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Figure 1: Equal time comparison of Monte Carlo rendering and our method. This dining room scene is lit by 2 sphere lights
(left) and 1 quad light (right). Our method uses order 16 SH expansions for the rough gold BRDF (highlighted on the left) and
order 8 for diffuse BRDF. We compare relative MSE numbers for full image (top) and several insets (bottom). Our method can
outperform Monte Carlo sampling (MIS) method for direct lighting with good approximation of low frequency BRDF.

ABSTRACT
Spherical area light sources are widely used in synthetic rendering.
However, traditional Monte Carlo methods can require an excessive
number of samples for sufficient accuracy. We propose a Spherical
Harmonics (SH) based method to provide a trade-off between per-
formance and accuracy. Our key idea is an analytical integration
of SH over spherical caps. The SH integration is first decomposed
into a weighted sum of Zonal Harmonics (ZH) integration, which
could be evaluated using recurrence formulae. The resulting in-
tegration could then be used for rendering spherical area lights
efficiently, saving 50% light samples at best while maintaining com-
petitive accuracy. Our method can easily fit into an existing SH
based rendering framework to support near-field sphere lighting.

CCS CONCEPTS
• Computing methodologies→ Rendering.
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1 INTRODUCTION
Spherical cap integration is ubiquitous in rendering. Area light-
ing for example, an essential component in a production renderer
for generating photorealistic images, requires solving the direct
illumination integral [Wang 1992] or rendering equation [Kajiya
1986]. However, finding a closed-form solution to these integrals
remains a challenging problem. Numerical integration algorithms
such as Monte Carlo sampling could be used to solve the integral,
but the process demanding possibly massive number of samples to
converge might result in low performance.

There have been active research projects focusing on sampling
[Arvo 1995b, 2001; Gamito 2016; Guillén et al. 2017; Peters and
Dachsbacher 2019; Ureña et al. 2013; Ureña and Georgiev 2018] to
reduce variance and improve convergence rate. On the other hand,
solutions based on closed-form integration leveraging spherical
distribution approximation have been proposed [Dupuy et al. 2017;
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Heitz et al. 2016] recently. However, various types of BRDFs fea-
turing distinctive characteristics might be difficult to fit with these
specific spherical distributions.

Spherical Harmonics (SH) provide another way to efficiently
project and reconstruct spherical integrand in many cases, which
could be used for shading complex BRDF with area light [Ra-
mamoorthi and Hanrahan 2001; Sloan et al. 2002]. However, this
requires an efficient estimation of spherical integrals via SH ex-
pansion. Fortunately, the SH expansion integration over spherical
polygon could be solved via axial moments [Arvo 1995a; Belcour
et al. 2018] and optimized by Zonal Harmonics (ZH) recurrence
[Wang and Ramamoorthi 2018]. In order to support spherical lu-
minaries, we extend the recurrence formulae to handle clipped
spherical cap integration, a more efficient method compared to
adapting [Snyder 1996]’s monomial recurrence.

2 BACKGROUND
Direct Illumination Integral. The contributed radiance at 𝑝 along

direction 𝜔𝑜 of area light could be expressed as [Wang 1992]:

𝐿𝑜 (𝑝,𝜔𝑜 ) =
∫
Ω
𝑓 (𝑝,𝜔𝑜 , 𝜔𝑖 )𝐿𝑑 (𝑝,𝜔𝑖 ) |𝜔𝑖 · 𝑛 | d𝜔𝑖 (1)

, where Ω is the subtended solid angle, 𝑓 is Bidirectional Reflection
Distribution Function (BRDF), 𝐿𝑑 is the emitted radiance at 𝜔𝑖 and
|𝜔𝑖 · 𝑛 | is the cosine factor.

Spherical Harmonics Expansions for Direct Lighting. The real
spherical harmonics (SH) in spherical coordinates are:

𝑦𝑚
𝑙
(\, 𝜙) = 𝐾𝑚

𝑙
𝑃
|𝑚 |
𝑙

(cos\ ) 𝑓 ( |𝑚 |𝜙) (2)

, where 𝐾𝑚
𝑙

=

√
(2𝑙+1)

4𝜋
(𝑙−|𝑚 |)!
(𝑙+|𝑚 |)! , 𝑃

𝑚
𝑙

are the associate Legendre
polynomials and 𝑓 ( |𝑚 |𝜙) is 1 for𝑚 = 0,

√
2 cos(𝑚𝜙) for𝑚 > 0 and√

2 sin( |𝑚 |𝜙) for𝑚 < 0.
We could project 𝐿𝑑 (𝑝,𝜔𝑖 ) and 𝑓 (𝑝,𝜔𝑜 , 𝜔𝑖 ) |𝜔𝑖 ·𝑛 | onto SH bases

yielding SH coefficients:

