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Abstract

The derivation by variational asymptotic homogenization of a 2D-continuum

model describing large elastic planar deformations of a discrete bi-pantographic

structure is presented. A rectangular bi-pantographic specimen was additively

manufactured and subjected to a bias extension test for macroscopic strains up

to ca. 40%. The deformations of the bi-pantographic sample were measured via

FE-based digital image correlation. Measured boundary conditions then drove

the numerical model of the experiment. The gray level residuals were utilized

to independently probe the kinematic hypotheses of DIC and FE simulations

against the full video of the experiment for validation purposes.
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1. Introduction

In the last decade, motivated by the application of generalized and second

gradient continua theories introduced in the early 1960s [1, 2, 3, 4], mechanical

models of pantographic structures [5, 6] have been investigated. Owing to

their simple topology, pantographic fabrics are an archetype when dealing5

with the homogenization of discrete structures leading to second gradient

continua [7, 8], discrete [9, 10, 11, 12, 13, 14] and semi-discrete [15] models

making use of extension and bending elements [16, 17, 18, 19], generalized

shell theories [20, 21, 22], second gradient continuaand related mathematical

challenges [23, 24], parameter identi�cation of second gradient continua [25, 26],10

numerical simulations dealing with second gradient continua [27, 28, 29, 30],

continuum descriptions of �brous materials [31], among other �elds in Solid

Mechanics.

Interestingly, the scienti�c developments of pantographic fabrics can be also

recast within the spirit of metamaterials [32, 33]. Pantographic prototypes15

have been developed and manufactured with the goal of obeying some of the

above mentioned models and, consequently, material control by optimization

of additive manufacturing processes at relevant scales has been considered

a key objective. Therefore, experimental studies have been carried out for

understanding how di�erent 3D-printing processes and raw materials [34]20

in�uenced mechanical and morphological properties of printed samples at

di�erent scales, ranging from micrometers [35] to millimeters, which were imaged

by optical and Scanning Electron microscopy, and tomography.

Studies analyzing di�erent designs (e.g., hinge/torsional joints [36]) have

also been carried out. Bridging properties at di�erent scales [37, 38] has led to25

new methodologies for, say, granular microstructures [39, 40, 41]. Experimental

studies have shown that pantographic fabrics exhibited a remarkably wide

elastic domain and that the elastic response of printed specimens depended

weakly upon the raw printed material [42], thereby suggesting that they

can be considered by all means as metamaterials [43]. Such studies have30
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also unveiled new phenomenologies, for instance, the so-called Poynting e�ect

reversal [44], which has then led to new model features. It has been proven

that damage mechanisms strongly depended upon geometric dimensions of

mechanical elements and raw material properties [45]. In all analyzed cases

of printed specimens, thanks to their reticulated structure, they were shown to35

be damage tolerant [9].

The use of digital image correlation (DIC) as a means of analyzing kinematic

details in experiments performed on such materials has been considered very

recently. Finite element based analyses have been performed at macroscopic [46]

and mesoscopic [47] scales. In the latter case, the underlying mesh was directly40

adapted by using basic morphological operations applied to the picture of the

reference con�guration. An alternative approach consisted in starting with the

mesh of the nominal con�guration, and use regularized registrations to backtrack

it onto the actual picture of the reference con�guration [48]. This measurement

technique is very appealing since these metamaterials deform considerably and45

classical means (e.g., strain gauges or extensometer) cannot be used.

The development of bi-pantographic fabrics has bene�tted from the above-

mentioned studies. Such metamaterials were initially proposed as assemblies of

discrete pantographic beams [49] leading, at the macroscopic scale, to second

gradient materials whose strain energy density depends upon the curvature50

and the stretch derivative of material lines along the corresponding reference

direction. This �rst work was restricted to small strains and non-extensible

elements. It is proposed to derive hereafter, by asymptotic homogenization, the

macroscopic response of a 2D-continuum, which is able to describe large strains

of bi-pantographic metamaterials.55

In the present study, a homogenized model of bi-pantographic fabrics was

also probed against experimental measurements provided by global (i.e., FE-

based) DIC. Consequently, the �nite element discretizations can be made

identical in DIC analyses and numerical simulations. Figure 1 shows the

�owchart of the one-way validation framework followed herein. For a given60

picture of the deformed con�guration, the displacement �eld is computed as the
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result of the registration with the picture in the reference con�guration. The

quality of the registration is assessed thanks to the gray level residuals. The

measured Dirichlet boundary conditions are then applied to the �nite element

model. For the same picture, the displacement �eld is computed according to the65

implemented constitutive law. Because the measured boundary conditions were

applied to the FE model, gray level residuals can also be evaluated [50]. It was

shown that such procedure was the best when probing multiscale models [51].

Thanks to such procedure, the quality of the measurements and the predictions

is independently probed with respect to the experimental data (i.e., the full70

video acquired during the test).

DIC - residuals

DIC - displacements

HC - residuals
HC – boundary conditions

HC - displacements

RMS = 31 GL

RMS = 43 GL

Figure 1: Flowchart of the validation procedure comparing DIC and homogenized continuum

residuals in a bias extension test.

