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Abstract

In this work, we show that the regularization methods based on filter func-
tions with a regularization parameter chosen with the GSURE principle are
convergent for mildly ill-posed inverse problems and under some smoothness
source condition. The convergence rate of the methods is not optimal for
very ill-posed problems but the efficiency increases with the smoothness of
the solution.
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1. Introduction

In this article, we consider the numerical solution of a linear inverse prob-
lem written as:

y = Ax (1)

where A : X → Y is a compact injective operator mapping two infinite
dimensional separable Hilbert spaces X and Y. We assume that after dis-
cretization, the inverse problem is of the form:

yδ = Bnf + ε (2)

where yδ ∈ Rn, f ∈ Rn is the true discrete solution, Bn is the discrete
approximation of the operator A and ε consists of independent and identically
distributed (i.i.d) Gaussian errors with variance equal to σ2, ε ∼ N (0, σ2In)
.
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In order to obtain a stable solution, we consider a regularization functional
with a regularization parameter α:

Jα(f) =
‖Bnf − yδ‖22

2
+ αR(f) (3)

where R is the regularizer to add some prior information on the solution.
Traditional regularization approaches include Tikhonov or Sobolev regular-
ization [1]. Different regularization terms have been investigated with various
convexity and differentiability properties [2].The non-smooth regularizers en-
forcing sparsity in a suitable domain, e.g. Fourier, wavelet or gradient are
very useful in image analysis problems [3, 4] Spectral regularization methods
use an appropriate filter on the eigenvalues of the operator that defines the
problem . The most commonly used regularization algorithm is the truncated
singular value decomposition [1, 5]. The classical Tikhonov regularization
can also been understood in the framework of filter regularization. Regu-
larization methods based on filter functions can also be applied in learning,
non parametric estimation and problems like those found financial optimiza-
tion [6, 7, 8].

In the following, we will focuss on Tikhonov regularization with R(f) =
‖f‖22 but our results can be extended to filter regularization methods. The
regularization parameter α has to be chosen carefully[9]. Several rules of
choice of the regularization parameters have been investigated in the liter-
ature like the L-curve criteria [10] or some discrepancy principles[2, 1]. A
Lepskii adaptative procedure has been studied in [11, 12, 13].

Some risk estimators have been proposed to chose the regularization pa-
rameters in ill-posed problems. Rules based on the risk estimation with the
Stein Unbiased Risk Estimator (SURE) have been investigated [14, 15, 16,
17, 18]. The idea is to select the regularization parameter that minimizes the
SURE estimate of the Mean Square Error (MSE). The SURE was originally
limited to the Gaussian case and to denoising problems. Some extensions
have been studied for multivariate and exponential families [19]. The case of
denoising was extented to more general linear operators in Vonesch et al.[20].
For general linear inverse problems, some authors have considered a gener-
alized version GSURE (Generalized Stein Unbiased Risk Estimator) where
the risk is measured in the space of the unknown[21, 22, 23, 24].

Yet, there is very few studies about the quality of these risk estimators and
it not clear under which conditions the described procedure achieves the best
possible reconstruction of the true solution. In papers like [22, 18, 21, 20],
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the parameter choice rule with GSURE works well and the problems under
consideration are not very ill-posed. Some study of the influence of the ill-
posedness of the problem and of the degree of smoothness of the unkown so-
lution are presented in Lucka et al.[40] for Tikhonov regularization methods.
Some asymptotic convergence results have been obtained as the dimension of
the problem tends to infinity. Our motivation is thus to understandd if these
estimators are appropriate for very ill-posed problems and to investigate how
the quality of the estimators are modified as a function of the ill-posedness
of the problem and as a function of the degree of smoothness of the solution.

In this work, we intend to show that a choice of the regularization param-
eter with the Generalized Sure method ensures the convergence of regular-
ization methods based on filter functions for mildly ill-posed problems. Our
method is based on source conditions that measure the smoothness of the
solution. Rates of convergence can be calculated with a-priori information on
the solution relative to some smoothness class. Moreover, the power decay
of the singular values and the ill-posedness of the inverse problem are also
taken into account.
The outline of the paper is the following. In the second section, some useful
notions are recalled about compact operators, projection methods, spectral
projectors. We then present the Generalized SURE estimates. In the next
section, we detail the regularization method and the smoothness class as-
sumptions. Then, we estimate the risk as a function of the noise level and
of the regularization parameter. We also show that the Tikhonov type reg-
ularization method based on filter functions with a regularization parameter
chosen with GSURE is a convergent regularization scheme under some re-
strictive conditions about the ill-posedness of the inverse problem and the
smoothness of the solution.

