesized speech in which the more
natural it is, the more natural will be the generated gestures (to be evaluated by the participants).
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Fig. 2: SSML specification of the ‘sadness’ emotion

in a human-like manner (same as other TTS engines); however, to our knowledge,
Mary-TTS engine provides better vocal design capabilities and a higher flexibility
than the other available engines. This makes the proposed vocal design in this work
as an approximate step towards communicating the meaning of each expressed emo-
tion during interaction. Thus, the robot behavioral multimodality is important for
emphasizing the meaning of the expressed behavior, where each modality enhances
the expressiveness of the other modalities.

Table (1) illustrates the proposed vocal patterns of the target emotions in which pitch
contours are characterized by sets of parameters inside parentheses10. Speech rates of
the target emotions vary between the rates of the ‘sadness’ emotion (lowest rate) and
the ‘anger’ emotion (highest rate). The inter and intra-sentence break times were im-
posed experimentally on the proposed vocal design in order to enhance the affective
expressivity of speech. The indicated inter-sentence break time with each emotion
represents the silence periods that separate sentences at which both the lips and jaw of
the robot make particular expressions to clarify the expressed emotion (Section 3.2).
Besides, the intra-sentence break time indicates the silence periods of short duration
within a sentence, which are necessary to clarify the expressivity of the ‘sadness’ and
‘fear’ emotions. The experimental parameters shown in Table (1) are an example of
the prosody patterns of parts of the texts converted to speech for each emotion. The
vocal patterns of the remaining parts of the texts differ slightly with respect to the
indicated parameters in Table (1) so as to further clarify tonal variation over the text.
Some emotions required using interjections (with tonal stress) in order to enhance
their expressivity, like ‘Ugh’ and ‘Yuck’ for the ‘disgust’ emotion, and ‘Oh my God’
for the ‘fear’ emotion.

3.2 Facial Expressivity

The proposed design of facial expressions for the target emotions is grounded on the
well-known coding system of facial actions (FACS) [30]. This design is clearly ex-
plained in Table (2), which shows the corresponding joints to each emotion in the
face of the robot and the designed gestures to clarify the meaning of facial expres-

10The first parameter in each set followed by "%" denotes a percentage of the text duration, while the
second parameter followed by "st" denotes the associated variation in baseline pitch in semitone.
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Table 1: The design of the vocal pattern and contour behavior of each target emotion

Emotion Baseline Pitch Pitch Contour Speech Rate Contour Features Break Time
Start Behavior End

Sadness -4st (0%,+0st)(100%,-0st) -30% Negative Constant Negative Inter/Intra-Sentence
Disgust +4st (0%,-5st)(40%,-9st)(75%,-12st)(100%,-12st) +8% Negative Exponential Negative Inter-Sentence

Happiness +2st (0%,+8st)(30%,+16st)(50%,+14st)(100%,+11st) +7% Positive Parabola Positive Inter-Sentence
Anger +5st (0%,-18st)(50%,-14st)(75%,-10st)(100%,-14st) +12% Negative Parabola Negative Inter-Sentence
Fear +6st (0%,+2st)(50%,+5st)(75%,+8st)(100%,+5st) +7% Positive Parabola Positive Inter/Intra-Sentence

sions. The corresponding FACS units to emotions, in bold font, represent the most ob-
served prototypical units between subjects [76], whereas the other units are observed
at lower percentages. The underlined action units are the units with corresponding
relative joints in the face of the robot.

Table 2: The design of facial expressions, modeled on the robot, for each target emo-
tion

Emotion FACS Coding Robot Face Joints Additional Body Gestures

Sadness
Brow Lowerer + Lip Corner Depressor + Inner Brow Raiser +

Cheek Raiser + Nasolabial Deepener + Chin Raiser Left Smile + Right Smile + Brows
Covering-Eyes Hand + Bowing Head +

Narrowing Eyes + Eyes Blinking + Closing Jaw

Disgust
Lip Pressor + Brow Lowerer + Nose Wrinkler +

Upper Lip Raiser + Chin Raiser Jaw + Brows
Neck Rotation + Raising Front-Bent Arms +

Narrowing Eyes
Happiness Lip Corner Puller + Lips Part + Cheek Raiser Left Smile + Right Smile + Jaw Eyes Blinking

Anger
Brow Lowerer + Lid Tightener + Lip Pressor + Lip Tightener +

Upper Lip Raiser + Chin Raiser + Nasolabial Deepener Jaw + Brows + Eyelids Down Head-Shaking + Short Mouth-Opening

Fear
Inner Brow Raiser + Brow Lowerer + Lip Stretcher +

Lips Part + Outer Brow Raiser + Upper Lid Raiser + Jaw Drop
Left Smile + Right Smile +