It has to be noted that the methodologies exploited in the global T3-DIC

analysis, with a mesh made of 3-noded (T3) triangles that was not made to

match the bi-pantographic unit cells, are not new [46]. However, the one-

way connection between experimental measurements and simulations is here75

established for the �rst time in the literature for the quantitative validation of

a homogenized model of bi-pantographic fabrics.
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Lower-scale, i.e., local mechanical and DIC analyses considering richer

kinematic hypotheses and geometries could achieve better results in terms

of gray level residuals [52]. Yet, the question that is addressed herein is to80

assess to what extent a coarse macroscale continuous description can represent

and predict experimental measurements. Such reduced-order description is of

utmost utility when dealing with complex systems whose e�cient element-by-

element description still poses challenges to modern computational methods.

The problem of �nding an e�cient model for the studied metamaterial is the85

scope of the present paper. For a consistent comparison between reduced-

order model and DIC, both will employ the same (macroscale) geometry and

kinematics. This goal motivates the use of FE-based DIC [53, 54, 55], where

the underlying hypothesis is the continuity of the displacement �eld associated

with FE discretizations. Last, it is noteworthy that such macroscale analyses90

would clearly compare better with experimental pictures should the number of

unit cells be increased, as the scale separation would become more pronounced.

The outline of the paper follows the previous �owchart. In Section 2, the

main steps of the homogenization procedures are presented. The boundary

value problem is introduced for the considered bias extension test. The95

latter is studied in Section 3, and global DIC is brie�y recalled. A mesh

sensitivity analysis is performed to validate the chosen discretization for DIC

measurements. Section 4 is devoted to the validation of the derived model

against experimental data extracted from a bias extension test.

2. Homogenized Continuum (HC)100

2.1. Studied Metamaterial

Following the rationale behind the design of pantographic prototypes [49], a

rectangular bi-pantographic specimen was additively manufactured by Selective

Laser Sintering (SLS) using Polyamide as the bulk material (Figure 2).
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(a) (b)

Figure 2: Additively manufactured bi-pantographic specimen. Full top-view (a) and zoomed

in left-bottom area (b) showing ends to be put in grips, element arrangement and connections.

In the reference con�guration (Figure 3(a)), the discrete bi-pantographic105

structure is formed by square cells (see Figure 3(b)) whose sides have a length
√

2ε = 17 mm, arranged along straight lines within the reference rectangular

domain Ω, in the direction of the unit basis vectors eζ , eς ∈ E2. The edges of

Ω (L = 187 mm and ` = 119 mm) constituting subsets of its boundary ∂Ω are

denoted as ∂Ωk, k ∈ {1...4}.110

2
3
π

1
12

π

a) b) c)

Figure 3: Bi-pantographic metamaterial. (a) Domain Ω. (b) Reference con�guration of a unit

cell. (c) Force elements and deformed con�guration of a unit cell.

2.2. Homogenization Scheme

In Figure 3(c), elastic elements are colored in black (extensional Hooke

elastic springs, sti�ness kE), red (rotational Hooke elastic springs, sti�ness

kF ), blue (rotational Hooke elastic springs, sti�ness kF ) and green (rotational

Hooke elastic springs, sti�ness kS). It is worth emphasizing at this stage115
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that the passage from pantographic [6] to bi-pantographic fabrics, in terms of

asymptotic homogenization, is not as trivial as the designation may suggest.

Bi-pantographic fabrics are regarded as assemblies of two orthogonal families

of parallel ε-spaced pantographic beams (Figure 4(a)), hinge-joined together at

their intersection points, and aligned along ex and ey, respectively. First, the120

homogenization of a single pantographic beam is addressed [56].

Figure 4: Schematic view of a discrete pantographic beam. (a) Reference con�guration.

(b) Generalized coordinates of i-th cell. (c) Deformed con�guration with redundant kinematic

quantities. (d) Force elements of a single cell.

When not otherwise speci�ed, the indices i, µ and ν will henceforth belong

respectively to the following index sets: i ∈ {0, 1, . . . , N − 1}, µ ∈ {1, 2} and

ν ∈ {D,S}. Throughout the homogenization procedure, it is assumed that the

angles ϕ1D
i and ϕ2D

i vary within the range (0, π), thus entailing that ξµi ∈ (0, π).125

In such a case, the kinematics of the spring system of Figure 4 is described by

�nitely many generalized coordinates. The coordinates are the positions pi ∈ E2

of the points at position Pi in the reference con�guration and the lengths of the
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oblique deformed springs `µνi ∈ R. The angles ϕµνi in Figure 4(c) are obtained

by applying the law of cosines130

ϕ1D
i = cos−1

[
‖pi+1 − pi‖2 +

(
`1Di
)2 − (`2Si+1

)2
2`1Di ‖pi+1 − pi‖

]
,

ϕ1S
i = cos−1

[
‖pi − pi−1‖2 +

(
`1Si
)2 − (`2Di−1

)2
2`1Si ‖pi − pi−1‖

]
,

ϕ2D
i = cos−1

[
‖pi+1 − pi‖2 +

(
`2Di
)2 − (`1Si+1

)2
2`2Di ‖pi+1 − pi‖

]
,

ϕ2S
i = cos−1

[
‖pi − pi−1‖2 +

(
`2Si
)2 − (`1Di−1

)2
2`2Si ‖pi − pi−1‖

]
,

(1)

while the angles ξµi in Figure 4(c) are computed as

ξ
1(2)
i = cos−1

[(
`
1(2)D
i

)2
+
(
`
2(1)S
i+1

)2 − ‖pi+1 − pi‖2

2`
1(2)D
i `

2(1)S
i+1

]
. (2)