2. Preliminaries

2.1. Compact operators and finite rank approximations

In this work, we will restrict ourselves to linear compact injective oper-
ators A : X → Y between two Hilbert spaces X and Y . For a self-adjoint
compact operators C, the spectral theorem [26, 27] shows that there is a
complete orthonormal system of eigenvectors (ui)i≥0 and eigenvalues (ρi)i≥0
such that, for f ∈ X:

Cf =
∞∑
i=0

ρi < ui, f > ui (4)
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Let Σ the counting measure on N, the former decomposition can be written in
the multiplication form UCf = ρUf , Σ-almost everywhere, with the unitary
operator U : X → l2(N) defined by Uf(i) =< f, ui >, ρ : N → R such that
ρ(i) = ρi for i ∈ N. The essential range of ρ is the spectrum σ(C) of the
operator C.
In the following, the infinite dimensional problem is replaced by a finite
dimensional discretized version. The operator A is approximated by a finite
dimensional operator Bn : Rn → Rn. We assume that this approximation
is obtained by projection methods and that the discrete approximation of
the operator can be written as Bn = QnAPn with finite projections and
interpolation operators, Pn : Rn → X and Qn : Y → Rn. The discretization
errors for the operator A depends on the norms εX = ‖A(I − Pn)‖ and
εY = ‖(I−Qn)A‖. The discretization errors must be included in the analysis
of the SURE and GSURE method. The operator Bt

nBn is a finite rank self-
adjoint operator with closed range. It is possible to consider an orthonormal
basis of the range of this operator (ei)1≤i≤n.

Bt
nBnf =

n∑
i=1

ρi(Bn) < ei, f > ei (5)

where the ρi(Bn) are the square of the singular values σi(Bn) of the operator
Bn.

2.2. Singular values and degree of ill-posedness

The decay rate of the positive sequence {σp(A)}p≥0 of singular values of
the operator A towards 0 when p→∞ measures the strength of ill-posedness
of the inverse problem Af = y. This strength is often expressed by a single
number η called the degree of ill-posedness. If the decrease of the square of
singular values is described by a power law:

ρp(A) ∼ p−η p ≥ 0 (6)

the inverse problem is mildly ill-posed [1]. With increasing η,the numerical
difficulties grow. The faster the decay of the singular values, the more severe
the ill-posedness of the problem. For exponentially ill-posed problems, there
exists an exponent η such that, ρp(A) ∼ exp(−pη). We recall here some
results about the approximate eigenvalues of compact operators [29, 30].
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Proposition 2.1. . Let A : X → Y be a compact operator and Bn : X → Y
a sequence of operators approximating A. Let λ0 be an eigenvalue of A of
multiplicity m and index ν, and let (λin)i∈I be the eigenvalues of Bn within
some small fixed neighborhood of λ0. Let us assume that:
1) A and Bn are linear operators for all n
2) Bnx→ Ax as n→∞ , for all x ∈ X
3) The family (Bn)n≥0 is collectively compact, i.e. {Bnx, n ≥ 1 and ‖x‖ ≤
1} has compact closure in X.

Then, the sum of the multiplicities of the eigenvalues λin equals the mul-
tiplicity of λ0 and the elements of (λin)i∈I all converge to λ0 as n→∞ . For
some c > 0 and sufficiently large n

|λ0 − λ| ≤ cmax{‖Aφj −Bnφj‖1/ν , 1 ≤ j ≤ m} (7)

for all λ ∈ (λin)i∈I , and for (φj)1≤j≤m a basis for Ker(λ0 − A)ν.

For projection methods as the ones considered for Pn, the hypothesis of
Proposition 2.2 are fulfilled [31].

The norm of the approximation Bn −A is bounded by the errors εX and
εY :

‖A−Bn‖ ≤ ‖A−QkA‖+ ‖QkA(I − Pk)‖ = εX + εY (8)

We will thus assume n is large and that the discretization errors εX and
εY are very small so that the square of the singular values of Bn satisfies a
similar rate of decay than the ones of A:

ρp(Bn) ∼ p−η p ≥ 0 (9)

Under this assumption, we can estimate the function R(β) defined as
R(β) = Σ({ρ ≥ β}).

R(β) = Σ({ρ ≥ β}) = |{ρj ≥ β}| (10)

∼
∑
j≤β−η

1 ∼
∫ β−η

0

dt ∼ β−η (11)

5



2.3. Spectral projectors

We detail in this section some useful results about spectral projectors. In
the following, we will use the spectral family of the operator Bt

nBn[32]. We
decompose the space Rn into a direct sum of subspaces Vk in which B∗nBn is
reduced to the multiplication by the eigenvalue ρk of B∗nBn:

Rn = ⊕Vk (12)

We denote Pk the orthogonal projection operator onto Vk and we introduce,
for all ρ ∈ R the space

Gρ = ⊕ρk≤ρVk (13)

Let Eρ the orthogonal projection onto Gρ The discontinuities of the function
ρ→ Eρ are the eigenvalues ρk. In the sense of distribution in R with values
in the space of linear operators defined on Rn, L(Rn), the derivative of Eρ
can be identified as a measure dEρ given by:

dEρ =
∑
ρk≤ρ

δρk ⊗ Pk (14)

where ⊗ is the tensorial product. Let φp(t) a piecewise continuous function,
the operator Φp(B

