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MONODROMIES OF SINGULARITIES OF THE HADAMARD AND

EÑE PRODUCT

RICARDO PÉREZ-MARCO

Abstract. We prove that singularities with monodromies are preserved by Hadamard
product, and we find an explicit formula for the monodromy of the singularities of
the Hadamard product. We find similar formulas for the eñe product whose mon-
odromy is better behaved. With these formulas we give new direct proofs of classical
results and prove the invariance of interesting rings of functions by Hadamard mul-
tiplication and eñe product.

“...la nature du point singulier αβ ne dépend que de la nature des points singuliers α et β...”(Émile
Borel on the Hadamard product, 1898)
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Figure 1. Choreographic monodromy integration contour.
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2 R. PÉREZ-MARCO

1. Introduction and background.

1.1. Hadamard and eñe product. Given two power series

F (z) = A0 +A1z +A2z
2 + . . . =

∑

n≥0

An z
n

G(z) = B0 +B1z +B2z
2 + . . . =

∑

n≥0

Bn z
n

their classical Hadamard product is the power series

F ⊙G(z) = A0B0 +A1B1z +A2B2z
2 + . . . =

∑

n≥0

AnBn z
n

and their exponential eñe product is defined by

F ⋆e G(z) = −A1B1z − 2A2B2z
2 + . . . = −

∑

n≥0

nAnBn z
n

The Hadamard product and the exponential eñe product are commutative internal operations on the
additive group of formal power series C[[z]] (or A[[z]] for a commutative ring A), and (C[[z]],+,⊙)
and (C[[z]],+, ⋆e) are commutative rings. These products are also internal operations on the additive
subgroup C{{z}} of power series with a positive radius of convergence, and (C{{z}},+,⊙) and
(C{{z}},+, ⋆e) are commutative subrings.

Hadamard (1899, [8]) proved the Hadamard Multiplication Theorem that locates the singularities
of the principal branch of F ⊙ G which are products of singularities of F and G. The exponential
eñe product has also a beautiful interpretation in terms of divisors, i.e. zeros and poles (2019, [17]).
More precisely, if a0 = b0 = 0 and we consider the exponential of the power series

f(z) = exp(F (z)) = 1 + a1z + a2z
2 + . . . = 1 +

∑

n≥1

an z
n

g(z) = exp(G(z)) = 1 + b1z + b2z
2 + . . . = 1 +

∑

n≥1

bn z
n

and we define the eñe product as

f ⋆ g(z) = exp(F ⋆e G(z)) = 1 + c1z + c2z
2 + . . . = 1 +

∑

n≥1

cn z
n

then the coefficient cn is a universal polynomial with integer coefficients on a1, a2, . . . , an, b1, b2, . . . , bn.
Thus the exponential eñe product is the bilinearization of the eñe product through the exponential.
The universality of the expression of the coefficients (cn) allows to define in general the eñe product
over a commutative ring of coefficients A, more precisely, if A = 1 + A[[z]], then A is a group for
the multiplication and when we adjoint the eñe product we obtain a commutative ring (A, ., ⋆).

If f and g are non-constant polynomials (note in particular that in thata case F and G are not
polynomials), with respective roots (α) and (β) (counted with multiplicity), so that

f(z) =
∏

α

(

1−
z

α

)

g(z) =
∏

β

(

1−
z

β

)
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then we have the remarkable formula

f ⋆ g(z) =
∏

α,β

(

1−
z

αβ

)

.

This interpretation with zeros can be taken as the starting point of the theory of the eñe product
as is done in [17] (2019). Then the divisor property can be extended to entire and meromorphic
functions on the plane, and even to transcendental singularities (2019, [18]). The eñe product is
both natural from the algebraic point of view, and for the analytic one (for example it is compatible
with Hadamard-Weierstrass factorizations, see section 9 of [18]). This property of zeros is the closely
related Hadamard Theorem, although the Hadamard product has no such direct interpretation in
terms of zeros. Indeed, we have a formula relating the exponential eñe product and the Hadamard
product, namely

F ⋆e G = −K0 ⊙ F ⊙G

where K0 is the Koebe function

K0(z) = −
∑

n≥1

n zn = −
z

(1− z)2

For the definition of the eñe product and more algebraic and analytic properties and formulas we
refer to [17] where we extend the divisor interpretation to meromorphic functions with zeros and
poles. In [18] we extend further the eñe product to the transalgebraic class. For the Riemann
sphere P1C, this transalgebraic class is composed by functions with a finite number of exponential
singularities. These are of the form R0 expR1 where R0 and R1 are rational functions. We prove in
[18] that the divisor interpretation still holds for exponential singularities, which is natural when we
view these singularities à la Euler as zeros or poles of “infinite order”. From this point of view, we
naturally introduce “eñe poles” and then functions with singularities with non-trivial monodromies
arise naturally, in particular the hierarchy of polylogarithms.

Therefore, it becomes natural to investigate the extension of the divisor interpretation of the
eñe product to singularities with non-trivial monodromy, i.e. non-uniform singularities in the XIX-
th century terminology. A uniform transcendental singularity is an isolated singularity without
monodromy.

Almost simultaneously to the discovery by Hadamard of his Theorem determining the location
of the singularities of F ⊙G, Émile Borel (1898, [6]) proved that if F and G have uniform isolated
singularities, i.e. isolated without monodromy, then the singularities of F ⊙ G are isolated and
uniform. This result is related to the action of the eñe product on exponential singularities. Borel
also makes the vague, but on point, observation that the nature of the singularities of F ⊙G only
depends on the nature of the singularities of F and G.

“...la nature du point singulier αβ ne dépend que de la nature des points singuliers α et β...”1

(É. Borel, 1898)

The goal of this article is to make very precise this statement, by giving, in some natural situations,
what seems to be a new explicit formula for the monodromy of the singularities of F ⊙G in terms
of the monodromies of singularities of F and G.

1“... the nature of the singular point αβ depends only on the nature of the singular points α and
β...”
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1.2. Holomorphic monodromy formulas. We need first some definitions and properties on mon-
odromies.

Definition 1.1 (Monodromy of an isolated singularity). Let F be an holomorphic function with an
isolated singularity α ∈ C. We denote F+ the analytic continuation of F when winding around α
once in the positive orientation (in a neighborhood without any other singularity). The monodromy
of F at the point α ∈ C is

∆αF = F+(z)− F (z) .

Example. The simplest and basic example of monodromy is given by the logarithmic function,
that we normalize properly, at the isolated singularity α = 1,

∆1

(

1

2πi
log z

)

= 1

We consider in this article only holomorphic monodromies:

Definition 1.2 (Holomorphic monodromy). A function F with an isolated singularity at α ∈ C has
a holomorphic monodromy at α when ∆αF is holomorphic in a neighborhood of α.