𝑓𝑚
𝑙

(𝑝,𝜔𝑜 ) =
∫
Ω
𝑓 (𝑝,𝜔𝑜 , 𝜔𝑖 ) |𝜔𝑖 · 𝑛 |𝑦𝑚𝑙 (𝜔𝑖 ) d𝜔𝑖 (3)

𝐿𝑚
𝑙
(𝑝,𝜔𝑜 ) =

∫
Ω
𝐿𝑑 (𝑝,𝜔𝑖 )𝑦𝑚𝑙 (𝜔𝑖 ) d𝜔𝑖 (4)

Direct lighting integral could thus be expanded via orthogonality
of SH functions:

𝐿𝑜 (𝑝,𝜔𝑜 ) ≈
𝑛−1∑
𝑙=0

𝑙∑
𝑚=−𝑙

𝑓𝑚
𝑙

(𝑝,𝜔𝑜 )𝐿𝑚𝑙 (𝑝,𝜔𝑜 ) (5)

There are analytical solutions to the light coefficients 𝐿𝑚
𝑙
(𝑝,𝜔𝑜 )

for near-field polygonal area lights while 𝑓𝑚
𝑙

(𝑝,𝜔𝑜 ) are usually
precomputed by numerical methods.

Zonal Harmonics Factorization. A spherical harmonics (SH) could
be expressed by a weighted sum of rotated zonal harmonics (ZH)
via Zonal Harmonics Factorization [Nowrouzezahrai et al. 2012]:

𝑦𝑚
𝑙
(𝜔𝑖 ) =

𝑙∑
�̄�=−𝑙

𝛼𝑚
𝑙,�̄�
𝑦0
𝑙
(𝜔𝑖 → 𝜔𝑑 ) (6)

, where ZH function𝑦0
𝑙
(𝜔) is simply a subset of SH function (𝑚 = 0),

𝑦0
𝑙
(𝜔𝑖 → 𝜔𝑑 ) is the ZH function rotated to 𝜔𝑑 direction, evaluated

at 𝜔𝑖 and 𝛼𝑚𝑙,�̄� are related weighting coefficients.
Assuming a constant 𝐿𝑑 , Equation (4) could be expressed as an

integral of Legendre polynomials via

𝑦0
𝑙
(𝜔𝑖 → 𝜔𝑑 ) =

√
2𝑙 + 1

4𝜋
𝑃𝑙 (𝜔𝑖 → 𝜔𝑑 ) (7)

𝐿𝑚
𝑙
(𝑝,𝜔𝑜 ) =

√
2𝑙 + 1

4𝜋
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𝑙∑
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𝛼𝑚
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∫
Ω
𝑃𝑙 (𝜔𝑖 → 𝜔𝑑 ) d𝜔𝑖 (8)

, which could be expanded to a series of monomials [Arvo 1995a;
Belcour et al. 2018] and solved analytically.

3 METHOD
In Section 3.1, we first apply the main recurrence formulae [Wang
and Ramamoorthi 2018] to our surface integral. In Sections 3.2
and 3.3 we derive our novel recurrence formulae for integrating
zonal harmonics over spherical caps.

3.1 Surface Integral Recurrence
Our goal is to seek an efficient and exact solution to 𝐿𝑚

𝑙
in Equa-

tion (8) over a spherical cap C:

𝑆𝑙 =

∫
C
𝑃𝑙 (𝜔𝑖 → 𝜔𝑑 ) d𝜔𝑖 =

∫
C′
𝑃𝑙 (𝑧) d𝜔𝑖 (9)

, where C′ is the spherical cap in our coordinate frame, aligning
𝜔𝑑 to Z-axis (Z = 𝜔d,Y = 𝜔d × L,X = Y × Z).

We apply the main recurrence formula from [Wang and Ra-
mamoorthi 2018] which used Stokes’ theorem and Legendre poly-
nomial identity:

𝑆𝑙 =
(𝑙 − 2) (𝑙 − 1)
𝑙 (𝑙 + 1) 𝑆𝑙−2 +

2𝑙 − 1
𝑙 (𝑙 + 1) 𝐵𝑙−1 (10)

𝐵𝑙 =

∮
𝜕C′

𝑃𝑙−1 (𝑧) (𝑥𝑑𝑦 − 𝑦𝑑𝑥) (11)

3.2 Boundary Integral Recurrence
In this section, we derive our recurrence formula for boundary inte-
gral 𝐵𝑙 , a contour integral over a spherical cap clipped by horizon.
There are indeed two cases for the spherical boundary as illustrated
in Figure 2 and could be unified by a partial contour (spherical arc)
integral.