∗B) is then defined by:

Φp(B
tB) =

∫ a

0

φp(ρ)dEρ (15)

where a is a constant with ‖B∗B‖ ≤ a.
Let ei be an eigenvector for the eigenvalue ρi, we have:

dEρ(ei) = δ(ρ− ρi)⊗ ei (16)

d(Eρ(ei), ei) = d(Eρ(ei), Eρ(ei)) = δ(ρ− ρi) (17)

n∑
i=1

∫ α

0

ρd(Eρ(ei), ei) ==
n∑
i=1

∫ α

0

ρδ(ρ− ρi) = −
∫ α

0

ρdR(ρ) (18)

where the second term is the Stieljes integral associated with the decreasing
function

t→ R(t) = Σ({ρ ≥ t}) (19)
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3. The SURE principle and its generalizations

In the following, we denote fα(yδ) the reconstructed solution for the reg-
ularization parameter α and the noisy data yδ. In inverse problems and
especially reconstruction problems, the mean squared error (MSE):

MSE(α) = ‖f − fα(yδ)‖2/n (20)

is a very usual criteria to estimate the quality of the solution of the inverse
problem. The following Stein lemma is the basis to obtain estimates of this
mean square error [14, 33]. for the standard denoising problem where one
observes a realization yδ = (yδi )1≤i≤n of an original signal f = (fi)1≤i≤n
distorted by an additive white Gaussian noise ε of variance σ2, so that:

y = f + ε (21)

Lemma 3.1. Let ε an additive white Gaussian noise ε = (εi)1≤i≤n, i.e. ε ∼
N (0, σ2In). Let F (y) = (fi(y

δ))1≤i≤n be a n-dimensional vector function such
that for all i=1...n, fi(y

δ) is weakly differentiable with respect to yδi , bounded
by some fast increasing function, |fi(y)| ≤ exp(‖y‖2/2β2) with β > σ, then:

E[εtF (yδ)] = σ2E[divF (yδ)] (22)

where div is the divergence operator in the weak sense.

For Gaussian noise and and denoising problem with A = I, the Stein
Unbiased Risk Estimate (SURE) is an unbiased estimate of the mean square
error[14, 15, 16, 17, 34].

E[SURE(α)] = E[MSE(α)] (23)

where E is the expectation with respect to the noise ε. It is given by:

SURE(α) = ‖yδ − fα(yδ)‖2/n− σ2 + 2σ2n−1Tr(Jfα(yδ)) (24)

where Jfα(yδ) is the Jacobian matrix of the reconstructed solution. The eval-
uation of the SURE requires the knowledge of the noise variance. Similarly,
for inverse problems with a direct operator A different from the identity an
unbiased estimate of

MSE(α) = ‖Af − Afα(yδ)‖2/n (25)
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is given by:

SURE(α) = ‖yδ − Afα(yδ)‖2/n− σ2 + 2σ2n−1Tr(∇yδAfα(yδ)) (26)

A generalized SURE has been proposed for exponential families[19]. The
SURE has been generalized for inverse problems involving a direct operator
different from the identity by Vonesch et al [20]. Following [20], we denote
Binv the stabilized approximation of the inverse of Bn and gα(y) = Bt

invfα(y).
The risk given by Eq.20 is rewritten as:

MSE(α) =
1

n
(‖f‖2−2(yδ)tgα(yδ)+2εtgα(yδ)−2([I−BinvBn]x)tfα(yδ)+‖fα(yδ)‖2)

(27)
The first term is independent of α. The term εtgα(yα) can be estimated with
the Stein equality under the conditions detailed in the former lemma [14, 33].

E[εtgα(yδ)] = σ2E[divgα(yδ)] (28)

Neglecting the third term, the following quantity, denoted as R(α), has been
proposed to estimate the risk:

R(α) =
1

n
(‖f‖2 − 2(yδ)tgα(yδ) + 2σ2div(gα(yδ)) + ‖fα(yδ)‖2) (29)

=
1

n
(‖f‖2 + ‖fα(yδ)‖2 − 2(yδ)tBt

invfα(yδ) + 2σ2div(gα(yδ))) (30)

In [34] a weighted mean square error (WMSE) measure has been proposed
to test the accuracy of the reconstruction:

WMSE(α) = n−1‖yδ −Bnfα(yδ)‖2W (31)

where W is a positive definite symmetric weighting matrix. The matrix W
is chosen to counterbalance the effects of the direct operator Bn. With the
choice W = B+

n = Bt
n(BnB

t
n)+, where M+ denotes the pseudo-inverse of

M , and under the assumptions of the Stein lemma, the random variable
Generalized Sure GSURE(α) is an unbiased estimator of WMSE(α)[21, 22,
23, 24]:

GSURE(α) = n−1‖yδ −Bnfα(yδ)‖2W − σ2n−1tr((BnB
t
n)+)

+2σ2n−1tr((BnB
t
n)+∇yδBnfα(yδ)) (32)

= n−1‖fML(yδ)− fα(yδ)‖2W − σ2n−1tr((BnB
t
n)+)

+2σ2n−1tr((BnB
t
n)+∇yδBnfα(yδ)) (33)
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where fML is the maximum likehood estimate and Jfα(yδ) is the Jacobian
matrix of the reconstructed solution.