Observe that if the monodromy is holomorphic then ∆2
αF = 0. When ∆2

αF = 0, if

F0 = F −
1

2πi
log(z − α)∆αF

then ∆αF0 = 0, and F0 has a uniform singularity at α (isolated without monodromy). We have
proved:

Proposition 1.3. When ∆2
αF = 0, we can write uniquely F as

F = F0 +
1

2πi
log(z − α)∆αF

where F0 has a uniform singularity at 0.

The singularity α is said to be totally holomorphic when ∆αF and the germ F0 are holomorphic
at α.

(note the slight abusive notation since F0 depends on the singularity α) Our main result computes
the monodromy ∆αβ(F ⊙ G) from the monodromies ∆αF and ∆βG when these are holomorphic
singularities. We have a remarkable explicit formula:

Theorem 1.4 (Holomorphic monodromy formula for the Hadamard product). We consider F and
G holomorphic germs at 0 with respective set of singularities (α) and (β) in C. We assume that
the singularities are isolated and holomorphic, that is, ∆αF , resp. ∆βG, is holomorphic at α,
resp. β. Then the set of singularities of the principal branch of F ⊙G is contained in the product
set (γ) = (αβ) and is composed by isolated singularities which are holomorphic, and we have the
formula

∆γ(F ⊙G)(z) = −
∑

α,β
αβ=γ

Resu=α

(

F0(u)∆βG(z/u)

u

)

−
∑

α,β
αβ=γ

Resu=β

(

G0(u)∆αF (z/u)

u

)

(1)

−
1

2πi

∑

α,β
αβ=γ

∫ z/β

α

∆αF (u)∆βG(z/u)
du

u
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When the singularities are totally holomorphic, we have the simpler formula

(2) ∆γ(F ⊙G)(z) = −
1

2πi

∑

α,β
αβ=γ

∫ z/β

α

∆αF (u)∆βG(z/u)
du

u

Notice the exceptional situation at z = 0: we can have that the monodromies of F and G are
holomorphic at z = 0 but the monodromy of the Hadamard product can have a singularity at z = 0
with a non-trivial monodromy that is generated by the term 1/u in the integrand of the monodromy
convolution formula (1). This happens for example for polylogarithms (see section 6.1).

We observe that when ∆αF = ∆βG = 0 for all singularities α and β, then the singularities are
all holomorphic, ∆γ(F ⊙G) = 0, and Borel’s Theorem is a direct Corollary of our formula.

Borel also observes that when F is a rational function, then one can construct a differential
operator DF such that the the singularities of αβ F ⊙G are “of the same nature” as those of DFG
at β. The holomorphic monodromy formula makes renders this explicit when G has holomorphic
singularities.

Corollary 1.5. Let F be a meromorphic function in C (for example a rational function), holomor-
phic at 0, with set of poles (α), and G with totally holomorphic singularities (β). The monodromies
of F ⊙G are in the differential ring generated by the ∆bG(z/α), with field of constants generated by
the coefficients of the polar parts of F . More precisely, consider the polar part of F at each pole α

d
∑

k=1

ak,α
(u− α)k

,

then we have

∆γ(F ⊙G) = −
∑

α,β,k
αβ=γ

ak,α
(k − 1)!

[

dk−1

duk

(

∆βG(z/u)

u

)]

u=α

Example. A simple example occurs when we take F = −K0, where K0(z) = z/(1 − z)2 is the
Koébé function wich has a simple pole of order 2 at z = 1 and polar part

−K0(z) = −
1

z − 1
−

1

(z − 1)2
.

Then we compute

∆β(−K0 ⊙G) = −Resu=1

((

−
1

u− 1
−

1

(u− 1)2

)

∆βG(z/u)

u

)

= [∆βG(z/u)/u]u=1 +

[

∆βG
′(z/u)

u
−

∆βG(z/u)

u2

]

u=1

= ∆βG(z) + ∆βG
′(z)−∆βG(z)

= ∆βG
′(z)

The conclusion is that the monodromies of the singularities of the Hadamard product with the
negative of the Koebe function are the derivatives of the monodromies.

We have a similar formula for the exponential eñe product.
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Theorem 1.6 (Holomorphic monodromy formula for the exponential eñe product). We consider
F and G holomorphic germs at 0 with respective sets of singularities (α) and (β). We assume that
the singularities are isolated and holomorphic. Then the set of singularities of the principal branch
of F ⋆e G is contained in the product set (γ) = (αβ) and is composed by isolated singularities with
holomorphic monodromies, and we have

∆γ(F ⋆e G)(z) =
∑

α,β
αβ=γ

Resu=α (F ′
0(u)∆βG(z/u)) +

∑

α,β
αβ=γ

Resu=β (G0(u)∆αF
′(z/u))(3)

+
1

2πi

∑

α,β
αβ=γ

∆αF (α)∆βG(z/α) +
1

2πi

∑

α,β
αβ=γ

∫ z/β

α

∆αF
′(u)∆βG(z/u) du

When the singularities are totally holomorphic, we have the simpler formula

(4) ∆γ(F ⋆e G)(z) =
1

2πi

∑

α,β
αβ=γ

∆αF (α)∆βG(z/α) +
1

2πi

∑

α,β
αβ=γ

∫ z/β

α

∆αF
′(u)∆βG(z/u) du

Notice that the absence of the factor 1/u in the integral of the monodromy convolution formula (3)
for the exponential eñe product generates no extra singularities at z = 0 for non-principal branches
of F ⋆e G. This explains why the monodromies of singularities of the exponential eñe product have
a better analytic behavior than those for the Hadamard product. The symmetry of the formula on
F and G is clear in the first line, and for the second line it follows by integration by parts using
basic properties of the monodromy operator ∆α (see Proposition 5.3).

For the exponential eñe product we have the same Borel’s type of Theorem. It follows from
formula (3) that if ∆αF = ∆βG = 0 then ∆γ(F ⋆e G) = 0, hence we have:

Corollary 1.7. If F and G have only uniform singularities then F ⋆e G has only uniform singular-
ities, i.e. ∆γ(F ⋆e G) = 0.

We have also an analogue of Corollary 1.5. The result is stronger because of the better analytic
properties of the eñe product.