Jaw + Brows + Eyelids Mouth-Guard Hand

The complexity behind modeling emotion on the face of the robot lies in the ab-
sence of equivalent joints to specific FACS descriptors (e.g., cheek raiser and nose
wrinkler). Therefore, and inspired by the experimental designs of McColl and Nejat
[55] and Wallbott [89]11, we imposed some additional body gestures experimentally
in order to reduce the negative effect of the absent joints on affective expressivity.
These additional gestures do not include neither head gestures nor arm-hand gestures,
which are generated by the gesture generator [4] (except for the italic-font gestures
indicated in Table (2), which are required to enhance the affective expressivity of the
robot)12. For example, the combination of the additional gestures neck rotation and
raising front-bent arms is helpful for better expressing the ‘disgust’ emotion (Fig-
ure 3), which can give the participant the feeling that the robot does not like the
interaction context. In a similar way, the emotions of ‘sadness’, ‘fear’, and ‘anger’
are assigned the gestures of bowing head and covering-eyes with hand, mouth-guard
with hand, and down head-shaking, respectively, to emphasize their affective expres-
sivity (Figure 3). The main role of the additional right smile and left smile face joints

11These studies discuss the characteristics of body behavior in different emotions employing arm ges-
tures. McColl and Nejat [55] used the gesture hanging arms to express the sadness emotion using the robot
Brian-2, while Wallbott [89] used the gesture crossed in front of chest to describe the disgust emotion. The
final implementation of these gestures on ALICE robot was made according to the mechanical limitations
of the robot arms.

12The metaphoric gesture generator [4] synthesizes the most appropriate head-arm gestures based on
its own learning algorithm. Consequently, it is possible that the predefined additional gestures (in italic
font, Table 2) might not be generated during the interaction. Thus, we added them, experimentally, at
particular moments of speech with a higher priority than the synthesized gestures by the generator.
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Fig. 3: Synthesized facial expressions by ALICE robot
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Fig. 4: Eyelids animation script

of the ‘fear’ emotion is to depress the corners of the open mouth so as to enhance its
affective expressivity; however, both joints do not have equivalent FACS descriptors
(Table 2). Generally, modeling persuasive facial expressions on a robot is not a triv-
ial task because of the mechanical limitations of its joints (unlike the case with 3D
agents). Therefore, the robot behavioral multimodality can play an important role in
enhancing its affective expressivity during interaction, where each behavior modality
can clarify the other modalities.

Figure (4) demonstrates the eyelids animation script where three points of the motion
path are described through position and time. In order to achieve a temporal align-
ment between eyelids animation and speech, if the synthesized speech duration is
longer or shorter than the eyelids animation duration, the model determines the cor-
responding new time instants to animation points based on speech duration, anima-
tion duration, and the previous time instants of animation points. The segmentation
of human speech is achieved through an embedded voice activity detection algorithm
in the speech recognition system, which can efficiently label speech and silence seg-
ments. In case the silence period represents an inter-sentence break time that was
discussed in Section (3.1), both of the robot jaw and lips perform specific animations
(e.g., pulling the corners of the lips to express happiness) which could enhance the
meaning of the expressed emotion (Figure 3). This is due to the robot mechanical
constraints that prevent the synchronization between lips motion and speech while
performing an animation with both the jaw and lips at the same time. Meanwhile, if
the silence period corresponds to an intra-sentence break time, the jaw of the robot
opens to express fear and closes to express sadness during the silence period (Section
3.1).
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Table 3: The target emotions and their corresponding feature films. The main videos
were extracted from the bold-font films. Meanwhile, the other films represent the
standby videos.

Target Emotion Feature Film
Sadness The Champ - An Officer and a Gentleman
Disgust Pink Flamingos - Maria’s Lovers

Happiness On Golden Pond - An Officer and a Gentleman
Anger My Bodyguard - Cry Freedom
Fear Halloween - Silence of the Lambs

Neutral Crimes and Misdemeanors - All the President’s Men

4 EXPERIMENTAL SETUP
In this section, we discuss the employed database for emotion induction in the partic-
ipants. In addition, we present the experimental hypotheses, design, and scenario of
interaction between the participant and ALICE robot developed by RoboKind13.

4.1 Database

The employed database contains 20 silent videos excerpted from feature films (with
duration varying from 29 to 236 seconds) for inducing 6 target emotions in the par-
ticipants: neutral, disgust, anger, happiness, fear, and sadness14. Hewig et al. [36]
discussed and validated the efficiency of the database in eliciting emotions in hu-
mans. Consequently, in this paper, we will not focus on measuring the level of emo-
tion induction in the participants15. During the experiments, we used 12 expressive
videos from the database to elicit the target emotions. This means that six main videos
were used during the experiments, and six standby videos (i.e., one standby video per
emotion) were used automatically in case any of the main videos failed to elicit the
corresponding target emotion (Table 3).