We first parametrize 𝜔i as 𝜔i (𝜙) = cos𝜎L + sin𝜎 (cos𝜙L1 +
sin𝜙L2) by an orthonormal basis {L, L1, L2}:

L = (sin\, 0, cos\ ), L1 ≡ (cos\, 0,− sin\ ), L2 ≡ (0, 1, 0) (12)

𝐵𝑙 could be then written as:

𝐵𝑙 = − cos𝜎𝐷𝑙 + cos\𝐶𝑙 (13)

, where we defined 𝐷𝑙 and 𝐶𝑙 as:

𝐷𝑙 =

∫ 𝜙max

𝜙min

𝑃𝑙 (𝑧)𝑧 d𝜙,𝐶𝑙 =
∫ 𝜙max

𝜙min

𝑃𝑙 (𝑧) d𝜙 (14)

, with symbols defined as 𝑎 = cos𝜎 cos\, 𝑏 = − sin𝜎 sin\, 𝑧 =

𝑎 + 𝑏 cos𝜙 .



Spherical Light Integration over Spherical Caps via Spherical Harmonics SA ’20 Technical Communications, December 4–13, 2020, Virtual Event, Republic of Korea

(a) Not clipped (b) Clipped

Figure 2: Illustration of spherical light cap and geometric set-
tings for integral derivation. The ZH integral 𝑆𝑙 over a spher-
ical cap subtended by a spherical light source is converted to
a single contour integral 𝐵𝑙 for unclipped case in (a) and dual
contour integrals 𝐵𝑙1, 𝐵𝑙2 for clipped case in (b). Our spheri-
cal arc parametrization for 𝜔i (𝜙) requires \ being the angle
between 𝐿 and 𝜔𝑑 and 𝜎 is the aperture angle of light cap.

(a) Side view (b) Top view

Figure 3: Side (a) and top (b) view of boundary integral 𝐵𝑙 for
integral limits in clipped case Figure 2b. 𝐵𝑙2 could be seen as
a part of spherical cap contour where L = N, L1 = T, L2 = B.

By substitution of the Legendre polynomial identity, we reach
the recurrence formula for 𝐶𝑙 and 𝐷𝑙 :

𝐶𝑙 =
2𝑙 − 1
𝑙

𝐷𝑙−1 −
𝑙 − 1
𝑙

𝐶𝑙−2 (15)

𝐷𝑙 =
1

𝑙 + 1
(𝑎𝐶𝑙 + 𝑙𝐶𝑙−1 + 𝑃𝑙 (𝑎 + 𝑏 cos𝜙max) (𝑏 sin𝜙max)

− 𝑃𝑙 (𝑎 + 𝑏 cos𝜙min) (𝑏 sin𝜙min)
+ (𝑏2 − 𝑎2 − 1)𝐸𝑙 + 2𝑎𝐹𝑙 ) (16)

, where we defined 𝐸𝑙 and 𝐹𝑙 as:

𝐸𝑙 =

∫ 𝜙max

𝜙min

d𝑃𝑙 (𝑧)
d𝑧

d𝜙, 𝐹𝑙 =
∫ 𝜙max

𝜙min

d𝑃𝑙 (𝑧)
d𝑧

d𝜙 (17)

The final recurrence formulae for 𝐸𝑙 and 𝐹𝑙 are obtained by
substitution of another Legendre polynomial recurrence 𝑃 ′

𝑙
(𝑧) =

(2𝑙 − 1)𝑃𝑙−1 (𝑧) + 𝑃 ′𝑙−2 (𝑧) :
𝐸𝑙 = (2𝑙 − 1)𝐶𝑙−1 + 𝐸𝑙−2, 𝐹𝑙 = (2𝑙 − 1)𝐷𝑙−1 + 𝐹𝑙−2 (18)

Clipped Spherical Cap. It is trivial to evaluate the unclipped case
𝐵𝑙 letting 𝜙min = 2𝜋, 𝜙max = 0 (for positive orientation) while the
second case, clipped spherical boundary is decomposed via 𝐵𝑙 =
𝐵𝑙1 + 𝐵𝑙2. 𝐵𝑙1 is addressed by our general partial contour integral
above, where 𝜙 ranges from 𝜙0 to 𝜙1. The second contour curve
𝐵𝑙2 is a part of horizon circumference, for which we parametrize

𝐿 = (0, 0, 1) with 𝜎 = 𝜋
2 , \ = cos−1 (𝜔𝑑 · (0, 0, 1)) and integral limit

𝜙𝑎 and 𝜙𝑏 .