With the choice, W = Bt
invBinv, GSURE(α) can be rewritten:

GSURE(α) = n−1‖Binv(y
δ −Bnfα(yδ))‖2 − σ2n−1tr(Bt

invBinv)

+2σ2n−1tr(Bt
invBinvBnJfα(yδ)) (34)

With fα(yδ) = Binvy
δ, we obtain:

GSURE(α) = n−1‖Binv(y
δ −Bnfα(yδ))‖2 − σ2n−1tr(Bt

invBinv)

+2σ2n−1tr(Bt
invBinvBnBinv) (35)

Some asymptotic properties of the risk estimators have been sudied in [40]
as n → ∞ based on a singular value decomposition of the direct operator
but the smoothness of the solution in relation with the poperties of the
operator have not been considered. We show in the following that chosing
the regularization parameter α with the minimum of R(α) or GSURE(α)
given by Eq.35 leads to a convergent regularization method.

4. Regularization method and smoothness class

It is well-known that the convergence rate for regularized solutions of
inverse problems depends on the type of regularization scheme but also on
the smoothness class for the true solution. In this section, we detail the
regularized estimators used to evaluate the estimators of the risk and the
assumption on the smoothness of the ground truth.

4.1. Regularized estimators

In the following, we will use the notations of [12]. Let φα : σ(AtA)→ R
is a filter function defined on the spectra σ(AtA) of the operator AtA approx-
imating the function t→ 1/t, and which is parametrized by a regularization
parameter α. Based on this filter function, and on the singular value decom-
postion of the operator AtA, it is possible to construct regularized estimators
with regularization methods of the form:

fα = Φα(AtA)Atyδ (36)
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With the discretization of the operator A, the approximate solution is
calculated as:

fα = Φα(Bt
nBn)Bt

ny
δ. (37)

The regularized inverse will be defined as Binv = Φα(Bt
nBn)Bt

n.
Classical assumption about the filter function φα can be found in [35, 36].

We assume that there exist some positive constants C1,C2 such that:

lim
α→0

φα(t) = 1/t (38)

sup
t∈σ(AtA)

|t1/2φα(t)| ≤ C1/
√
α 0 < α < ‖AtA‖ (39)

sup
t∈σ(AtA)

|1− tφα(t)| ≤ C2 0 < α < ‖AtA‖, (40)

0 ≤ φα(t) ≤ 1/α ∀t ∈ σ(AtA) (41)

In the following, we will use the notation A1 � A2 if there are two positive
constants c1 and c2 such that:

c1A2 ≤ A1 ≤ c2A2 (42)

We also assume that:

sup
t≥0
|(1− tφα(t))Λ(t)| � Λ(α) 0 < α < ‖AtA‖ (43)

for the index functions associated to the smoothness class, i.e Λ(α) is not
only an upper bound of supt≥0 |(1− tφα(t))Λ(t)| but also a sharp estimate of
this term. Several regularization methods can be described with these type
of filter functions. For Tikhonov regularization φα(t) = (α+t)−1, for iterated
Tikhonov regularization, φα(t) = (1 − (α/(t + α))m)/t, for spectral cut-off
φα(t) = 1/t for t ≥ α, and φα(t) = 0 for t ≤ α.

4.2. Smoothness classes

The convergence rate for the reconstruction methods is determined by
some a priori assumption on the exact solution. Following [26], we will mea-
sure the smoothness of the function f relative to the smoothing properties
of A with a source condtion. We assume there exists w ∈ X, and T > 0 such
that:

f = Λ(AtA)w ‖w‖ ≤ T (44)
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with Λ : σ(AtA) → [0,∞[ a continuous, strictly increasing index function
with Λ(0) = 0. The error estimates are different under different assumptions
on the index function. For exponentially ill-posed problems and infinitely
smoothing operators, a logarithmic souce conditions is used, Λ(t) = (−lnt)−ν

with ν > 0 [37]. A common assumption is Λ(t) = tν with ν > 0 for finitely
smoothing operators. In this work, we consider this type of mildly ill-posed
problem. For this smoothness class and exact data y, using Eq.40, we see
that the error for non noisy data is bounded by [12] :

‖Φα(AtA)Aty − f‖ ≤ ρ sup
t∈σ(A∗A)

|(φα((t)t− 1)Λ(t)| ≤ CΛ(α) (45)

From that we can infer, that there is a positive constant C1 such that:

|‖Λ(AtA)w‖2 − ‖Φα(AtA)AtAΛ(AtA)w‖2| ≤ C1Λ(α) (46)

5. Estimate of the risk R and of GSURE

In this section, we will estimate successively the risk R and the GSURE.