Corollary 1.8. Let F be a function in C with a discrete set (α) of singularities with constant
monodromies, such that the germs F0 are meromorphic, F is holomorphic at 0, and G with totally
holomorphic singularities (β). The monodromies of F ⋆e G are in the differential ring generated by
the ∆bG(z/α), with field of constants generated by the coefficients of the polar parts of F and the
constants

(

∆αF
2πi

)

. More precisely, consider the polar part of each F0 at each pole α

d
∑

k=1

ak,α
(u− α)k

,

then we have

∆γ(F ⊙G) = −
∑

α,β,k
αβ=γ

ak,α
(k − 1)!

[

dk

duk
(∆βG(z/u))

]

u=α

+
∑

α,β
αβ=γ

∆αF (α)

2πi
∆βG(z/α)

A Corollary of the algebraic nature of these monodromy formulas is the invariance by the
Hadamard and eñe product of some natural rings of functions. Consider a field K ⊂ C with
2πi ∈ K, and consider the ring PML(K) (polynomial logarithmic monodromy ring with coefficients
in K) of germs holomorphic at 0 with only isolated singularities with monodromy in K[z, log z].



MONODROMIES OF SINGULARITIES OF THE HADAMARD AND EÑE PRODUCT 7

Corollary 1.9. The PLM(K) ring is closed under Hadamard, resp. eñe, product, and is the
minimal Hadamard, resp. eñe, ring containing the class of functions with polynomial monodromies
in K[z] with isolated singularities at points of K.

2. Convolution formulas.

The main tool in the proof of Hadamard Theorem is Pincherle (or Hadamard) convolution formula
(1885, see [15], [11] and [8]):

Proposition 2.1 (Pincherle convolution formula). The Hadamard product has the integral form

(5) F ⊙G(z) =
1

2πi

∫

η

F (u)G(z/u)
du

u

where η is a positively oriented circle centered at 0 of radius r > 0 with |z|/RG < r < RF , where
RF and RG are the respective radii of convergence of F and G, so that F (u) and G(z/u) are well
defined.

We can take for η any Jordan curve located in the annulus bounded by the circles of radii RF

and |z|/RG and with winding number +1 with respect to 0.

Proof. The convolution formula immediately follows from the integration term by term of the series

F (u)G(z/u)

u
=

∑

n,m≥0

FnGmun−m−1zm

and the application of Cauchy formula

1

2πi

∫

η

un−m−1 du = δn,m

where δn,m denotes the Kronecker symbol. �

For the exponential eñe product we have a similar convolution formula:

Proposition 2.2 (Exponential eñe product convolution formula). The exponential eñe product has
the integral form

(6) F ⋆e G(z) = −
1

2πi

∫

η

F ′(u)G(z/u) du

where η is a circle centered at 0 with the same conditions as before.

Proof. The proof is similar observing that RF ′ = RF and integrating term by term

F ′(u)G(z/u) =
∑

n,m≥0

nFnGmun−m−1zm

and using Cauchy formula as before. �

The convolution formula (5) gives the analytic continuation of the Hadamard product F ⊙ G
using the analytic continuation of F and G. We only need to deform homotopically the contour η
when we move z around. The only obstruction to this continuation follows from a close inspection
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of the convolution formula: F ⊙G(z) does extend analytically unless z = 0 (except for the principal
branch) or when we hit a point z ∈ C such that we have u ∈ C with both conditions

{

u = α

z/u = β

with α and β singularities of F and G respectively. This happens if and only if z = αβ. Thus we
have proved Hadamard Theorem:

Theorem 2.3 (Hadamard, 1899, [8]). The singularities of the principal branch of F ⊙G are of the
form γ = αβ where α and β are singularities of F and G respectively.

The origin 0 is not a singularity of the principal branch by assumption. But the convolution for-
mula shows that the origin 0 can become a singularity of other branches of the analytic continuation
of F ⊙G because of the 1/u factor in the integrand. Moreover, the convolution formula also proves
that if F and G are fluent in the sense of Liouville and Ritt, which, roughly speaking, means that
the functions have an analytic extension around singularities, then their Hadamard product F ⊙G
is fluent. The definition of fluency given by Ritt in his book2 (1948,[19]) on Liouville theory of inte-
gration on finite terms (1833, [13], [14]) is not precise and indeed there exists more or less stronger
versions of fluency (see section 5.4.1 of [10], and in particular [12]). Fluency is a key property of
functions in the old Liouville classification of transcendental functions.

With these considerations, we can state the following geometric improvement of Hadamard The-
orem (the reader, if not familiar, can skip this Theorem where we use the language of log-Riemann
surfaces, see [2] for general background, [3] for more general definitions, and [4] and [5] for further
properties).

Theorem 2.4. Let SF and SG be the log-Riemann surfaces of the germs at 0 defined by F and G
respectively. Then the log-Riemann surface SF⊙G has a ramification set RF⊙G such that

πF⊙G(RF⊙G) ⊂ {0} ∪ (πF (RF ).πG(RG))

where πF⊙G : SF⊙G → C, πF : SF → C and πG : SG → C are the canonical projections, and A.B
denotes the set of all products ab with a ∈ A and b ∈ B.

In particular, if the ramification sets RF and RG are discrete, then RF⊙G is discrete.

For the exponential eñe product we have an analogue of Hadamard Theorem. We notice first
that the singularities of F and F ′ are the same (local derivative and primitive preserve holomorphy).
Hence we obtain:

Theorem 2.5 (Singularities of the exponential eñe product). The singularities of the principal
branch of F ⋆e G are of the form γ = αβ where α and β are singularities of F and G respectively.

We have a corresponding Theorem for the log-Riemann surface SF⋆eG which is simpler since we
don’t need to add the origin in the locus of the projection.

Theorem 2.6. Let SF and SG be the log-Riemann surfaces of the germs at 0 defined by F and G
respectively. Then the log-Riemann surface SF⋆eG has a ramification set RF⋆eG such that

πF⋆eG(RF⋆eG) ⊂ πF (RF ).πG(RG)

where πF⋆eG : SF⋆eG → C, πF : SF → C and πG : SG → C are the canonical projections, and A.B
denotes the set of all products ab with a ∈ A and b ∈ B.

In particular, if the ramification sets RF and RG are discrete, then RF⋆eG is discrete.

2Ritt’s book is from the pre-differential algebra era.
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3. Monodromy of singularities and monodromy operator.

The inspection of the convolution formula shows also that if both F and G have isolated sin-
gularities with monodromy then the singularities of F ⊙ G and of F ⋆e G are also isolated with
monodromy (including the case of trivial monodromy). More precisely, we recall the definition of
the monodromy and we define the monodromy operator:

Definition 3.1 (Monodromy and operator monodromy of an isolated singularity). Let F be an
holomorphic function with an isolated singularity α ∈ C. We denote F+ the analytic continuation
of F when turning around α once in the positive orientation (in a neighborhood without any other
singularity). The monodromy of F at the point α ∈ C is

∆αF = F+(z)− F (z) .