4.2 Hypotheses

Human emotion experience is generally characterized by different cognitive con-
structs, such as (1) emotion clarity (i.e., the clear and definite representation of emo-
tion) [24], (2) emotion differentiation, which is the ability to accurately identify and
represent emotion into discrete categories (e.g., sadness, disgust, and happiness). This
is conceptually correlating with emotion clarity, where each construct could enhance
the other one [14], (3) emotional complexity (i.e., the broad range of emotion expe-
riences associated with a tendency to accurately differentiate between emotion cate-
gories) [42], and (4) emotional awareness (i.e., the knowledge complexity of emotion,

13The humanoid ALICE-R50 robot has an expressive face and a total of 36 degrees of freedom in the
whole body. The robot has two cameras and a sensor set in order to perceive its surrounding environment.
The robot face with synthetic skin can efficiently make a variety of facial expressions with high credibility
(Section 3.2).

14The surprise emotion is not considered in this study because it is not included in the video database
of Hewig et al. [36], which we used for emotion induction.

15We correlate between emotion induction and recognition using videos so that an induced emotion
could be correctly recognized by the participant.
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which represents the ability to be aware of emotion) [54]. Each of these constructs is
measured through calculated indices from subjects’ self-reports [44].

In this research study, the main objective is to generate a well-perceived multimodal
robot behavior so as to enhance the interaction with a human user. Consequently, the
clarity and differentiation constructs of emotion would be directly addressed through
investigating the ability of the participants to recognize the affective content of the
generated robot behavior16. Besides, the participants would evaluate the effect of the
robot behavioral multimodality on interaction. The subjective evaluation of the gen-
erated multimodal robot behavior investigates basically the clarity17/ expressivity18,
and the recognizability (i.e., emotion differentiation) of the affective robot behavior in
addition to the synchronization between the behavior modalities, etc. The examined
hypotheses in this study are:

– H1: The combination of facial expressions, speech, and arm and head gestures will
increase the clarity of the affective content of the robot behavior to the participant
compared to the experimental conditions with less combined affective cues (i.e.,
less combined modalities of communication).

– H2: Facial expressions will enhance the recognizability, and expressivity, of the
robot emotion by the participant compared to the experimental conditions without
facial expressions.

– H3: The characteristics of the arm and head gestures of the robot (e.g., accel-
eration) will enhance the expressivity of the robot behavior so as to help the
participant in recognizing and distinguishing between emotions compared to the
experimental conditions without arm and head gestures.

The effect of emotional speech on interaction was not examined through an indepen-
dent hypothesis because this requires whether:

– Comparing the robot behavior that employs affective speech to the robot behav-
ior that does not employ affective speech (i.e., using neutral or monotone speech).
However, the proposed system in this study uses the synthesized speech as a basis
for generating synchronized gestures with facial expressions (Figure 1). There-
fore, synthesizing monotone speech will lead to associated facial expressions and
gestures with different characteristics than those of the facial expressions and ges-
tures generated using affective speech. Consequently, it is not possible to compare
between the robot behaviors in similar experimental conditions (e.g., the robot be-
havior expressed through speech and gestures in the case of affective speech and

16This is based on their previous experiences with the target emotions, which are common and basic
emotions that each person whether experiences internally or perceives through speech, facial expressions,
and gestures of others in the environment.

17The maximum possible level of emotional expressivity achieved through combining speech, facial
expressions, and head-arm gestures together (Figure 6), which is concordant with the definition of emotion
clarity discussed earlier in the same section [24].

18A lower level of emotional expressivity achieved through less affective cues than in the clarity level
(Figure 6).
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the same behavior in the case of monotone speech as gestures in both cases will
be different).

– Comparing the robot behavior that employs affective speech to the robot behavior
that does not employ speech at all. This condition does not match the context of
the non-mute human-robot interaction19.

Consequently, these two cases are excluded from our experimental design. Instead,
the important role of speech in enhancing the affective content of interaction would
be measured directly through analyzing the post-experiment questionnaires.

4.3 Experimental Design
The experimental design is based on the between-subjects design20 through a human-
robot interaction context in which the synthesized speech by Mary-TTS (text-to-
speech) engine is used as an input to the gesture generator [4] so as to synthesize
adapted gestures to the synthesized affective speech21. This constitutes an implicit
validation for the expressivity of the synthesized speech using Mary-TTS engine in
which the more natural (i.e., human-like) the synthesized speech is, the more natural
will be the corresponding generated gestures (to be evaluated by the participants).
Besides, generating adaptive gestures based on speech characteristics is concordant
with the cognitive co-production process of synchronized speech and gestures that
humans undergo [56]. The synthesized speech and gestures (in addition to facial ex-
pressions) are modeled on the robot and evaluated by the participants at the end of
each conducted experiment. The proposed design includes the following robot be-
havior conditions:

– The robot produces a multimodal affective behavior expressed through facial ex-
pressions, speech, and arm and head gestures (i.e., condition C1-SFG).