5.1. Estimate of the risk R

In order to rewritte the risk R, we first separate the estimate of fα for
the non noisy data and the term originating from the noise. We set f 1

α =
Φα(Bt

nBn)Bt
nBnf and f 2

α = Φα(Bt
nBn)Bt

nBnε, with fα = f 1
α + f 2

α. With
Binv = Φα(Bt

nBn)Bt
n, the second term of R(α) can be written as:

(yδ)tBt
invfα(yδ) = (Bnf + ε)tBnΦα(Bt

nBn)[Φα(Bt
nBn)Bt

n(Bnf + ε)]

=< f 1
α, f

1
α > + < f 2

α, f
2
α > +2 < f 1

α, f
2
α > (47)

R(α) can thus be rewritten as:

R(α) = 1
n
(‖f‖2 − ‖fα(yδ)‖2 + 2σ2div(gα(yδ))) (48)

= 1
n
(‖f‖2 − ‖f 1

α(yδ)‖2 − ‖f 2
α(yδ)‖2 − 2 < f 1

α(yδ), f 2
α(yδ) > +2σ2div(gα(yδ))

Estimation of ‖f‖2 − ‖f 1
α(yδ)‖2

Following Mathe et al. [12, 38, 39] , for f in the smoothness class defined by
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Λ, we can bound the noise free term:

‖f − Φα(Bt
nBn)Bt

nQAf‖ = ‖f − Φα(Bt
nBn)Bt

nBnf‖+ ‖Φα(Bt
nBn)Bt

n(Bn −QnA)f‖
≤ C1Λ(α) + C2‖(I − Φα(Bt

nBn)Bt
nBn)(Λ(A∗A)− Λ(B∗nBn)‖

+
C3√
α
‖(Bn −QnA)f‖(49)

≤ C1Λ(α) + C2‖(Λ(AtA)− Λ(Bt
nBn)‖

+
C3√
α
‖(Bn −QnA)f‖(50)

where we have used Eq.38 and Eq.41.
The bound on the error free term depends on the class of the index function
Λ. We restrict in this work to functions Λ : t → tµ with 0 < µ ≤ 1. This
type of index function is operator monotone and satisfies the following bound
[12, 38, 39]:

‖Λ(AtA)− Λ(BtB)‖ ≤ Λ(‖AtA−BtB‖) (51)

Different estimates of the error can be obtained for different classes of index
functions. If the index function Λ belongs to the class F0 with:

F0 = {φ, φ2 is concave} (52)

then the following bound on the error holds true[12, 38, 39]:

‖f − φα(Bt
nBn)Bt

nQnAf‖ ≤ C1(Λ(α) + Λ(ε2X) + C2Λ(ε2Y ) + C3
Λ(ε2Y )√

α
(53)

Similar bounds can be found for different index functions. For the class F1/2

defined by:
F1/2 = {φ, φ ≤ c

√
t for some c > 0} (54)

it can be shown that:

‖f−φα(B∗nBn)B∗nQnAf‖ ≤ C1(Λ(α)+Λ(ε2X))+C2Λ(ε2Y )+C3εY +C4
ε2Y√
α

(55)

For the class
F1 = {φ, φ = ψθ, ψ ∈ F0, θ Lipschitz} (56)

the error bound is given by:

‖f−φα(B∗B)B∗QAf‖ ≤ C1(Λ(α)+θ(α)ψ(ε2X)+θ(α)εY )+C2(ε
2
X+2αεY )+C3εY +C4

ε2Y√
α

)

(57)
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As explained in[12, 38, 39], it is possible to chose a high discretization level
εX and εY such that the dominant term in the error is Λ(α). We will make
this assumption in the following. To conclude, with Eq.43 we obtain that
there is a positive constant C such that:

‖f‖2 − ‖f 1
α(yδ)‖2 � CΛ(α) (58)

Estimation of 2σ2div(gα(yδ))
With

fα(yδ) = Φα(Bt
nBn)Bt

n(yδ) = Binvy
δ (59)

and gα(yδ) = Bt
invfα(yδ), Bt

inv = BnΦα(Bt
nBn)t = BnΦα(Bt

nBn) we obtain

div(gα(y)) = Tr[BnΦα(Bt
nBn)tΦα(Bt

nBn)Bt
n] (60)

=
∑

1≤i≤n ‖Φα(Bt
nBn)Bt

nei‖2 (61)

Using the spectral projectors, and for φα the filter function for the Tikhonov
regularization, we get:

‖Φα(B∗nBn)B∗nei‖2 =

∫ ∞
0

φ2
α(ρ)ρd‖Eρ(ei)‖2

=

∫ ∞
0

ρ

(ρ+ α)2
d‖Eρ(ei)‖2 (62)

We will split this integral in Eq.62 into two terms.
For 0 < ρ < α, we have 1/4 ≤ 1