This definition can be extended also to regular points α of F . The map ∆α defines a linear operator,
the monodromy operator at α, on the vector space Vα of holomorphic functions having a regular
point or an isolated singularity at α. We also define the operator Σα such that

ΣαF = F+

and we have

Σα = I +∆α

In general, we define that monodromy operator along a path γ, σγ : (C, γ(0)) → (C, γ(1)), which
associates to a holomorphic germ at γ(0) its Weierstrass holomorphic continuation along γ at γ(1).
In a domain where the germ is holomorphic, σγ = σ[γ] only depends on the homotopy class [γ] of γ,
and for a loop γ with winding number 1 with respect to α, we have Σα = σ[γ].

Note that non-locally, ∆αF can develop singularities elsewhere at other points distinct from α.
The structure of the monodromy at α is important, and justifies the following definitions.

Definition 3.2. A function F with an isolated singularity at α ∈ C has a holomorphic, resp.
meromorphic, uniform, monodromy at α when ∆αF is holomorphic, resp. meromorphic, with a
uniform isolated singularity at α, in a neighborhood of α. The singularity α is totally holomorphic
if both ∆αF and F0 = F − 1

2πi log(z − α)∆αF are holomorphic.

Recall (see Proposition 1.3) that when ∆2
αF = 0 we can write uniquely in a neighborhood of α

F = F0 +
1

2πi
log(z − α)∆αF

where F0 has a uniform isolated singularity at α.

The growth behavior of F near the singularity α is important.

Definition 3.3. Let F be function with a regular point or an isolated singularity at α ∈ C. Then
F is integrable at α, or α is an integrable singularity, if we have

S-limz→α(z − α)F (z) → 0

where this is a Stolz limit, that is, z → α with arg(z − α) bounded. The singularity α has order
ρ > 0, if F (z) = O(|z − α|−ρ) in any Stolz angle3.

3These are also called “singularities with moderate growth in sectors”, see [20], section 9.2, or
“regular singularities” in the context of solutions of differential systems, see [1], p.8.
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Note that integrable, order ρ and finite order functions at α is a vector space. These vector spaces
are Oα-modules, where Oα is the local ring of holomorphic germs at α. For an integrable singularity
we have

∫ α+ǫ

α

F (u) du → 0

and
∫

η

F (u) du → 0

when ǫ ∈ C is small and ǫ → 0, and the loop η is a small circle around α with radius → 0. Adapting
the arguments given in [9] we can prove that the Hadamard product of integrable singularities is
integrable, but we don’t need this result in this article.

Proposition 3.4. If F is holomorphic in a pointed neighborhood of α, i.e. ∆αF = 0, and integrable,
then F is holomorphic at α.

Proof. We can write a converging Laurent expansion in a pointed neighborhood of α,

F (z) =
∑

n∈Z

an(z − α)n

and we have the Cauchy formula for the coefficients

an =
1

2πi

∫

η

f(u)

(z − u)n
du .

When we shrink η to α, the integrability estimates show that an = 0 for all n < 0, hence F is
holomorphic. �

Proposition 3.5. We have

∆α(F.G) = ∆α(F ).G+ F.∆α(G) + ∆α(F ).∆α(G)

Proof. It follows by analytic continuation that

Σα(F.G) = Σα(F ).Σα(G)

and using Σα = I +∆α gives the result. �

Corollary 3.6. If ∆2
α(F ) = 0, in particular when the monodromy of F at α is holomorphic or

meromorphic, then

∆α

(

F −
1

2πi
log(z − α)∆α(F )

)

= 0

In that case we can write,

F (z) = F0(z) +
1

2πi
log(z − α)∆α(F )

where ∆αF0 = 0.

Proof. We observe that

∆α

(

1

2πi
log(z − α)

)

= 1

and then from the previous Proposition we get

∆α

(

F −
1

2πi
log(z − α)∆α(F )

)

= ∆α(F )− 1.∆α(F )−
1

2πi
log(z − α).∆2

α(F )− 1.∆2
α(F )

= ∆α(F )−∆α(F )− 0− 0

= 0
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�

Corollary 3.7. We assume that ∆2
αF = 0. The singularity α of F is integrable if and only if the

singularity is totally holomorphic, that is ∆αF and F0 are holomorphic at α.

Proof. The condition is necessary. If F is integrable at α, from the definition we get that F+ is
integrable, hence ∆αF = F+ − F is integrable and holomorphic in a pointed neighborhood of α.
Proposition 3.4 implies that ∆αF is a holomorphic function at α. Then also 1

2πi log(z−α)∆α(F ) is

integrable at α, hence F0(z) = F (z)− 1
2πi log(z−α)∆α(F ) is also integrable. Again, by Proposition

3.4, F0 being holomorphic in a pointed neighborhood and integrable, it is holomorphic.

The condition is sufficient. We assume that F0 and ∆αF are both holomorphic. We have that
1

2πi log(z − α)∆α(F ) is integrable because r log r → 0 when r → 0. Also, F0 is integrable since is it
holomorphic. Now, adding these two integrable functions we get that F is integrable. �

Now, observe that we have F+ = F +∆αF , hence

(F+)
′ = F ′ + (∆αF )′

and since (F ′)+ = (F+)
′, which is obvious by analytic continuation, then we conclude that the

monodromy operator ∆α commutes with the derivation.

Proposition 3.8. We have
∆α(F

′) = (∆αF )′

Corollary 3.9. Let ϑ = P (D) =
∑N

n=0 anD
n with D = d/dz be a differential operator, with

P ∈ C[X ]. We have
∆α(ϑF ) = ϑ(∆αF ) .

Therefore, if F satisfies the differential equation ϑF = 0 then the monodromy ∆αF satisfies the
same differential equation

ϑ(∆αF ) = 0

and ∆αF belongs to the finite dimensional vector space of solutions. We have the same result for a
system of differential equations.

The monodromy ∆αF can have an isolated singularity at α with non-trivial monodromy, and
for example this happens at singular points of differential equations, and of course for algebraic
functions. For these we have the simple, but important following observation:

Proposition 3.10. We assume that F is an algebraic function satisfying the algebraic equation

P (z, F ) = 0

with P ∈ C[x, y]. Then ∆αF is an algebraic function satisfying an algebraic equation of lower degree

Q(z,∆αF ) = 0

with Q ∈ C[x, y] and degy Q < degy P

Proof. By analytic continuation around α we have

P (z, F +∆αF ) = 0

developing the powers of F +∆αF and using P (z, F ) = 0 we get the explicit expression for Q that
has a lower degree in the second variable. �

We will also need the following change of variables formula.
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Proposition 3.11 (Change of variables formula). Let ϕ : (C, β) → (C, α) a local holomorphic
diffeomorphism, α = ϕ(β). We have

∆ϕ−1(α)(F ◦ ϕ) = ∆α(F ) ◦ ϕ .