The angle θi in Figure 4(c) reads

θi = ϑi+1 − ϑi = tan−1

[
(pi+1 − pi) · ey
(pi+1 − pi) · ex

]
− tan−1

[
(pi − pi−1) · ey
(pi − pi−1) · ex

]
. (3)

The deformation energy of the discrete micromodel is expressed as

Eµ =
kE
2

∑
i

∑
µ,ν

(
`µνi −

1√
3
ε

)2

+
kF
2

∑
i

∑
µ

(βµi )
2

+
kS
2

∑
i

∑
µ

(ξµi − π + 2γ)2

=
kE
2

∑
i

∑
µ,ν

(
`µνi −

1√
3
ε

)2

+
kF
2

∑
i

∑
µ

[
θi + (−1)

µ
(
ϕµSi − ϕ

µD
i

)]2
+
kS
2

N−2∑
i=0

∑
µ

(
ξµi −

2

3
π

)2

,

(4)

where kE > 0 and kF , kS > 0 are the sti�nesses of the extensional and rotational

springs, respectively.135

The following asymptotic expansion is assumed for the lengths `µνi of the

extensional springs

`µνi =
1√
3
ε+ ε2 ˜̀µν

i + o(ε2), ˜̀µν
i ∈ R . (5)
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Assumption (5) states that the lengths `µνi are obtained as ε-corrections of the

initial length 1√
3
ε. Therefore, the lengths `µνi are vanishing with order one in ε

when ε→ 0. In other words, a kind of quasi-inextensibility property is assumed140

for the extensional springs, whose elongation is given, at leading order in ε, by

ε2 ˜̀µν
i . Therefore, the quantities ˜̀µν

i , independent of ε, are ε2-scaled (absolute)

elongations of extensional springs. Inserting assumption (5) into the energy (4)

leads to

Eµ =
kE
2

∑
i

∑
µ,ν

[
ε2 ˜̀µν

i + o(ε2)
]2

+
kF
2

∑
i

∑
µ

[
θi + (−1)

µ (
ϕµSi − ϕ

µD
i

)]2
+
kS
2

N−2∑
i

∑
µ

(
ξµi −

2

3
π

)2

.

(6)

Due to the slenderness of the microstructure, a macroscale one-dimensional145

continuum is sought in the limit of vanishing ε. The reference domain of the

continuum is a one-dimensional straight segment connecting all points Pi of the

discrete micromodel. An abscissa s is introduced and varies within the interval

I = [0, (N − 1)ε]. The independent kinematic Lagrangian descriptors of the

macromodel are assumed to be χ : I → E2 and ˜̀µν : I → R. The placement150

�eld χ locates the 1D-continuum into E2, and is introduced to describe, at

the macroscale, the midline of the discrete system (i.e., points pi ∈ E2).

Accounting for the change in spring lengths ˜̀µν
i introduced in Equation (5), the

placement �eld is augmented by four micro-strain functions ˜̀µν . The generalized

coordinates of the discrete system are related to χ and ˜̀µν by155

χ(si) = pi , ˜̀µν(si) = ˜̀µν
i (7)

where si = iε. For convenience, the functions ρ : [0, L] → R+ and ϑ : I →

[0, 2π) are introduced to rewrite the tangent vector �eld χ′ to the deformed

1D-continuum as

χ′(s) = ρ(s) [cosϑ(s)ex + sinϑ(s)ey] , (8)

where (·)′ denotes the di�erentiation of (·) with respect to the reference abscissa

s. Thus ρ corresponds to the norm of the tangent vector ‖χ′‖, and is referred to160
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as stretch of the 1D-continuum and ϑ′ corresponds to the material curvature of

such continuum. For the asymptotic identi�cation, the energy (6) is expanded

in ε. First, the expansion of χ is given by

χ(si±1) = χ(si)± εχ′(si) +
ε2

2
χ′′(si) + o(ε2) , (9)

while for ˜̀µν , it becomes

`µν(si±1) =
1√
3
ε+ ˜̀µν(si)ε

2 + o(ε2) (10)

which is obtained by combining Equation (5) with Equation (7)2 and the165

expansion ˜̀µν(si±1) = ˜̀µν(si) + o(ε0).

Next, the aim is to expand Equation (6). The terms θi, ϕ
µS
i − ϕ

µD
i and ξµi ,

which are all functions of the placement �eld χ and/or the micro-strains ˜̀µν ,

need to be approximated. Combining Equations (9) and (7)1 with Equation (3)

yields170

θi = ϑ′(si)ε+ o(ε) , (11)

Similarly, combining Equations 9, (10) and (7) with Equation (1) leads to

ϕ
1(2)S
i − ϕ1(2)D

i =

4[ρ2 − 2/3](˜̀1(2)S − ˜̀1(2)D) + (2/
√

3)(ρ2)′ + (8/3)(˜̀2(1)D − ˜̀2(1)S)

ρ(4/
√

3)
√

4/3− ρ2

∣∣∣∣∣
s=si

ε+ o(ε)