– The robot produces a multimodal affective behavior expressed through facial ex-
pressions and speech (i.e., condition C2-SF).

– The robot produces a multimodal affective behavior expressed through arm and
head gestures, and speech (i.e., condition C3-SG).

– The robot produces a unimodal affective behavior expressed through speech (i.e.,
condition C4-S).

In order to validate the first hypothesis, the experimental conditions C1-SFG, C2-SF,
C3-SG, and C4-S were examined. While for the second hypothesis, the conditions

19This study is focusing on investigating the effect of the robot behavioral multimodality on interaction
with typically developed individuals who use speech, facial expressions, and gestures for daily communi-
cation. Consequently, excluding speech from interaction will certainly hinder conveying messages (using
only facial expressions and/or gestures) in a normal manner unless we use a conventionalized sign lan-
guage in parallel, which is totally away from the scope of the current study.

20Each experimental condition is evaluated through a different group of participants.
21We used the synthesized affective speech by Mary-TTS engine to generate a robot gestural behavior

instead of using human speech directly because not all the participants are able to show an affective con-
tent in speech when describing a scene, unless they are describing a personal experience they have been
through (this describes the difference between emotion perception and emotion experience as explained in
Schreuder et al. [74]), which is not the case in this study.
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Fig. 5: Interaction experiments between the robot and two different participants

C2-SF and C4-S were examined, and for the third hypothesis, the conditions C3-SG
and C4-S were examined. We excluded the condition of the robot producing a uni-
modal behavior expressed through facial expressions or arm and head gestures with-
out using speech, and the condition of the robot producing arm and head gestures
combined with facial expressions without using speech (Section 4.2). The condition
C3-SG was excluded from validating the second hypothesis and the condition C2-
SF was excluded from validating the third hypothesis because the facial expressions
of the robot are associated with the additional body gestures detailed in Table (2).
Consequently, separating between the conditions of facial expressions and gestures
(i.e., conditions C2-SF and C3-SG) could guarantee differentiating between the ac-
companying gestures to the robot facial expressions and the basic head-arm gestures
synthesized by the generator. This could lead to better evaluating the effect of facial
expressions and gestures on interaction.

The literature reveals serious efforts to elicit emotion in humans under laboratory
conditions. These emotion induction methods include: dyadic interaction tasks [70],
affective imagery [47], music [69], and pictures and film clips [85]. In this study,
the robot and the participant, in each condition, follow an expressive stimulus set of
short videos through six experiments that mean to elicit six different target emotions
(Figure 5) after a short preparation phase22. The scenario of interaction is described
as follows:

– The robot invites the participant to watch some videos and discuss their storylines.

– The robot asks the participant to express his/her opinion about the content of the
projected video. Afterwards, it detects and segments predefined emotion-referring

22Pre-Experiment Preparation Phase:The experimenter introduced the humanoid expressive ALICE
robot to the participant and explained the task. Each participant signed an informed consent to be notified
about different points such as nature of the study, duration of interaction23, data privacy, statement of risks
and benefits, right to get informed about results in addition to giving an authorization to get filmed. The
participant was seated in front of the robot with a table in-between, and used a headset microphone to
capture his/her own speech during interaction [6].

23Each experiment had a varying duration between 1 and 4 minutes, while the duration of answering
each questionnaire was varying between 2 and 5 minutes.
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Table 4: The recognition scores of the videos’ affective contents in the different ex-
perimental conditions

Condition Emotion Induction
Correct (after the 1st videos) Correct (after the 2nd videos)

C1-SFG 100% 0%
C2-SF 100% 0%
C3-SG 98.9% 1.1%
C4-S 97.8% 2.2%

keyword(s) from the recognized comment of the participant, such as “This is
disgusting!”, “This video is expressing sadness!”, etc. This helps in detecting the
video’s emotional content (from the participant’s point of view) in order to trigger
a corresponding adaptive robot behavior.

– After listening to the participant’s comment on the video, the robot makes a com-
ment accompanied by speech, facial expressions, and/or head-arm gestures on the
content of the video.

– If the displayed video induces, in the participant, another emotion than the con-
cerned target emotion so that the system detects keyword(s) that belong mainly
to another category of emotion-referring keywords, the robot comments through
a neutral behavior. Thereupon, the robot asks the participant to watch a different
video so as to retry to induce the emotion that was failed to be elicited using the
first video (Table 4).