Proof. We consider a local loop γ enclosing α with winding number 1 with respect to α. Its pre-
image ϕ−1(γ) has winding number 1 with respect to β. When we continue along ϕ−1(γ) the return
analytic continuation of F ◦ ϕ is F ◦ ϕ + ∆β(F ◦ ϕ) by definition of the monodromy. The return
analytic continuation of F along γ is F +∆αF , hence we have

F ◦ ϕ+∆β(F ◦ ϕ) = (F +∆α(F )) ◦ ϕ = F ◦ ϕ+∆α(F ) ◦ ϕ

and we get the stated formula. �

Corollary 3.12. Let z0 ∈ C∗, then we have

∆β(F (z0/z)) = ∆z0/β(F )(z0/z) .

Proof. With the change of variables ϕ(z) = z0/z, thus ϕ−1(z) = z0/z, we get the result using
Proposition 3.11. �

Note that the formula in the Corollary remains valid for the monodromy at ∞ in the Riemann
sphere, α = ∞ ∈ C. Thus, the formula holds in general for a Moëbius transformation ϕ.

This result is a particular case for n = 1 (local diffeomorphism) of the local degree n ≥ 1 case:

Proposition 3.13. Let ϕ : (C, β) → (C, α) a local holomorphic map with β a critical point of degree
n ≥ 1 (hence ϕ is of local degree n). We have

∆α(F ) ◦ ϕ =
n
∑

k=1

(

n

k

)

∆k
β(F ◦ ϕ)

Lemma 3.14. Let γ be a local loop with winding number n ≥ 1 with respect to β ∈ C in a neighbor-

hood where β is the only singularity of F in this neighborhood. We denote ∆
(n)
β F the monodromy of

F along γ that only depends on the homotopy class [γ], i.e. on its winding number n ≥ 1. We have

∆
(n)
β F =

n
∑

k=1

(

n

k

)

∆k
βF .

Proof. We observe that

∆
(n)
β = σn

n.[γ] − I = Σn
β − I .

Since Σβ = I +∆β , the result follows from Newton binomial formula. �

Proof of Proposition 3.13. We carry out the same proof as before, but this time the pre-image
ϕ−1(γ) has winding number n ≥ 1 with respect to β = ϕ−1(α). When we continue along γ the
return analytic continuation of F is F +∆α(F ) by definition of the monodromy. The return analytic

continuation of F ◦ ϕ along ϕ−1(γ) is F ◦ ϕ+∆
(n)
β (F ◦ ϕ) hence we have

F ◦ ϕ+∆α(F ) ◦ ϕ = F ◦ ϕ+∆
(n)
β (F ◦ ϕ)

so ∆α(F ) ◦ ϕ = ∆
(n)
β (F ◦ ϕ) and the formula follows from Lemma 3.14. �

We leave the general study of monodromies ∆αF having an isolated singularity at α with non-
trivial monodromy to future articles.
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4. Totally holomorphic monodromy formula.

As a preparation for the general case, we first prove the monodromy formula 2 in the totally
holomorphic or, equivalently, the integrable case. Thanks to the integrability conditions, there is no
local contributions in the integration path argument that is central in the proof. In the next section
we treat the general case.

4.1. Proof of the totally holomorphic monodromy formula: Single singularity case. We
prove in this section Theorems 1.4 and 1.6 in the totally holomorphic case. The proof of Theorem
1.6 is similar and indications will be given at the end, so we concentrate in the proof of 1.4.

The first observation is that the result is purely local near the singularities. We may have some
multiplicity when there exists distinct pairs (α, β) 6= (α′, β′) such that αβ = α′β′. Then we have a
linear superposition of the different contributions. To be precise, there is no need to assume in the
Theorem that all singularities have the same holomorphic structure but only those α’s and β’s that
contribute to the location γ.

We consider first the case where there is no multiplicity, so γ = αβ for a single pair (α, β), and we
can assume that α = β = γ = 1, and the radii of convergence are RF = RG = 1. The general case
is a superposition of this case. We consider a current value z close to 1, and we follow the analytic
extension of F ⊙ G when z, starting at z0, turns around 1 once in the positive direction. We can
start at z0 with |z0| < 1, and z0 close to 1.

ηz0

1

z0

ηz

1
z

η̂z0

1

z0

1

z0

1

z0

1

z0

a

Figure 2. Homotopical deformation of the integration path when z0

turns around 1.

We start integrating Hadamard convolution formula on a circle ηz0 of radius r with |z0| < r < 1, so
that both series giving F (u) and G(z0/u) are converging. When z, starting at z0, moves around the
point 1, we deform homotopically the integration path into ηz so that z never crosses the integration
path. With such condition, the convolution formula yields the analytic continuation of F ⊙G. When
we return to z0, the path is deformed into η̂z0 (see Figure 2) the Hadamard product takes the value
(F ⊙G)+(z0). The difference

∆1(F ⊙G)(z0) = (F ⊙G)+(z0)− (F ⊙G)(z0)
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is the monodromy at 1. According to Hadamard convolution formula, this difference can be computed
by integrating on the homotopical difference of the two paths η̂z0 − ηz0 (Figure 2). Considering the
intersection point a = [z0, 1] ∩ ηz0 , and shrinking the path as shown in Figure 2, this difference is
composed by four (indeed only two, repeated twice) vertical segments (it is indeed a “train track”)
η1 = [a, 1], η2 = [a, z0], η3 = [a, 1] and η4 = [a, z0] where we integrate in both directions different
functions. Note also that the small turning loops around 1 and z0 give no contribution when they
shrink because of the integrability condition (in the proof of the general case there is a non-trivial
residual contribution). We decompose further each path ηj into two consecutive paths ηj = η−j ∪ η+j
so that the difference η̂z0 − ηz0 decomposes as

η̂z0 − ηz0 = η−1 ∪ η+1 ∪ η−2 ∪ η+2 ∪ η−3 ∪ η+3 ∪ η−4 ∪ η+4

where the paths η±j follow each other in the order this union is written. We first list the functions that

are integrated against the differential du/u in each path. To compute these functions, notice that
the monodromy around u = 1 of F (u) is ∆1F (u), and, according to Corollary 3.12, the monodromy
around z0 of G(z0/u) is ∆1G(z0/u), i.e.