(1+ρ/α)2
≤ 1 and thus:

I1 =
∑
i

∫
ρ<α

ρ

(ρ+ α)2
d‖Eρ(ei)‖2 =

1

α2

∑
i

∫
ρ<α

ρ

(1 + ρ/α)2
d‖Eρ(ei)‖2

� 1

α2

∑
i

∫
ρ<α

ρd‖Eρ(ei)‖2 (63)

� 1

α2

∑
i

∫
ρ<α

ρδ(ρ− ρi) (64)

We can reformulate it with the Stieljes integral:

I1 � −
1

α2

∫ ρ<α

0

βdR(β) (65)
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Let us assume thatR is smooth withR(β) ∼ β−η, we obtain; I1 � 1
α2 (α)1−η �

α−1−η

The same result can be obtained assuming Eq.41 is satisfied and for more
general filter functions.

For ρ > α, 1/4 ≤ 1
(1+α/ρ)2

≤ 1 and thus the second term can be written:

I2 =
∑
i

∫
ρ>α

ρ

(ρ+ α)2
d‖Eρ(ei)‖2 (66)

∼
∑
i

∫
ρ>α

1

ρ(1 + (α/ρ))2
d‖Eρ(ei)‖2 (67)

(68)

Similarly, the term I2 can be written as:

I2 � −
∫
ρ>α

1

β
dR(β) � α−1−η (69)

To conclude, we obtain:

2σ2div(gα(yδ)) � σ2α−1−η (70)

Estimation of < f 1
α, f

2
α >

We can also estimate the scalar product < f 1
α, f

2
α >

< f 1
α, f

2
α >=< Φα(Bt

nBn)Bt
nBnf,Φα(Bt

nBn)Bt
nε > (71)

=< Φα(Bt
nBn)Bt

nBnΛ(AtA)w,Φα(Bt
nBn)Bt

nε > (72)

=

∫
φα(ρ)2Λ(ρ)ρ3/2d < Eρw, ε > (73)

The random measure d < Eρw, ε > can be written

dEρw =
n∑
i=1

δ(ρ− ρi)⊗ < ei, w > ei (74)

d < Eρw, ε >=
n∑
i=1

δ(ρ− ρi)⊗ < ei, w >< ei, ε > (75)
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< f 1
α, f

2
α > is the linear combination of gaussian variables and it is a Gaussian

variable with E[< f 1
α, f

2
α >] = 0 and:

V ar(< f 1
α, f

2
α >) = σ2

∫
φα(ρ)2Λ(ρ)ρ3/2

n∑
i=1

δ(ρ− ρi) < ei, w >� σ2

With a simple concentration inequality like the Chebyshev’s inequality,
the probability is very small that < f 1

α, f
2
α > is much larger that is expected

value E[< f 1
α, f

2
α >] = 0.

Estimation of ‖f 2
α‖2

Similarly, we have:

‖f 2
α‖2 =

∫
φα(ρ)2ρ2d < Eρε, Eρε > (76)

The component (< ei, ε >)1≤i≤n are i.i.d Gaussian with the law N (0, σ2).

Eρε =
∑
λi≤ρ

< ei, ε > ei (77)

and

‖Eρε‖2 =
∑
λn≤ρ

| < en, ε > |2 (78)

This function is an increasing right continuous function and defines a random
Stieljes measure.

Eρiε− Eρi−1
ε =< ei, ε > ei (79)

and thus, we obtain the random measure:

dEρε =
n∑
i=1

δ(ρ− ρi)⊗ < ei, ε > ei (80)

where ⊗ is the tensorial product of distributions

d < Eρε, Eρε >=
n∑
i=1

δ(ρ− ρi)| < ei, ε > |2 (81)
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The average measure dm is given by:

dm(ρ) =
n∑
i=1

δ(ρ− ρi)σ2 = −σ2dR(ρ) (82)

The integral defining E[‖f 2
α‖2] can be splitted in two terms I1 and I2:

I1 = E[

∫ α

0

φα(ρ)2ρ2d < Eρε, Eρε >] (83)

= σ2

∫ α

0

φα(ρ)2ρ2
n∑
i=1

δ(ρ− ρi) � −
σ2

α2

∫ α

0

ρ2dR(ρ) � σ2α−η (84)

I2 = E[

∫ ∞
α

φα(ρ)2ρ2d < Eρε, Eρε >] � σ2

∫ ∞
α

n∑
i=1

δ(ρ− ρi) (85)

� σ2

∫ ∞
α

dΣ(ρ) (86)

� −σ2

∫ ∞
α

dR(ρ) � σ2α−η (87)

To conclude, we obtain:

E[‖f 2
α‖2] � σ2α−η (88)

Using Eq.58 , Eq.70 , Eq.88:

E[R(α)] ∼ 1

n
(αµ + C1σ

2α−1−η + C2σ
2α−η) (89)

The third term being negligible as α → 0, the mininimization of R(α) gives
α ∼ σ2/(1+η+µ) and the average risk scales as R(α) ∼ σ2µ/(1+η+µ).