(12)

for the di�erences ϕ
1(2)S
i −ϕ1(2)D

i . By incorporating Equations (9), (10) and (7)

in Equation (2) enables the angles ξµi to be assessed

ξµi = cos−1

(
1− 3

2
ρ2

)∣∣∣∣
s=si

+ o(ε0) . (13)

Substituting Equations (11), (12) and (13) in Equation (6) provides the

expansion of the micromodel energy as a function of the kinematic descriptors175
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χ and ˜̀µν

Eµ =
∑
i

{
kEε

4

2

[∑
µ,ν

(
˜̀µν
)2

+ o(ε0)

]
+ kS

[
cos−1

(
1− 3

2
ρ2

)
− 2

3
π + o(ε0)

]2

+
kF ε

2

2

[
ϑ′ +

4[ρ2 − 2/3)](˜̀1S − ˜̀1D) + (2/
√

3)(ρ2)′ + (8/3)(˜̀2D − ˜̀2S)

4ρ(1/
√

3)
√

4/3− ρ2
+ o(ε0)

]2

+
kF ε

2

2

[
ϑ′ +

4[ρ2 − 2/3)](˜̀2S − ˜̀2D) + (2/
√

3)(ρ2)′ + (8/3)(˜̀1D − ˜̀1S)

4ρ(1/
√

3)
√

4/3− ρ2
+ o(ε0)

]2}
s=si

.

(14)

The sti�nesses of the discrete system are related to the microscopic length

scale ε by the following scaling laws

kE = KEε
−3 , kF = KF ε

−1 , kS = KSε (15)

where KE ,KF ,KS > 0 are constants that are independent of ε. It is worth

noting that the asymptotic expansion (5) is implied by the scaling laws (15),180

which are such that kF/kE ∝ ε2 and kS/kE ∝ ε4, meaning that extensional springs

are becoming sti�er than rotational springs (with di�erent orders in ε according

to the type of spring (F/S)) as ε tends to zero.

The continuum limit is now obtained by letting ε→ 0. Using Equation (14)

together with the scaling laws (15) allows the deformation energy to be derived185

for the homogenized model

E =

∫
I

{
KS

[
cos−1

(
1− 3

2
ρ2

)
− 2

3
π

]2

+
KE

2

∑
µν

(
˜̀µν
)2}

ds

+

∫
I

KF

2

[
ϑ′ +

4[ρ2 − 2/3)](˜̀1S − ˜̀1D) + (2/
√

3)(ρ2)′ + (8/3)(˜̀2D − ˜̀2S)

4ρ(1/
√

3)
√

4/3− ρ2

]2

ds

+

∫
I

KF

2

[
ϑ′ +

4[ρ2 − 2/3)](˜̀2S − ˜̀2D) + (2/
√

3)(ρ2)′ + (8/3)(˜̀1D − ˜̀1S)

4ρ(1/
√

3)
√

4/3− ρ2

]2

ds .

(16)

The energy is enforced to be stationary with respect to the independent

kinematic descriptors ˜̀µν . Equating to zero the variations of the deformation

energy functional (16) with respect to admissible variations in the independent

kinematic descriptors ˜̀µν yields a linear system of four algebraic equations in190
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which ˜̀µν are the unknowns. Introducing the quantities

C1 =
KF

2KF ρ2 − 1/3 (KEρ2 + 8KF )
, C2 =

KF

√
4/3− ρ2

(1/3)KEρ2 − 2KF ρ2 − (4/9)KE
,

(17)

at equilibrium, the following conditions are satis�ed

˜̀µD =
1√
3
ρ
[
ρ′C1 + (−1)µ−1ϑ′C2

]
, ˜̀µS =

1√
3
ρ [−ρ′C1 + (−1)µϑ′C2] .

(18)

By substituting the results (18) into Equation (16), the homogenized deformation

energy is expressed in terms of the placement �eld χ only

E =

∫
I

{
KEKF

[
3/4ρ2 − 1

3/4ρ2 (KE − 6KF )−KE
ϑ′2

+
3/4ρ2

(1− 3/4ρ2) [8KF + ρ2 (KE − 6KF )]
ρ′2
]

+KS

[
cos−1

(
1− 3

2
ρ2

)
− 2

3
π

]2}
ds .

(19)

The results obtained thus far for a single pantographic beam are extended195

to homogenize the behavior of bi-pantographic metamaterials. Let Ψ(ρ, ρ′, ϑ′)

denote the integrand of Equation (19). The domain Ω is expressed as Ω =

{x = (x, y) ∈ R2 s.t. x ∈ X̃ ∧ y ∈ Ỹ (x)} = {x = (x, y) ∈ R2 s.t. y ∈

Ȳ ∧ x ∈ X̄(y)}, where (x, y) are the coordinates of x in the basis (ex, ey).