∆z0(G(z0/u)) = (∆1G)(z0/u) .

We need to take into account the sign corresponding to the orientation of the loop around each
singularity. Note that we are assuming that the monodromies ∆1F and ∆1G are holomorphic and,
in particular, there is no second monodromy at 1.

η−1 →F (u)G(z0/u)

η+1 →F (u)G(z0/u) + ∆1F (u)G(z0/u)

η−2 →F (u)G(z0/u) + ∆1F (u)G(z0/u)

η+2 →F (u)G(z0/u) + F (u)∆1G(z0/u) + ∆1F (u)G(z0/u) + ∆1F (u)∆1G(z0/u)

η−3 →F (u)G(z0/u) + F (u)∆1G(z0/u) + ∆1F (u)G(z0/u) + ∆1F (u)∆1G(z0/u)

η+3 →F (u)G(z0/u)−∆1F (u)G(z0/u) + F (u)∆1G(z0/u)−∆1F (u)∆1G(z0/u)+

+∆1F (u)G(z0/u) + ∆1F (u)∆1G(z0/u)

= F (u)G(z0/u) + F (u)∆1G(z0/u)

η−4 →F (u)G(z0/u) + F (u)∆1G(z0/u)

η+4 →F (u)G(z0/u)− F (u)∆1G(z0/u) + F (u)∆1G(z0/u) = F (u)G(z0/u)

Now, for the contributions of each integral we have

∫

ηj

=

∫

η−

j

−

∫

η+

j
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and these contributions for each integral ηj are, respectively,

∫

η1

−∆1F (u)G(z0/u)
du

u
= −

∫ 1

a

∆1F (u)G(z0/u)
du

u
∫

η2

(−F (u)∆1G(z0/u)−∆1F (u)∆1G(z0/u))
du

u
= −

∫ z0

a

(F (u)∆1G(z0/u) + ∆1F (u)∆1G(z0/u))
du

u
∫

η3

(∆1F (u)G(z0/u) + ∆1F (u)∆1G(z0/u))
du

u
=

∫ 1

a

(∆1F (u)G(z0/u) + ∆1F (u)∆1G(z0/u))
du

u
∫

η4

F (u)∆1G(z0/u)
du

u
=

∫ 1

a

F (u)∆1G(z0/u)
du

u

Adding up, after some cancellations when pairing η1 and η3, and pairing of η2 and η4, we get
∫

η1

+

∫

η3

=

∫ 1

a

∆1F (u)∆1G(z0/u)
du

u
∫

η2

+

∫

η4

= −

∫ z0

a

∆1F (u)∆1G(z0/u)
du

u

and finally
∫

ηz0
−η̂z0

=

∫

η1

+

∫

η2

+

∫

η3

+

∫

η4

= −

∫ z0

1

∆1F (u)∆1G(z0/u)
du

u

which gives the formula for the case of a single singularity.

Note that in this path deformation argument, there is no residual contribution contribution at 1
because the functions and their monodromies are all integrable at 1.

4.2. Proof for higher multiplicity singularities. The initial Jordan loop of integration ηz0
separates the singularities (α) of F , which are in the outside unbounded region, from the singularities
(z0/β) of G(z0/u), which are in the inside bounded region. As before, when the point z starting
at z0 circles once around αβ = γ, then all points z/β circles once around the corresponding α
in a synchronized choreography. We end-up with a path η̂z0 as shown in Figure 1 (reversing the
orientation). Then the difference of paths ηz0 − η̂z0 is decomposed into a finite number of quadruple
loops as the one considered before, one for each pair (α, β) such that γ = αβ. The total contribution
adds the contribution of each quadruple loop and the formula follows.

5. General holomorphic monodromy formula.

5.1. Formula for the Hadamard product. We prove the general result by following the ideas
from the previous section. We are reduced totreat the case of a singularity αβ without multiplicity,
and we can assume α = β = 1. We consider the same integration path.

The only difference appears when we shrink loops at u = 1 and u = z0. For example, for the first
path η1, when we turn around u = 1, we get an extra contribution of

lim
ǫ1→1

1

2πi

∫

ǫ1

F (u)G(z0/u)
du

u



16 R. PÉREZ-MARCO

where ǫ1 is a local positive circle loop around u = 1, and we take the limit when this loop converges
to u = 1. We have

lim
ǫ1→1

1

2πi

∫

ǫ1

F (u)G(z0/u)
du

u
= lim

ǫ1→1

1

2πi

∫

ǫ1

F0(u)G(z0/u)
du

u
+ lim

ǫ1→1

∫

ǫ1

1

2πi
∆1F (u)G(z0/u)

du

u

and the second limit is zero because of the integrability condition, and more precisely because
∆1F (u)G(z0/u)/u is holomorphic at u = 1.

Therefore, for each path ηj we get the following extra residue contributions to the integral (the
orientations give the proper signs):

η1 →Resu=1

(

F0(u)G(z0/u)

u

)

η2 →Resu=z0

(

F (u)G0(z0/u)

u

)

+Resu=z0

(

∆1F (u)G0(z0/u)

u

)

η3 →− Resu=1

(

F0(u)G(z0/u)

u

)

− Resu=1

(

F0(u)∆1G(z0/u)

u

)

η4 →− Resu=z0

(

F (u)G0(z0/u)

u

)

Adding these four contributions, and clearing out the two cancellations, only two residues remains
and they give a total residual contribution

R = −Resu=1

(

F0(u)∆1G(z0/u)

u

)

+Resu=z0

(

∆1F (u)G0(z0/u)

u

)

We can give to this expression a symmetric form using the following elementary Lemma.

Lemma 5.1. We have

Resu=z0

(

∆1F (u)G0(z0/u)

u

)

= −Resu=1

(

G0(u)∆1F (z0/u)

u

)

Proof. We consider a local loop γ with winding number 1 with respect to z0 and use the Residue
Theorem and the change of variables v = z0/u, du = −z0dv/v

2, γ′ the image of γ that is a local
loop with winding number number with respect to 1,

Resu=z0

(

∆1F (u)G0(z0/u)

u

)

=
1

2πi

∫

γ

∆1F (u)G0(z0/u)

u
du

=
1

2πi

∫

γ′

∆1F (z0/v)G0(v)

z0/v
(−z0)

dv

v2

= −
1

2πi

∫

γ′

∆1F (z0/v)G0(v)

v
dv

= −Resu=1

(

G0(u)∆1F (z0/u)

u

)

�

Finally, the residue total contribution is

R = −Resu=1

(

F0(u)∆1G(z0/u)

u

)

− Resu=1

(

G0(u)∆1F (z0/u)

u

)
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In the case of a general singularity γ = αβ, this residue contribution is

R = −Resu=α

(

F0(u)∆βG(z0/u)

u

)

− Resu=β

(

G0(u)∆αF (z0/u)

u

)

and this gives the holomorphic monodromy formula (1).