– The experiment terminates for the examined target emotion. Thereupon, the par-
ticipant evaluates the generated behavior of the robot through a 7-point Likert
scale questionnaire. This evaluation focuses on the relevance of the robot behav-
ior to the context of interaction in terms of its emotional content and expressivity,
synchronization between the robot behavior modalities (i.e., speech, facial ex-
pressions, and/or gestures according to the examined experimental condition), etc
24. Afterwards, a new experiment of interaction starts for examining a different,
randomly selected, target emotion.

– After all the experiments terminate, the experimenter and the robot express grati-
tude to the participant for his/her time and cooperation.

Table (4) shows that the majority of the target emotions were correctly recognized
by the participants after watching the first videos in the four experimental conditions,
while the second videos were slightly required. This shows that the chosen videos
from the employed silent video database25 had convincing emotional contents [36].

24An example of a Likert scale question that evaluates the clarity of the robot behavior during the
conducted experiments (1 −→ lowest score, 7 −→ highest score):

– How do you evaluate the affective expressivity of the generated robot behavior?
1 2 3 4 5 6 7

Low (Not Clear Emotion) � � � � � � �

25This silent video database was created for serving brain asymmetry research to avoid affecting asym-
metry measures with speech, sound, and music [36].
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Afterwards, the participants were first asked through each post-experiment question-
naire to evaluate the characteristics of the generated robot behavior in terms of each
modality of communication (i.e., speech, gestures, and facial expressions) indepen-
dently, then they were asked to evaluate and recognize the affective content of the
generated combined behavior. We argue that this supports separating between the
emotional contents of the videos and the robot behaviors during evaluation - sup-
ported by the findings of Hermans et al. [35]26 - up to the level that allows for inves-
tigating the experimental conditions successfully27.

5 EXPERIMENTAL RESULTS
A total of 60 participants were recruited in order to validate the different examined
hypotheses in this study. The participants have been equally distributed over the ex-
perimental conditions (i.e., 6 females and 9 males for every condition). The par-
ticipants were undergraduate and postgraduate students and employees at ENSTA-
ParisTech (with ages varying from 20 to 57 years old, M = 29.6 and SD = 9.4).
The participants had a technical background with an average of 66.7%, and a non-
technical background with an average of 33.3%. Moreover, only 40% of the partic-
ipants had previous interaction experience with robots, while 60% of them did not
interact with robots beforehand. The effect of synthesizing adaptive robot behavior
on interaction with the participants in addition to personality and gender-based eval-
uations of the emotional expressivity of the generated behavior are illustrated in the
following points:

5.1 Effect of the Robot Behavioral Multimodality on Interaction

For the first hypothesis, a significant difference was found by ANOVA analysis in the
clarity of the affective robot behavior expressed through a combination of speech, fa-
cial expressions, and head-arm gestures with respect to the robot behaviors, with less
affective cues, expressed through speech, speech and facial expressions, and speech
and head-arm gestures (F [3,356] = 21.15, p < 0.001) (Figure 6). Tukey’s HSD com-
parisons indicated a significant difference in clarity between the robot behavior ex-
pressed through combined speech, facial expressions, and head-arm gestures (i.e.,

26Hermans et al. [35] argued that affective priming results from fast-acting cognitive processes whose
effects quickly dissipate after a short duration of milliseconds.

27According to the study of Schreuder et al. [74], emotion perception results from the interpretation of
the emotional qualities of the stimulus, while emotion experience is a state that results from the internal
assessment of the percept. This means that a human might perceive a stimulus with emotional content
(with/without) experiencing any internal emotions depending on the stimulus, the context, and the person.
Emotion elicitation is the intermediate phase that links between emotion perception and emotion experi-
ence. The employed database in the experiments had been evaluated with emotional eliciting content as
discussed in Hewig et al. [36]. However, as the process of emotion elicitation highly depends on the human
and his/her previous emotional experience, it is very difficult to define the level of emotion elicitation in
the recruited participants during the experiments so as to detect if it was sufficient to have any effect on
the evaluation of the robot behavior. This needs another psycho-cognitive study and different experimental
conditions to investigate. However, based on the findings of Hermans et al. [35], we believe that evaluating
the robot behavior was not influenced by the videos. It might be important to notice that the participants
evaluated the robot behavior freely regardless of the content of the videos so that when the robot behavior
had a convincing affective content, it received a high evaluation, to the contrary of the case when it had a
less convincing affective content, which supports our proposed experimental design.
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Table 5: The scores of recognizing the target emotions, modeled on the robot, in
different conditions

Condition Emotion
Sadness Disgust Happiness Anger Fear Neutral

C2-SF 100% 80% 93.3% 92.9% 100% 100%
C3-SG 100% 93.3% 93.3% 92.3% 100% 100%
C4-S 100% 93.3% 93.3% 80% 100% 100%

condition C1-SFG) on one side, and the robot behaviors expressed through speech
(i.e., condition C4-S) (p < 0.001) (the lowest among the four conditions), speech and
facial expressions (i.e., condition C2-SF) (p < 0.001), and speech and head-arm ges-
tures (i.e., condition C3-SG) (p < 0.001) on the other side. Moreover, no significant
difference was observed between the conditions C2-SF and C3-SG in the clarity of
the robot behavior.