The family of pantographic beams within Ω aligned along ex in the reference200

con�guration is now considered. The corresponding placement �eld χx : Ω →

E2 is de�ned to be such that χx(x) denotes the current position of the hinge

point of a beam belonging to such a family, which is at position x in the reference

con�guration. Similarly, the placement �eld χy : Ω → E2 is de�ned for the

family of pantographic beams aligned along ey.205

The hinge constraint applied to the intersection x (reference con�guration)

of the two families of pantographic beams is encoded in expressions χx(x) =

χy(x) = χHC(x) := uHC(x)−x, where χHC : Ω→ E2 and uHC : Ω→ R2 are

the placement and displacement functions of the target homogenized continuum,

respectively. The deformation energy of the bi-pantographic structure is given210

as the sum of the deformation energies of the two families of pantographic
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beams. Hence, the homogenized deformation energy for the bi-pantographic

metamaterial is expressed as

E =

∫
X̃

∫
Ỹ (x)

Ψ

(
ρy(x),

∂ρy
∂y

(x),
∂ϑy
∂y

(x)

)
dydx

+

∫
Ȳ

∫
X̄(y)

Ψ

(
ρx(x),

∂ρx
∂x

(x),
∂ϑx
∂x

(x)

)
dxdy ,

(20)

where ρx, ρy : Ω→ R+ and ϑx, ϑy : Ω→ [0, 2π) are implicitly de�ned by

∂χHC
∂x

(x) = ρx(x) {[cosϑx(x)] ex + [sinϑx(x)] ey}

∂χHC
∂y

(x) = ρy(x) {[cosϑy(x)] ey + [sinϑy(x)] ex} ,
(21)

and, with the previous derivation, reduce to215

E =

∫
Ω

∑
α={x,y}

{
KS

[
cos−1

(
1− 3

2
ρ2
α

)
− 2

3
π

]2

+KEKF

[
3/4ρ2

α − 1
3/4ρ2

α (KE − 6KF )−KE

(
∂ϑα
∂α

)2

+
3/4ρ2

α

(1− 3/4ρ2
α) [8KF + ρ2

α (KE − 6KF )]

(
∂ρα
∂α

)2 ]}
dA ,

(22)

where KS , KE , and KF are the scaled macro-sti�nesses corresponding to the

micro-sti�nesses kS , kE , and kF , respectively.

The values of these macro-sti�nesses were calibrated by �tting total reaction

force data (Figure 5) and six discrete displacements obtained by local digital

image correlation (DIC) [56] in the considered bias extension test for global220

longitudinal strains up to ca. 25%. A very good agreement is observed over the

whole range of investigated strains.

13



Figure 5: Reaction force vs. prescribed displacement for total longitudinal strains up to

ca. 25%.

The calibrated parameters are reported in Table 1). They are the only ones

that will be used in the sequel for validation purposes.

Table 1: Calibrated parameters of the continuum model.

KF KE KS

0.9 J 0.33 J 34 N· m−1

2.3. Numerical Implementation225

Solving the weak or strong form problems for the homogenized continuum

model is a direct problem in the sense that, given boundary conditions on a

reference domain, the admissible displacement �eld that makes stationary the

energy functional is sought. The solution of the weak form was implemented

within the commercial software COMSOL Multiphysics. In the last years,230

thanks to the interest in gradient elasticity, e�orts in numerically addressing

such non-standard problems have grown, thus establishing well-known methodologies [28,

29].
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It is worth noting that besides the term ∂ϑα/∂α (i.e., curvature of material

lines along eα in the reference con�guration), the term ∂ρα/∂α also appears in235

Equation (19), which is the derivative along the direction eα of the stretch of

material lines along eα in the reference con�guration. This observation implies

that, for the above continuum deformation energy, conditions on the boundaries

(Figure 3(a)) are prescribed on i) the normal displacement gradient, ii) the

displacement itself, and conditions at the vertices on the displacement [57].240

For instance, in the considered bias extension test, the reference domain Ω is

nominally subjected to the essential boundary conditions described in Table 2.

Table 2: Nominal boundary conditions for bias extension test of bi-pantgraphic fabrics. The

vector n is the outward unit normal to ∂Ω in x (see Figure 3(a)).

∂Ω1 ∂Ω3

uHC(x) = 0 uHC(x) = ūeζ , ū ∈ R+

∇uHC(x) · n(x) = 0 ∇uHC(x) · n(x) = 0

The kinematic prescriptions in the second row, as combined with those in the

�rst row of Table 2, imply that ∇uHC(x) = 0 on Ω1 ∪ Ω3, which is consistent

with the micro-macro identi�cation procedure when using stocky rhomboidal245

elements (Figure 2).

3. Bias Extension Test

3.1. Experimental Con�guration

A displacement-controlled bias extension test was performed on the sample

shown in Figure 2 for macroscopic strains up to ca. 40% (Figure 6). In textile250

mechanics, the bias extension test is a standard experiment to investigate in-

plane combined shear and tensile responses of materials made up of two families

of �bers [58]. The bias extension test is performed on samples having the shape

of a rectangle with dimension in the loading direction greater than the width [59].
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In a bias extension test, the �bers (i.e., pantographic ones in the present study)255

are initially oriented at ±45◦ with respect to the loading direction. In other

words, the sample to be used in a bias extension test is cut along the two

biases, i.e., the two orthogonal directions forming ±45◦ with the �bers. An

MTS Tytron 250 testing-device prescribed longitudinally (i.e., on the right side

of the specimen) an increasing displacement with a quasi-static loading rate of260

15 mm/min. Pictures of the surface during deformation were acquired (0.5 fps,

i.e., nominally for 1 mm displacement increments) by means of a Canon EOS

600D camera with a de�nition of 4272×2848 pixels and an 8-bit dynamic range.