5.2. Formula for the exponential eñe product. The proof for the exponential eñe product
follows the same lines. The only difference is in the the sign in the convolution formula and the
integrating function. Since the monodromy operator commutes with differentiation there is almost
no difference in the entire argument. We need to use the following Lemma:

Lemma 5.2. At a holomorphic singulartiy α we have

(F ′)0 = F ′
0 +

1

2πi

1

z − α
∆αF

Proof. We use the commutation of the monodromy operator with the differentiable operator. We
differentiate the decomposition

F (z) = F0(z) +
1

2πi
log(z − α)∆αF (z)

and obtain

F ′(z) =

(

F ′
0(z) +

1

2πi

1

z − α
∆αF (z)

)

+
1

2πi
log(z − α)∆αF

′(z)

and by uniqueness of the monodromy decomposition for F ′ from Proposition 1.3, we get the result.
�

The same proof as before, starting from the exponential eñe product convolution formula, gives

∆γ(F ⋆e G)(z) =
∑

α,β
αβ=γ

Resu=α ((F ′)0(u)∆βG(z/u)) +
∑

α,β
αβ=γ

Resu=β (G0(u)∆αF
′(z/u))

+
1

2πi

∑

α,β
αβ=γ

∫ z/β

α

∆αF
′(u)∆βG(z/u) du

Now, using the Lemma 5.2, we have

Resu=α ((F ′)0(u)∆βG(z/u)) = Resu=α (F ′
0(u)∆βG(z/u)) +

1

2πi
Resu=α

(

1

u− α
∆αF (u)∆βG(z/u)

)

= Resu=α (F ′
0(u)∆βG(z/u)) +

1

2πi
∆αF (α)∆βG(z/α)

and formula (3) follows.

This commutation property for the derivation is also the reason for the symmetry on F and G of
the formula. By integration by parts we have:

Proposition 5.3. For γ = αβ we have

∆αF (α)∆βG(z/α) +

∫ z/β

α

∆αF
′(u)∆βG(z/u) du = ∆αF (z/β)∆βG(β) +

∫ z

γ

∆βG
′(u)∆αF (z/u) du
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Proof. We perform an integration by parts, and the change of variables v = z/u,

∫ z/β

α

∆αF
′(u)∆βG(z/u) du = [∆αF (u)∆βG(z/u)]z/βα −

∫ z/β

α

∆αF (u)∆βG
′(z/u)

(

−
1

u2

)

du

= [∆αF (u)∆βG(z/u)]
z/β
α −

∫ z/α

β

∆αF (z/v)∆βG
′(v) dv

�

We could have derived also the formula for the monodromy of the exponential eñe product from
the formula from the Hadamard product by using

F ⋆e G = −K0 ⊙ F ⊙G .

It is instructive to derive it. We have already seen that the effect on the monodromy of the Hadamard
product with −K0 is just the derivation, hence

∆γ(F ⋆e G) = (∆γF ⊙G)′

and we only need to derivate formula 1. Using the commutation with the monodromy operator and
previous Lemma 5.2 we get the result again.

The proof of Corollary 1.8 is straightforward from the eñe monodromy formula.

6. Applications.

6.1. Application 1: Monodromy of polylogarithms. We use our formula to compute the clas-
sical monodromy of polylogarithms, that is done in the literature using functional equations (as for
example in [16]). The polylogarithm Lik(z) for k = 1, 2, . . . can defined for |z| < 1 by the converging
series

Lik(z) =

+∞
∑

n=1

n−k zn

Therefore Li1 is given by the logarithm, Li1(z) = − log(1 − z) that has principal branch with a
multivalued holomorphic extension to C−{1} with a unique singularity at 1 which is of logarithmic
type with a constant monodromy

∆1 Li1 = −2πi .

Higher polylogarithms can also be defined inductively by integration

Lik+1(z) =

∫ z

0

Lik(u)
du

u

as we readily see integrating term by term the defining power series in its disk of convergence. Using
the integral expression we prove by induction that their principal branch extends holomorphically to
a multivalued function on C − {1} with a unique singularity at 1 (non-principal branches can have
also singularities at 0 as we will see).

From the power series definition it is clear that higher order polylogarithms can also be defined
inductivelly using Hadamard multiplication

Lik+1 = Lik ⊙Li1
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The minimal Hadamard ring structure (for the sum and the Hadamard product) generated by the
logarithm is obtained by adjoining higher order polylogarithms, for k, l ≥ 1,

Lik+l = Lik ⊙Lil

As a Corollary of our monodromy formula we can compute directly the monodromy at s = 1.

Corollary 6.1. For k ≥ 2 the only singularities of the analytic continuation of Lik are located at 0
and 1. For k ≥ 1 the monodromy at 1 of the principal branch of Lik is holomorphic at z = 1 and,
more precisely,

∆1 Lik = −
2πi

(k − 1)!
(log z)k−1

Proof. For k = 1 it is the monodromy of the classical logarithm that is holomorphic (constant) at
1. Assuming by induction the result for k ≥ 1, the monodromy for Lik is holomorphic at z = 1, and
we can use Theorem 1.6 with the formula Lik+1 = Lik ⊙Li1, obsrving that the singularity at α = 1
is totally holomorphic, so we use formula (2), and we get (using the change of variables v = log u)

∆1 Lik+1(z) = −
1

2πi

∫ z

1

−
2πi

(k − 1)!
(log u)k−1(−2πi)

du

u

= −
2πi

(k − 1)!

∫ log z

0

vk−1 dv

= −
2πi

k!
(log z)k

�

We can use the formula for the exponential eñe product to cross check this result since it follows
from the power series expansion that, for k, l ≥ 1,

Lik ⋆e Lil = −Lik+l−1

and in particular,

Lik+1 = −Lik ⋆e Li2

Li1 = −Li1 ⋆e Li1

hence the minimal exponential eñe ring containing Li1 is just generated by Li1, but the one
containing Li1 and Li2 is generated by all the higher polylogarithms as before. Related to this we
observe that we need to know the monodromy of Li2 to start the induction with the exponential eñe
product formula. The exponential eñe convolution formula and the Hadamard convolution formula
are directly related using Li′k+1(z) = Lik(z)/z since

Lik ⋆e Lil =
1

2πi

∫

η

Li′k(u) Lil(z/u) du =
1

2πi

∫

η

Lik(u) Lil(z/u)
du

u
= −Lik ⊙Lil = −Lik+l
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Now, using the formula (4) for the eñe monodromy for the totally holomorphic singularity at
α = 1, and the change of variables v = log u/ log z, we have

∆1(Lik ⋆e Lil) =
1

2πi
∆1 Lik(1) Lil(z) +

1

2πi

∫ z

1

(

−2πi

(k − 1)!
(log u)k−1

)′ (
−2πi

(l − 1)!
(log(z/u))l−1

)

du

= 0 +
2πi

(k − 2)!(l − 1)!