For the second hypothesis, the robot behavior expressed though facial expressions
and speech was found by the participants to be more expressive and adapted to the
context of interaction than the behavior expressed through speech (F [1,178] = 18.63,
p < 0.001). Moreover, the participants considered that speech and facial expressions
were synchronized with an average score of M = 5.9, SD = 0.9. Furthermore, they
did not find any significant inconsistency in affective content between speech and fa-
cial expressions with an average score of M = 1.8, SD = 1.2. Over and above, they
agreed that speech was less expressive than facial expressions with an average score
of M = 4.4, SD= 1.5. Table (5) shows that facial expressions improved only the score
of recognizing the emotion of ‘anger’ in the experimental condition C2-SF with refer-
ence to the condition C4-S, which is related to the limitations of Mary-TTS engine in
designing a highly expressive vocal pattern for this particular emotion (Section 3.1),
so that facial expressions enhanced the affective content of speech giving the partic-
ipants the feeling that the robot was expressing the ‘anger’ emotion persuasively. To
the contrary, the facial expressions of the robot had a negative effect on the score of
recognizing the emotion of ‘disgust’ in the experimental condition C2-SF with refer-
ence to the condition C4-S, which is related to the limited affective facial expressivity
for this particular emotion (Section 3.2).

For the third hypothesis, the affective content of the robot behavior expressed through
both arm and head gestures and speech was considered to be more expressive and
observable by the participants than that of the behavior expressed through speech
(F [1,178] = 17.16, p < 0.001). Furthermore, the participants found that speech and
gestures were synchronized with an average score of M = 6.1, SD = 0.7, and they
agreed that the execution of gestures was fluid with an average score of M = 5.35,
SD = 1.03. Over and above, the participants found that gestures were more expres-
sive than speech with an average score of M = 4.25, SD = 1.43. The affective content
of the arm and head gestures of the robot behavior was reasonably recognized by the
participants (Table 5). The generated gestures ameliorated only the score of recog-
nizing the emotion of ‘anger’ in the experimental condition C3-SG with reference to
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the condition C4-S, which is related to gesture characteristics such as velocity and
acceleration, that enhanced the robot expressivity for this emotion.

Figure (6) illustrates the variation in the affective expressivity of the robot behavior in
the experimental conditions C1-SFG, C2-SF, C3-SG, and C4-S. The robot behavioral
expressivity in each condition was investigated through a different group of 15 par-
ticipants. The combination of different affective cues (i.e., speech, facial expressions,
and head-arm gestures in the condition C1-SFG) provided clarity to the robot behav-
ior with respect to the other conditions that employ less affective cues as argued in
the first hypothesis28. Meanwhile, no significant difference was observed in the robot
behavioral expressivity between the conditions C2-SF and C3-SG.

Fig. 6: Human perception of the emotional expressivity of the robot behavior in the
four experimental conditions, where the clarity of behavior refers to the maximum
level of expressivity it can show

A significant result was found by two-way ANOVA analysis in the perception of the
affective robot behavior with clarity-expressivity of facial expressions (i.e., condition
C2-SF) and emotion as independent variables (F [2,168] = 4.47, p = 0.0359). How-
ever, no significant result was found with clarity-expressivity of gestures (i.e., condi-
tion C3-SG) and emotion as independent variables. After running one-way ANOVA
analysis on each emotion individually, the results showed that both the ‘happiness’
and ‘disgust’ emotions were found significantly more clear when being expressed
through combined speech, facial expressions, and head-arm gestures (i.e., condition
C1-SFG) (F [1,28] = 3.36, p = 0.077) than when being expressed though speech and
facial expressions (i.e., condition C2-SF) (F [1,28] = 6.133, p= 0.0196). Meanwhile,
no significant differences were found for the ‘neutral’, ‘sadness’, ‘fear’, and ‘anger’
emotions. Over and above, a statistically significant main effect was observed for the

28Clarity and expressivity have been previously defined in Section (4.2). An affective robot behavior
could have some level of expressivity, but it could be not really clear to the participants in the same time.
For example, the interpretation of a facial expression could be ambiguous and confused among different
emotions (i.e., it is expressive, but not clear enough to be fully perceived), in this case speech or gestures
could help in interpreting the actual emotion so as to enhance its clarity.
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Table 6: The numbers of the introverted and extraverted participants in the four ex-
perimental conditions

Personality Dimension Condition (15 Participants / Condition)
C1-SFG C2-SF C3-SG C4-S

Introversion 6 6 8 7
Extraversion 9 9 7 8

experimental conditions (F [3,335] = 12.738, p < 0.001) and for the target emotions
(F [5,335] = 5.527, p < 0.001).