Integral Limits. The integral limits 𝜙0, 𝜙1 could be computed by
finding the intersection of spherical arc and tangent plane as shown
in Figure 3. They are solutions to the equation 𝑋𝑧𝜔𝑖𝑥 + 𝑌𝑧𝜔𝑖 𝑦 +
𝑍𝑧𝜔𝑖𝑧 = 0:

𝜙0 = cos−1 ( 𝑑
𝑐 ′
) − 𝜑 𝜙1 = 2𝜋 − cos−1 ( 𝑑

𝑐 ′
) − 𝜑 (19)

𝑎′ = sin𝜎 (𝑋𝑧 cos\ − 𝑍𝑧 sin\ ) 𝑑 = − cos𝜎 (𝑍𝑧 cos\ +𝑋𝑧 sin\ )

𝑏′ = 𝑌𝑧 sin𝜎 𝑐′ =
√
𝑎′2 + 𝑏′2 𝜑 = tan−1 ( −𝑏

′

𝑎
) (20)

𝜙𝑎 and 𝜙𝑏 could be solved in the same manner as 𝜙0 and 𝜙1 as if
we have done in Section 3.2 for clipped spherical cap case.

3.3 Initial Conditions
Iterative evaluation of our recurrence formulae in Equations (11),
(15), (16) and (18) requires respective initial conditions. Interme-
diate boundary integrals 𝐵0, 𝐵1,𝐶0,𝐶1, 𝐷0, 𝐷1, 𝐸0, 𝐸1, 𝐹0, 𝐹1 are ele-
mentary definite integrals while the surface integral 𝑆0, 𝑆1 is a bit
intricate. Note that 𝑆0 is the solid angle of the clipped spherical cap
and has the analytic solution from [Oat and Sander 2006]:

𝑆0 =


2𝜋 (1 − cos𝜎), 𝜋

2 − 𝜎 ≥ cos−1 (𝐿𝑧)
0, 𝜎 + 𝜋

2 ≤ cos−1 (𝐿𝑧)
2𝜋 − 2𝜋 cos𝜎 − 2 cos−1 ( 𝐿𝑧

sin𝜎 )
+ 2 cos𝜎 cos−1 (cos𝜎𝐿𝑧 )

sin𝜎 sin(cos−1 (𝐿𝑧 )) , otherwise

(21)

𝑆1 corresponds to the irradiance over spherical cap and could
be converted to boundary integral 𝐵0 by Stokes’ theorem [Snyder
1996]:

𝑆1 =

∫
C′
𝑧 d𝜔𝑖 =

1
2

∮
𝜕C′

(𝑥𝑑𝑦 − 𝑦𝑑𝑥) = 1
2
𝐵0 (22)

4 RESULTS
We experiment with our method on an OptiX [Parker et al. 2010]
based GPU ray tracer, running at GTX 1060. We tabulate BRDF
coefficients 𝑓𝑚

𝑙
and compute light coefficients 𝐿𝑚

𝑙
on the fly, using

Equation (5) to compute direct lighting. Shadowing is achieved
by control variates method [Heitz et al. 2018] with Monte Carlo
sampling.

In Figure 1, we achieve complex lighting from multiple area
lights simply by adding 𝐿𝑚

𝑙
from spherical caps (via our method)

and polygon domains (via [Wang and Ramamoorthi 2018]). An
accuracy validation of our method against MC integration is given
in Figure 5, indicating that ours efficiently reduces variance at low
sampling rate. In Figure 6 we compare our polynomial recurrence
with monomial recurrence [Snyder 1996] for computing 𝐵𝑙 in Sec-
tion 3.2, where timings are measured by rendering Figure 5 with
1spp. Finally, we apply to measured BRDF from UTIA database
[Filip and Vavra 2014] in Figure 4.
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(a) Corduroy (b) Carpet (c) Fabric1 (d) Fabric2

Figure 4: Rendering of several measured BRDFs [Filip and Vavra 2014] lit by three spherical lights using our method. For all
scenes: we use order 16 expansions and 96 samples for our method (6s) and 192 samples (accounting for light samples and
shadow samples) for Monte Carlo sampling with MIS (5.8s).

(a) Rendering
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(b) Convergence plot

Figure 5: Accuracy comparison of our method with MC inte-
gration using different SH orders. In this case, order 10 SH
expansion has already provided good approximation while
being efficient (0.75x slower than MC).

6 8 10 12 14 16

SH Order

20

30

40

50

R
en

d
er

in
g

ti
m

e
(m

s)

Monomial Recurrence

Polynomial Recurrence(Ours)

Figure 6: Performance plot of our method and [Snyder 1996]
in rendering Figure 5awith different SH orders. OurLegendre
polynomial recurrence is more efficient and has better scal-
ability than expanding to a series of monomials [Snyder
1996] despite enabling full compiler optimization.

5 LIMITATIONS AND FUTUREWORK
Spherical harmonics provide an efficient way to expand low fre-
quency spherical integrands, enabling us to solve many interesting
problems in rendering. We address near-field spherical area lighting
by extending [Wang and Ramamoorthi 2018]’s recurrence formulae
for zonal harmonics to (clipped) spherical cap domains. For future
work, we would like to generalize our method to more types of
emissive geometries (e.g. disk and ellipsoid) and textures.
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