(a) #24 (b) #47

(c) #70 (d) #93

(e) #116 (f) #139

Figure 6: Pictures of deformed con�gurations in a bias extension test on bi-pantographic

metamaterial.

Bi-pantographic fabrics exhibit an extremely wide elastic range (i.e., the

dissipated energy is negligibly small compared to the elastic energy stored265
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during loading). Such extreme elastic strains are achievable as their macroscopic

levels are considerably greater than single-elastic-element strains. While

satisfying boundary conditions and internal connection constraints, elements

arrange locally in space to minimize the total deformation energy by mimicking

mechanisms corresponding to zero-energy deformation modes [49].270

3.2. FE-Based Digital Image Correlation

The 139 pictures of deformed con�gurations were registered with the

picture of the reference con�guration (Figure 7) via Digital Image Correlation

(DIC [60, 61]). Various approaches have been introduced, namely, local (i.e.,

subset-based) analyses [62, 63, 64], and global (e.g., �nite element based)275

techniques [53, 54, 55]. In the present case, FE-DIC was used to measure

displacement �elds since it provides a very natural link with �nite element

simulations (i.e., the meshes can be made identical provided the element

size is compatible with measurement uncertainties [65]). Working within the

high-deformation regime in the considered bias extension test, bi-pantographic280

specimens undergo extremely large contraction-to-extension ratios equal to

ca. 0.85. Consequently, a solution will be sought very far from the reference

con�guration, which adds complexity for both modeling and DIC approaches.

Figure 7: Picture of the reference con�gurations in a bias extension test on bi-pantographic

metamaterial. The mesh used in the simulations of the HC model is overlaid. Its characteristic

size is equal to 34 pixels (≈ 2.7 mm).

In global DIC [55, 66], two gray level images f and g are registered by
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minimizing the global residual285

Φ2
c =

∑
ROI

ρ2
DIC(x) (23)

which is the integration over the region of interest (ROI) of the squared sum of

the gray level residual

ρDIC(x) = f(x)− g (x + uDIC(x)) (24)

that is computed for each pixel x of the ROI, and corresponds to the di�erence

of the gray levels in the reference con�guration f and that in the deformed

con�guration g corrected by the measured displacement uDIC(x). The latter is290

parameterized with a set of degrees of freedom υn, which are gathered in the

column vector {υ}

uDIC(x) =
∑
n

υnψn(x) (25)

associated with the trial �elds ψn. The minimization with respect to the

unknown degrees of freedom is nonlinear. One way of performing such

minimization is to follow modi�ed Newton schemes [67, 66]. In the sequel,295

meshes made of T3 elements were considered [68]. The trial displacement

�elds then become the shape functions of T3 elements. Very recently, T3-DIC

was shown to be applicable to pantographic metamaterials at various scales of

kinematic descriptions [46, 47, 48, 52].

With the studied material, the speckle pattern was only applied over a small300

area of the ROI (Figure 7). In order to properly converge, due to such a speckle

pattern, elastic regularization was considered in the global DIC approach [69,

70]. A second term was added to the global residual Φ2
c , in the spirit of Tikhonov

and Arsenin regularization schemes [71]. In the present case, the equilibrium

gap functional [72] was selected for inner nodes and boundary nodes that were305

traction-free

Φ2
m = {υ}>[K]>[K]{υ} (26)

where [K] is the rectangular sti�ness matrix restricted to the selected nodes.
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For the other edge nodes, a similar penalization was considered

Φ2
b = {υ}>[L]>[L]{υ} (27)

where [L] is a second order operator restricted to edge nodes [73]. The

global residual to be minimized then consists of the weighted sum of the310

previous three quantities, namely, Φ2
c , Φ2

m and Φ2
b . Since the physical

dimension of the correlation functional is di�erent from that of the other two

functionals, they need to be made dimensionless. Penalization weights pre-

multiplying Φ2
m and Φ2

b are introduced [69, 70, 73]. They are proportional to

regularization lengths raised to the fourth power. The larger the regularization315

lengths, the more weight is put on the penalty terms. This penalization

acts as a low-pass mechanical �lter, namely, all high frequency components

of the displacement �eld that are not mechanically admissible are �ltered

out. Similarly, for low-contrast areas mechanical regularization provides the

displacement interpolation.320

In the present case, the regularization length was set to 150 pixels, which

is the size of elementary cells (Figure 3(b)). It is worth noting that other

choices could have been made, in particular, smaller regularization lengths.

However, they would no longer represent a physical length but rather a help

for convergence of the minimization scheme. Consequently, such choices will325

not be discussed hereafter. Similarly, analyses at lower scales [47, 48, 52] were

not considered to remain consistent with the modeling framework of Section 2.