5.2. Estimation of GSURE

We start from Eq.35 to estimate GSURE:

Tr(BinvB
t
inv) = Tr[BnΦαB

t
nBn)tΦα(Bt

nBn)Bt
n] (90)

=
∑

1≤i≤n ‖Φα(Bt
nBn)Bt

nei‖2 (91)

� α−1−η (92)
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with Eq.70.
With the spectral projectors, the power law of operators are well-defined and
we have:

I = Tr(BinvB
t
invBnBinv) = Tr[(BnB

t
n)2Φα(Bt

nBn)3[ (93)

=
∑

1≤i≤n ‖Φ
3/2
α (Bt

nBn)BnB
t
nei‖2 (94)

=
∑

i

∫∞
0
ρ2φ3

α(ρ)d‖Eρ(ei)‖2 (95)

We split the integral into two parts:

11 =
∑
i

∫ α

0

ρ2φ3
α(ρ)d‖Eρ(ei)‖2 � −

1

α3

∫ α

0

ρ2dR(ρ) � − 1

α3
α2−η � α−1−η

12 =
∑
i

∫ ∞
α

ρ2φ3
α(ρ)d‖Eρ(ei)‖2 �

∑
i

∫ ∞
α

1

ρ
d‖Eρ(ei)‖2 (96)

� −
∫ ∞
α

1

ρ
dR(ρ) � α−1−η (97)

It follows:

Tr(BinvB
t
invBnBinv) � α−1−η (98)

Using the decomposition fα = f 1
α+f 2

α, we obtain as α→ 0 and for a high
discretization level:

‖fα −BinvBnfα‖ � ‖f 1
α −BinvBnf

1
α‖ = ‖(I −BinvBn)f 1

α‖ (99)

= ‖(I − Φα(Bt
nBn)Bt

nBn)Φα(Bt
nBn)Bt

nBnf‖ � Λ(α) (100)

with Eq.43.
Using Eq.92 , Eq.98 , Eq.100, GSURE can be estimated as:

GSURE(α) ∼ 1

n
(α2µ + C1σ

2α−1−η) (101)

The mininimization ofGSURE gives α ∼ σ2/(1+η+2µ) andGSURE ∼ σ4µ/(1+η+2µ).
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6. Discussion

The convergence of the Tikhonov regularization method is obtained for
α → 0, and σ2

α
→ 0[2]. The choice α ∼ σ2/(1+η+2µ) obtained with the

minimization of GSURE or R ensures thus the convergence of the Tikhonov
regularization for a regularization parameter chosen with these estimators.

It is interesting to compare the convergence rate obtained with the min-
imization of R(α) or GSURE(α) with the optimal convergence rates for
projection methods. Let S be a given reconstruction method, the worst case
error at f for a Gaussian noise ε with variance σ2 is then given by:

e(f, S, σ2) = sup
ε
‖f − S(yδ)‖ (102)

The best possible accuracy is defined by the minimization over all the nu-
merical numerical methods:

e(f, σ2) = inf
S:Y→X

e(f, S, σ2) (103)

We are interested by the asymptotic behavior of e(f, σ2) as σ → 0.
The optimal order of approximation, for exact solutions satisfying the

source condition of Eq.44 has been studied in Mathe et al.[39] for projections
methods.

Proposition 6.1. Let Λ an index function such that Θ(t) =
√
tΛ(t) is

strictly increasing, with Θ(t)→ 0 as t→ 0, such that there is a positive con-
stant c for which Λ(2t) ≤ cΛ(t), for 0 < t < a, and such that t→ Λ2((Θ2)−1)
is concave, then the best possible accuracy is of the order of Λ(Θ−1(σ2)).

The former conditions are satisfied for Λ(t) = tµ considered in this work.
For finite projections methods, the best possible accuracy is thus of the or-
der of Λ(Θ−1(σ2)) where Θ(t) =

√
tΛ(t). For index functions of the type

Λ(t) = tµ, we obtain that the best possible accuracy is of order σ2µ/(1+2µ).
Since 2µ/(1 + η + 2µ) < 2µ/(1 + 2µ), we can conclude that a regularization
parameter chosen with the GSURE or R is not optimal. As η increases, the
ill-posedness increases and the efficiency of the method of choice of the pa-
rameter decreases. If the condition number of Bn increases, smaller singular
values are added and it is expected that the GSURE is less efficient.
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7. Numerical Experiments

In order to illustrate the former results, we consider the following linear
inverse problem which has been studied in detail in [40]. The linear convo-
lution operator A is mapping a function f : [−1/2, 1/2] → R to a function
y : [−1/2, 1/2[→ R with a compacted supported kernel with a parameter
0 < l < 1/2 defined as:

kl =
1

Nl

{
exp(− 1

1−t2/l2 ) if |t| < l

0 if l ≤ |t| ≤ 1/2
(104)

with Nl =
∫ l
−l exp(−

1
1−t2/l2 )dt. The function f used is the peak f1 = δ(t−b1)

with b1 = 1√
26
− 0.5 or the smooth function f2(t) = exp(− t2

4
).