5.2 Human Personality-Based Evaluation of the Affective Robot Behavior
Personality is a determinant factor in human social interaction, which has a long-
term consistent effect on the generated multimodal human behavior. Reisenzein and
Weber [67] defined personality as the coherent and collective pattern of emotion, cog-
nition, behavior, and goals over time and space. Moreover, Revelle and Scherer [68]
discussed the strong relationship between personality and emotion. Several research
studies in neuroscience discussed the correlation between the neurobiological struc-
ture of personality extraversion and the activation in different brain regions involved
in emotional responding (which implies perceiving the affective content of interac-
tion) [39]. This potential correlation between personality extraversion and emotion
perception would be investigated within a human-robot interaction context so as to
study the effect of human personality on perceiving the emotional expressivity of the
robot behavior.

5.2.1 Personality Extraversion-Based Evaluation of the Affective Robot Behavior

Table (6) indicates the numbers of the introverts and extraverts in each experimental
condition, where the calculation of personality scores was based on the online Big5
personality model questionnaire [32]29 that each participant filled in at the begin-
ning of the experiments. Figure (7) illustrates the effect of the human extraversion
personality trait - in terms of the introversion and extraversion of personality - on
the perception of the affective expressivity of the robot behavior. In the four exper-
imental conditions, both the introverts and extraverts showed a similar tendency in
evaluating the emotional expressivity of the robot behavior, where the perception
of the extraverted participants for the robot behavior was, in general, higher than
that of the introverted participants. The variance in evaluating the expressivity of the
robot behavior by the introverted and extraverted participants was found statistically
significant (through T-Test) in the different conditions: C1-SFG (p < 0.02), C2-SF
(p < 0.03), C3-SG (p < 0.03), and C4-S (p < 0.02).

This evaluation difference between the introverted and extraverted participants is con-
cordant with the findings of Shulman and Hemenover [77], Petrides et al. [63], and
Atta et al. [12], who argued that emotional intelligence30 is positively correlating with

29http://www.outofservice.com/bigfive/
30The ability to perceive others’ emotions through analyzing the affective cues of their behaviors [53].

http://www.outofservice.com/bigfive/
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personality extraversion. Consequently, the extraverted participants are expected to
have a relatively higher emotional intelligence than that of the introverted partici-
pants so that they gave higher ratings for the robot behavior in the four experimental
conditions. The previous evaluation of the affective expressivity of the robot behav-
ior matches the illustrated findings in Figure (6), where the evaluation of the robot
behavior in the condition C1-SFG was higher than that in the other conditions.

Fig. 7: Human personality-based evaluation (in terms of introversion and extraversion
of personality) of the affective expressivity of the robot behavior

5.3 Gender-Based Evaluation of the Affective Robot Behavior
Both of the female and male participants have positively perceived the affective ex-
pressivity of the generated robot behavior in the four experimental conditions (Figure
8). The indicated ratings in the figure show that the perception of the male partic-
ipants for the affective robot behavior in the four conditions was generally higher
than the perception of the female participants. This relatively higher preference of
the male participants over the female participants for the emotional expressivity of
the female ALICE robot matches the findings of Siegel et al. [78] and Park et al. [60],
where they found that the participants considered the opposite-sex robots to be more
attractive and convincing during interaction.

The variance between the ratings of the male and female participants for the emo-
tional expressivity of the robot behavior indicated in Figure (8) was found statis-
tically significant (through T-Test) in the different conditions: C1-SFG (p < 0.02),
C2-SF (p < 0.03), C3-SG (p < 0.02), and C4-S (p < 0.001). Furthermore, the male
participants considered the generated multimodal robot behavior more adapted to the
emotional content of the videos, and consequently the context of interaction, than
the female participants (p < 0.01), which supports the hypothesis of the opposite-sex
attraction of human users to robots.