Further, since large strain levels occur, the previous regularization was only

applied to incremental displacements {δυ} (i.e., from one picture to the next)

Φ2
m = {δυ}>[K]>[K]{δυ} (28)

and330

Φ2
b = {δυ}>[L]>[L]{δυ} (29)

Such regularization leads to assume Hencky-type elasticity at the scale of the

regularization length, which is less stringent than in�nitesimal elastic in a

situation of �nite strains.
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When dealing with large deformations, the solution for the current picture

can be initialized from the solution of the previous step. A further approach335

can be adopted, namely incremental DIC (as opposed to direct DIC, i.e., the

approach presented thus far where the reference picture is not the initial one). In

this approach, in a step-wise procedure, the picture preceding the current one

is chosen as the reference picture for the correlation analysis. Consequently,

the mesh is gradually deformed to follow the motions. The incremental340

displacements are cumulated to determine the overall (Lagrangian) displacement

�elds with respect to the non-updated initial picture. As the minimization

problem for incremental DIC does not have an optimal substructure property,

such cumulated displacements are di�erent from those obtained by direct DIC

and may yield higher cost functions, i.e., higher global residuals (Equation (23)).345

For pantographic structures, this may not be the case, and needs to be checked.

Last, the displacement results obtained by incremental DIC are exploited as

initialization to direct DIC for the corresponding picture pairs.

Figure 8 shows the change of root mean square residuals, i.e., RMS (ρDIC),

for direct and incremental DIC when using the discretization shown in Figure 7.350

In the present case, direct DIC leads to lower residuals in comparison with

incremental DIC. The former will be selected when comparing the measurements

with numerical simulations. The fact that the residual levels increase as the

bi-pantographic fabric is deformed more is an indication that a continuum

description is no longer able to fully capture the details of the experimental355

kinematics. This observation is not a shortcoming of DIC but rather a check

on the kinematic hypotheses made to capture the full complexity of the test via

macroscale quantities.
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Figure 8: RMS gray level correlation residual for direct and incremental DIC using the mesh

shown in Figure 7.

The e�ect of the discretization has also to be assessed on the previous results.

Three additional regular meshes were considered with di�erent characteristic360

length scales ranging from 77 to 24 pixels. The latter is de�ned as the mean

square root of element area. The mesh shown in Figure 7 has a characteristic

length of 34 pixels. In Figure 9, the RMS residuals are reported for the

four di�erent discretizations. Mesh convergence is observed for the three �ner

discretizations. This result is related to the selected regularization length365

(here equal to 150 pixels), which controls the high frequency �uctuations of

displacement �elds.
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Figure 9: RMS gray level residuals for direct DIC with di�erent meshes.

From all these last results, it is concluded that the �nite element mesh used

in the numerical simulations (Figure 7) is also compatible with regularized DIC

measurements at the macroscopic scale. With the selected DIC parameters370

the noise-�oor displacement uncertainty is less than to 0.025 pixel (i.e., 2 μm),

which is very small given the large deformations experienced by the studied

metamaterial.

4. Validation Results

When quantitatively comparing the performances of DIC and a homogenized375

continuum model, a measure of goodness of kinematic results has to be de�ned

given the fact that the load response was used in the calibration procedure (see

Figure 5). The �rst (and standard) way of comparing DIC measurements with

models is to report the displacement �elds uDIC and uHC over the meshed ROI

as obtained for, say, picture #93 (Figure 10). It may be concluded that the two380

results are qualitatively in agreement.
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(a) DIC, #93 (b) HC, #93

(c) DIC, #93 (d) HC, #93

Figure 10: Displacement �elds uDIC and uHC (longitudinal component along eζ on top,

transverse component along eς at bottom) expressed in pixels over the meshed ROI as obtained

for picture #93 by means of the validation procedure shown in Figure 1. The reference picture

lies in the background and the �nite element mesh in the foreground.

To get a more quantitative assessment, displacement di�erences should

be computed [74]. In the present case, since the same mesh was used, this

comparison is straightforward as it can be performed node-wise. Figure 11

shows the displacement di�erence �elds for the same analyzed picture. It is385

worth noting that, despite the fact that displacements measured by DIC at

short sides of the specimen were used as boundary condition for the continuum

model, the displacement di�erence between the latter and DIC is non-zero along

such short boundaries (see Figure 11). The continuum model was numerically

solved by means of a mixed weak �nite element formulation in which boundary390

conditions were not encoded strongly, i.e., node-wise within test functions, but

were enforced weakly via Lagrange multipliers. Therefore, such discrepancy

should be expected. In particular, this discrepancy is observed at corners and is

concentrated in the two triangular mesh elements intersecting at a corner. It is

expected that such a discrepancy will be con�ned to ever smaller regions when395
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the mesh size decreases.

The RMS di�erence for the longitudinal component is equal to 8 pixels, and

9 pixels in the transverse direction. These levels are two orders of magnitude

higher than the measurement uncertainty for both components. They may

seem very high. However, it is worth noting that the longitudinal displacement400

range is of the order of 400 pixels. It is therefore concluded that the observed

di�erences are related to model errors. Yet, it cannot be decided which part of

the data, namely, experimental and/or numerical quantities are questionable.

(a) (b)

Figure 11: Displacement di�erence �eld uHC − uDIC (longitudinal component along eζ (a)

and transverse component along eς (b)) expressed in pixels over the meshed ROI as obtained

for picture #93 by means of the validation procedure shown in Figure 1. The reference picture

lies in the background and the �nite element mesh in the foreground.

A second route consists in computing the gray level residuals associated with

numerical simulations [50]. This procedure is viable provided the measured405

boundary conditions are prescribed to the numerical simulations (see Figure 1).