For a discretization level n for the domain and the range of the operator
A, we denote En

i = [ i−1
n
− 1

2
, i
n
− 1

2
] for 1 ≤ i ≤ n, and ψni (t) =

√
n1Eni (t) the

associated orthonormal basis. Some Gaussian noise with standard deviation
σ was added to the data y. From the singular value decomposition of the
convolution operator, the GSURE can be easily estimated [40]. Let (γi) be
the singular values of the operator A, for the noise level σ and a regularization
parameter α, we can compute:

GSURE(α) =
n∑
i=1

(
1

γi
− γi
γ2i + α

)2(yδ)2 − σ2

n∑
i=1

1

γ2i
+ 2σ2

n∑
i=1

1

γ2i + α
(105)

The optimal parameter αopt,GSURE is obtained as:

αopt,GSURE = argmin
α≥0

GSURE(α) (106)

In [22], the authors have shown that GSURE is differentiable in a weak
sense, and have performed quasi-Newton optimization based on the first-
order information given by an unbiased estimator of the gradient of the risk.
Here, we have evaluated the risk for different values of the regularization
parameter α and plotted its evolution to determine the optimal value of α.
The minimum of GSURE can be found efficiently and the computational cost
is not two high for a scalar real-valued parameter.

The discretized operator and functions are written as follows:

Ai,j =< ψni , Aψ
n
j > n

∫
Eni

∫
Enj

kl(s− t)dsdt (107)
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< ψni , x >=
√
n

∫
Eni

f(t)dt (108)

The parameters n and l control the ill-posedness of the inverse problem.
The ill-posedness and the condition number increase with higher n values
and lower l values. For examples, the parameters n = 128, l = 0.1, with a
condition number 4.3 e+4, corresponds to a very ill-posed problem and the
choice n = 32, l = 0.02 to a less ill-posed problem,with condition number
1.75.

In order to illustrate the efficiency of the GSURE we have evaluated the
optimal parameter for the GSURE and for the l2 error ‖f − fα(yδ)‖2 for
the former inverse problem with different ill-posedness degrees related to the
discretization level n and to the value of l, with different smoothness of the
solution and with different noise levels σ. The GSURE and the error have
been evaluated on a fine logarithmical grid , where log(α) is increased linearly
with a step size 0.01 between a lower bound αmin and αmin + 10. Typical
curves for the error and GSURE are displayed in Figure 1 and 2.

Ne = 10000 samples of the noise have been drawn. Typical joint dis-
tributions for the optimum values of α for the reconstruction error and the
GSURE are displayed on Figure 3, 4 and 5. The Figure 3 corresponds to
values of n and l for a moderately ill-posed problem and the peak f1 and
Figure 4 to values of these parameters for a very ill-posed problem and the
same function. Figure 5 displays the results obtained for a very ill-posed
problem and a smooth function f2.

As displayed on Figure 3, for n and l values corresponding to a low condi-
tion number, the regularization parameters obtained with the minimization
of the error or with GSURE are in good agreement and a peak is obtained on
the diagonal of the plot. As shown on Figure 4, for a very ill-posed problem
and a non smooth solution, the optimal value of α derived from the min-
imization of GSURE leads to large l2 errors and the optimal values of the
regularization parameter for the minimal l2 is much larger. It can be seen
on Figure 5 that for a smooth function f2 and a very ill-posed problem the
deviation between the two parameters obtained with GSURE of the l2 er-
rors is also large. These results illustrate the former results and suggest that
GSURE is a good estimate of the optimal regularization parameter. Yet, it
is not optimal for very ill-conditioned problems and it underestimates the
regularization parameters in this case.
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Figure 1: Typical evolution of the l2 error term for the parameters n=32, l=0.01 and
σ = 0.1.

8. Conclusion

We have estimated the risk R or GSURE for regularization methods
based on filter functions such as the Tikhonov regularization. The results are
obtained with spectral projectors and are based on some restrictive conditions
about the ill-posedness of the inverse problem and the smoothness of the
solution.

We have shown that the choice of the regularization parameter for reg-
ularization with filter functions based on the minimization of the risk R or
of the GSURE estimate gives a convergent regularization method for mildly
ill-posed problems. This result is obtained under the assumption that the
discretization errors can be neglected. Yet, the best possible accuracy is not
achieved and the regularization method is not optimal for the smoothness
class defined by the exponent µ. With growing µ, the spaces of functions
satisfying the source condition contains smoother elements and the quality
of the regularization with the parameter chosen with the GSURE principle
increases but the method is still not optimal. Moreover, GSURE is not op-
timal for very ill-conditioned problems.
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Figure 2: Typical evolution of the GSURE for the parameters n=128, l=0.1 and σ = 0.1.
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