The observable difference between the ratings of the male and female participants
in the condition C4-S compared to those in the conditions C1-SFG, C2-SF, and C3-
SG (Figure 8) could be related to the low affective expressivity of the robot behav-
ior employing speech only in interaction with respect to those that employ speech
combined with facial expressions and/or gestures (Figure 6). We argue that facial ex-
pressions and gestures enhanced the affective content of the robot behavior, which
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slightly improved the perception of the female participants to the generated behav-
ior in the conditions C1-SFG, C2-SF, and C3-SG while keeping the opposite-sex
attraction hypothesis of human users to robots valid. These findings need; however, a
larger number of male and female participants to have a clearer visualization for their
perceptual differences of the robot behavior.

Fig. 8: Gender-based evaluation of the affective expressivity of the robot behavior

6 DISCUSSION
We propose an integrated system for generating affective robot behavior expressed
through speech, gestures, and facial expressions within a human-robot interaction
context. We investigate the multimodality of the generated robot behavior and its pos-
itive effect on interaction with the participants through three experimental hypotheses
that compare between the robot behavior with combined, at least two modalities of,
speech, gestures, and/or facial expressions and those with less affective cues. More-
over, we investigate any potential effect of human personality and gender on the way
the robot behavior was perceived during interaction.

The proposed framework (Section 3) integrates different subsystems for affective
speech synthesis, gesture generation based on speech prosody, and an expressive
robot with highly credible facial expressions, which allows for studying the effect
of the robot behavioral multimodality on interaction with a wide scope. The obtained
results demonstrate the positive role that affective cues could play in enhancing the
expressivity of the robot behavior so as to help the participants in perceiving its emo-
tional content appropriately. These findings are clearly illustrated in Figure (6), where
the robot behavior that combines speech, facial expressions, and gestures attained a
higher level of expressivity (i.e., clarity level) than the other robot behaviors with less
affective cues.

When searching in the related studies in the literature for concordant results with our
findings on affect recognition using multimodal information, we found that the ma-
jority of them were unimodal (and bimodal) - based approaches employing, among
others, gestures and facial expressions, speech and gestures, and speech and physi-
ological signals [38, 93]. Meanwhile, there are a few studies that discussed emotion
recognition with more that two modalities of information. Castellano et al. [21] used
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speech, gestures, and facial expressions to recognize emotions, and reported that us-
ing multimodal data for affect recognition highly increased the scores with respect to
the cases that use less modalities of data [73]. Generally, our proposed system shares
the same concept of the positive effect of multimodality on emotion perception and
recognition. However, it is designed to generate and embody a multimodal behavior
- expressed through speech, gestures, and facial expressions - on ALICE robot so as
to be positively perceived by the participants, which makes it a different contribution
than any other approach in the related literature.

Over and above, the results report some differences in the perception of the
introverted-extroverted and male-female participants for the affective robot behavior,
where the perception of the extraverted and male participants for the robot behavior
was generally higher than that of the introverted and female participants in the differ-
ent conditions of behavior (Figures 7 and 8). While we tried to explain these findings
in light of other similar findings in the related literature (Sections 5.2.1 and 5.3) so as
to support our results, we believe that a larger number of introverted-extroverted and
male-female participants is required in order to figure out their perceptual differences
of the robot behavior more precisely. However, we argue that the current results could
give useful insights into human perception of the affective robot behavior to the other
interested researchers in the field of human-robot interaction.

7 CONCLUSION
This paper introduces a framework for generating an adapted multimodal robot be-
havior, expressed through speech, gestures, and/or facial expressions, to the context
of interaction with human users. A set of videos that mean to induce target emo-
tions in the participants is employed during the experiments upon which interactive
discussions start with the robot around their affective contents. Each participant is
only exposed to one of the four experimental conditions of multimodal - unimodal
robot behaviors during the experiments. The system uses Mary-TTS engine to gen-
erate emotional speech; however, the proposed vocal design requires using interjec-
tions and inter/intra-sentence break times in order to enhance the affective content of
the synthesized speech. Besides, the gesture generator synthesizes adaptive head-arm
gestures to the generated speech. The proposed design of facial expressions requires
using additional body gestures in order to increase their credibility and expressivity
to the participants.

This paper validates the important role of the robot behavioral multimodality in en-
hancing the clarity of interaction compared to interaction conditions with less affec-
tive cues. Moreover, it discusses the positive effect of the designed facial expressions
and gestures in enhancing the emotional expressivity and recognizability of the robot
behavior. Over and above, it demonstrates the perceptual differences between the
introverted-extroverted and male-female participants for the generated affective robot
behavior. For the future work, we are considering to improve the gestural expressiv-
ity of the system through additional gesture generators. Moreover, we are considering
to ameliorate the affective expressivity of speech and facial expressions in order to
make the generated multimodal robot behavior more persuasive and natural. Besides,
we are considering to integrate language models that can help the robot to under-
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stand human language with a wider scope instead of parsing keywords as with the
employed system in the paper [1, 8–11].
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