It was shown to be the best in various experimental con�gurations [75, 51]. It

will also be utilized herein. By following such path, the merits of each approach

are independently probed against the experimental video. The correlation

residual becomes a pixel-wise measure of goodness, and its RMS computed410

over the ROI a global goodness measure. Gray level residuals were de�ned

in Equation (24) for DIC. The same equation, substituting uHC for uDIC

will be considered for evaluating the gray level residuals associated with the

homogenized continuum model

ρFE(x) = f(x)− g (x + uFE(x)) (30)
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Figure 12 shows the residual maps corresponding to the displacement �elds415

measured via direct DIC and predicted with the HC model (Figure 10). The

residuals are very low close to the left and right edges since the sample

does not deform much and the measured displacement is consistent with

the experiment. This observation applies for both approaches since the HC

simulations were driven by measured Dirichlet boundary conditions. Even if420

imperfectly prescribed (see above discussion), the residuals are very low in

those areas, thereby proving that the measured and simulated displacements

are trustworthy.

Conversely, the residuals are higher in the central part of the sample for HC

simulations compared with DIC measurements. On a more quantitative basis,425

the RMS residual is equal to 31 gray levels for DIC and 43 gray levels for HC.

These levels are signi�cantly higher than those observed at the beginning of the

experiment (i.e., ≈ 3 gray levels), which are close to acquisition noise. This

result shows that the present model, even though in very good agreement with

force measurements (Figure 5) is not able to fully capture the local complexities430

of the experimental kinematics. This conclusion also applies (to a lesser

degree) to DIC results whose kinematic assumptions are not fully capturing

the complexity of the local deformation of the studied metamaterial.

(a) DIC (b) HC

Figure 12: Gray level residual maps for direct DIC and HC predictions corresponding to

picture #93.

The same type of analysis can be repeated for any of the 139 pictures

acquired during the test. Only 6 of them are reported in the Appendix (see435
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Figures 14 and 15). They correspond to the deformed con�gurations shown

in Figure 6. For comparison purposes, the residual maps of the �rst picture

are shown as well. They are very low and very close to the acquisition noise

of the camera. For both DIC and HC modeling, the absolute level of the

pixel-wise correlation residuals increases with the picture number. Further,440

in the correlation residuals the microscale pattern emerges, which at the

considered kinematic description scale, is not fully captured. This observation

indicates that the results for DIC and HC may be improved by lower-scale

analyses [47, 48, 52].

A plot of the RMS residuals versus picture number for direct DIC,445

incremental DIC and HC simulations is shown in Figure 13. DIC performs better

than the HC model, be it direct or incremental. This trend is to be expected

since DIC, contrary to HC modeling, mainly minimizes the correlation residuals

(see summand in Equation (23)). For all approaches, the RMS residuals increase

with the picture number and their relative increment is decreasing. Further, the450

residuals of the HC model are not too high in comparison with those of DIC,

which allows the present macroscopic model to be deemed reasonable. Last,

three jumps are observed (for pictures #7, 106, 128), whose occurrence is due

to changes in lighting conditions.
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Figure 13: Gray level RMS residuals for direct DIC, incremental DIC, and HC simulations.

5. Conclusion455

In this paper, a �rst comparison between performances of FE-based DIC and

a homogenized continuum model was performed within the �nite strain regime

of a recently designed metamaterial with bi-pantographic microstructure. The

homogenized model was derived from a discrete description at the microscale.

Experimental displacement data (not full-�elds) up to ca. 25% total elongations460

were used for calibrating the model parameters. In the present case, the same

FE discretization could be used thanks to Hencky-type elastic regularization (at

the scale of the metamaterial cells) of DIC.

A measure of goodness of kinematic results was devised for both approaches,

which allows the merits and shortcomings of DIC and HC simulations to be465

probed in an absolute (i.e., independent) way via gray level residuals. It was

observed that, while DIC performed better than the continuum model, the latter

gave good results given the very high levels of strains. This result thus shows

that the homogenized model can capture the main deformation features but not

the complexity of local details. The constitutive law is not only descriptive but470

also predictive for a wider range than that used for calibration purposes (the
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analysis was conducted up to ca. 40% macroscopic elongation).

Possible outlooks include the combination of the two methodologies in

so-called integrated DIC [68, 76], and especially an automated calibration

procedure of the HC model based on numerical sensitivity analyses [77] in,475

e.g., , bias extension tests. Such procedure will aim at minimizing the gray level

residuals under the constraint of mechanical admissibility provided by numerical

simulations using the HC model or any other Ansatz.
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Appendix

Figure 14 shows the gray level residuals for the �rst part of the experiment.

(a) DIC, #1 (b) HC, #1

(c) DIC, #24 (d) HC, #24

(e) DIC, #47 (f) HC, #47

(g) DIC, #70 (h) HC, #70

Figure 14: Gray level residual maps for direct DIC and HC predictions corresponding to

pictures #1, 24, 47 and 70 (Figure 6).

39



For comparison purposes, the residual maps of the �rst picture are shown. They

are very low and close to the acquisition noise of the camera.

Figure 15 shows the gray level residuals for the second part of the experiment.745

Their overall levels are higher than in the �rst part (Figure 14).

(a) DIC, #93 (b) HC, #93

(c) DIC, #116 (d) HC, #116

(e) DIC, #139 (f) HC, #139

Figure 15: Gray level residual maps for direct DIC and HC predictions corresponding to

pictures #93, 116, 139 (Figure 6).
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