∫ z

1

(log u)k−2.(log(z/u))l−1du

=
2πi

(k − 2)!(l − 1)!
(log z)k+l−2

∫ 1

0

vk−2(1 − v)l−1 dv

=
2πi

(k − 2)!(l − 1)!
(log z)k+l−2B(k − 1, l)

=
2πi

(k − 2)!(l − 1)!
(log z)k+l−2Γ(k − 1)Γ(l)

Γ(k + l − 1)

=
2πi

(k + l − 2)!
(log z)k+l−2

= −∆1(Lik+l−1)

The polylogarithm ring is a good example showing that the eñe ring structure corresponds to
the twisted Hadamard structure (see [17] Section 10). We note also that the monodromy formula
suggests that the proper normalization of the polylogarithm functions is

lik(z) = −
1

2πi
Lik(z)

so that

∆1 lik =
1

(k − 1)!
(log z)k−1 .

6.2. Application 2: Polynomial logarithmic monodromy class. The simplest case of holo-
morphic monodromy occurs for a polynomial monodromy. We determine now the minimal Hadamard
ring containing polynomial monodromies. As a Corollary of our main formula we have the following
Proposition:

Proposition 6.2. Let F and G be two holomorphic functions with polynomial monodromies, ∆αF,∆βG ∈
C[z]. Then we have that

∆γ(F ⊙G) ∈ C[z]⊕ C[z] log z .

Proof. We write

∆αF (z) =
∑

n

anz
n

∆βG(z) =
∑

m

bmzm
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then, using the holomorphic monodromy formula, we get

∆γ(F ⊙G)(z) = −
1

2πi

∑

α,β
αβ=γ

∫ z/β

α

∆αF (u)∆βG(z/u)
du

u

= −
1

2πi

∑

α,β
αβ=γ

∑

n,m

anbmzm
∫ z/β

α

un−m−1 du

= −
1

2πi

∑

α,β
αβ=γ

∑

n,m,n6=m

anbmzm
zn−m−1 − γn−m−1

βn−m−1(n−m)

−
1

2πi

∑

α,β
αβ=γ

∑

n

anbnz
n(log z − log γ)

�

We have the following elementary Lemma:

Lemma 6.3. Let α ∈ C∗, and k, l ≥ 0. We have
∫ z

α

uk(log u)l du ∈ Q[α, logα][z, log z] .

Proof. The result is obtained by recurrence on the exponent l ≥ 0 and integration by parts. �

As a Corollary we obtain the stability of the ring C[z, log z] by the holomorphic monodromy
formula, and the same computation as for Proposition 6.2 proves the general Theorem:

Theorem 6.4. Let F and G be two holomorphic functions with monodromies, ∆αF,∆βG ∈ C[z, log z].
Then we have that

∆γ(F ⊙G) ∈ C[z, log z] .

This motivates the definition of the polynomial logarithmic monodromy class.

Definition 6.5. The polynomial logarithmic monodromy (or PLM)class is the class of holomorphic
functions in a neighborhood of 0 having only singularities with monodromies in the ring C[z, log z].

We have proved:

Proposition 6.6. The PLM class is closed under the Hadamard product, and it is the minimal
Hadamard ring containing the subclass of functions with polynomial monodromies.

We can be more precise keeping track of the previous computations.

Definition 6.7. Let K ⊂ C be a field such that 2πi ∈ K. The PLM(K) class is composed by
holomorphic functions in a neighborhood of 0, having only singularities in the ring K[z, log z], with
singularities α ∈ K.

Theorem 6.8. The PLM(K) class is closed under the Hadamard product, and it is the mini-
mal Hadamard ring containing the subclass of functions with polynomial monodromies in K[z] with
singularities in K.

We have the same result for the eñe product.
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6.3. Application 3: Divisor interpretation of the eñe product. As explained in the intro-
duction, the exponential eñe product linearizes is the exponential form of the eñe product. It is
remarkable that the formulas for the eñe product are linearized through the exponential function.

Using the monodromy formulas we can prove directly the divisor interpretation of the eñe product.
Thus this gives an alternative definition of the eñe product and its properties. Starting from two
meromorphic functions in the plane, holomorphic at 0, normalized such that f(0) = g(0) = 1, we
can consider their exponential form:

f(z) = exp(F (z)) = 1 + a1z + a2z
2 + . . . = 1 +

∑

n≥1

an z
n

g(z) = exp(G(z)) = 1 + b1z + b2z
2 + . . . = 1 +

∑

n≥1

bn z
n

The functions F = log f and G = log g are holomorphic germs at z = 0. Their singularities are
located at the zeros of f and g respectively. We have constant monodromies,

∆αF = 2πi nα

∆βG = 2πi nβ

where nα, resp. nβ , is the multiplicity of the zero or pole of f , resp. g (negative multiplicity for
poles). We can define the eñe product by the exponential eñe product,

f ⋆ g = exp(F ⋆e G)

this defines a holomorphic germ near 0, with f ⋆ g(0) = 1. We know that the singularities of f ⋆ g
are located at the singularities of F ⋆e G, i.e. at the points γ = αβ.

The monodromies are totally holomorphic, hence we can use formula (4) and compute the mon-
odromies of the singularities γ, which gives

∆γ(F ⋆e G) =
1

2πi

∑

α,β
αβ=γ

(2πi nα)(2πi nβ) = (2πi)
∑

α,β
αβ=γ

nαnβ

This proves that γ is a zero or pole for f ⋆ g of multiplicity

nγ =
∑

α,β
αβ=γ

nαnβ

hence recovering the definition given in [17].

It is instructive to note, in view of the infinite divisor interpretation of the eñe product given in
[18], that isolated essential singularities of f and g do correspond to regular poles of F and G, that
are a particular case of regular isolated singularities. If we use the analogue of Borel Theorem for
regular isolated singularities, we can see that the divisor eñe product interpretation extends further
to singularities of f and g of infinite order, for example of the form

f(z) = e1−e
z

z−1

.

These “higher order divisor” extension are left for future work.
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