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Abstract—With the massive increase of video traffic over the
internet, HTTP adaptive streaming has now become the main
technique for infotainment content delivery. In this context, many
bandwidth adaptation algorithms have emerged, each aiming to
improve the user QoE using different session information e.g.
TCP throughput, buffer occupancy, download time... Notwith-
standing the difference in their implementation, they mostly use
the same inputs to adapt to the varying conditions of the media
session. In this paper, we show that it is possible to predict
the bitrate decision of any ABR algorithm, thanks to machine
learning techniques, and supervised classification in particular.
This approach has the benefit of being generic, hence it does
not require any knowledge about the player ABR algorithm
itself, but assumes that whatever the logic behind, it will use
a common set of input features. Then, using machine learning
feature selection, it is possible to predict the relevant features
and then train the model over real observation. We test our
approach using simulations on well-known ABR algorithms, then
we verify the results on commercial closed-source players, using
different VoD and Live realistic data sets. The results show that
both Random Forest and Gradient Boosting achieve a very high
prediction accuracy among other ML-classifier.

Index Terms—HTTP Adaptive Streaming, Machine Learning,
Classification, P2P

I. INTRODUCTION

Video consumption is dominating the Internet traffic and
this has been reported by CISCO to reach 82% of global
Internet traffic by 2022 [1]. Achieving a good user Quality
of Experience (QoE) has become more important than ever,
and although many solutions have been proposed, Adaptive
BitRate streaming (ABR) has shown to be the best technique
for video delivery over the Internet. In ABR, the media
(video, audio) is divided into small parts of roughly constant
duration, called segments, and each segment is encoded into
different qualities. A client-side adaptive bitrate algorithm is
then used to decide on the most convenient quality given
the network conditions. In this sense, many ABR algorithms
have been proposed, either in the literature or in real open
or closed video player deployments. Even if they differ in
their deep decision logic, most of the state-of-the-art ABR
algorithms rely on heuristic observations as inputs to optimize
the bitrate selection of the next segments. These inputs are
usually the bandwidth measurements (e.g. TCP throughput and

the download time as seen by the application-layer), the buffer
dynamics (e.g. the buffer occupancy and the maximum buffer
size mainly), the segment characteristics (e.g. size, duration,
and encoding bitrate) and in some cases the device capabili-
ties (e.g., CPU usage, memory, playback speed). Authors in
[2] provide an intensive survey on different ABR schemes.
Interestingly, they show that the majority of the client-based
adaptation schemes rely on bandwidth and/or buffer heuristics.
Besides, few algorithms use information about the segment
characteristics and device capabilities.

Nowadays Machine Learning (ML) and other control tech-
niques have shown to be promising in many research fields,
and video streaming is not an exception. In the context of
enhancing the video streaming, ML algorithms have been used
in different approaches like CDN caching [3], ML-based ABR
solutions [4], video traffic classification [5] and of course the
wide application of ML-based video coding [6].

Supervised learning (SL) consists in learning the relation
between an input and an output based on previous examples of
input-output pairs. SL enables learning from past observations
to predict future events, which is the main task of ABR.
Therefore, mixing these two approaches is a logical choice.
ABR prediction, Rate Labeling as referred, was first used in
MLASH algorithm [7]. MLASH exploits additional features
to improve the prediction accuracy and the QoE of some
existing heuristic ABR algorithms. Likewise, authors in [8]
used similar Rate Labeling logic, to predict and enhance
Scalable Video Coding-based bitrate algorithms. However,
both works require some prior knowledge about the ABR
algorithm used, and although they perform very good on trace-
based evaluation, we are not aware of test reports for real-life
VoD and Live scenarios.

Predicting the ABR behavior is important for pre-fetching
and caching-based systems. In this direction, there have been
some attempts to improve the CDN pre-fetching by informing
the CDN about the next segment to be requested, as de-
scribed in the emerging specification Common-Media-Client-
Data (CMCD). However, in the current ABR implementations,
the player makes sequential requests only, yet it is not clear
how to decide on the ABR decision for the next segments. Ad-
ditionally, in P2P streaming, a pre-fetcher usually downloads
the video segments ahead of the player requests. The current
pre-fetching techniques rely on the last requested quality by978-1-7281-9320-5/20/$31.00 ©2020 IEEE



the video player to fetch the upcoming videos, thus, in the case
of quality switches, this leads to discarding the pre-fetched
segments on the previous quality, and requesting new list of
segments. Knowing the ABR decisions in advance would help
in anticipating the track switches and hence fetching next
segments on the predicted quality.

In the current implementations of P2P streaming, the video
player is integrated on top of the P2P stack which replaces the
HTTP stack as a transport layer. The ABR, in most of the web
and native players, is completely unknown to the P2P stack,
which makes the P2P-ABR integration more problematic. For
this reason, in this paper, we deliberately try to predict any
ABR algorithm given the most frequently used input features
only, and regardless of the ABR used.

To this end, we choose some of the well-known supervised
classifiers to predict the bitrate decision of the ABR algorithm.
To justify that our work is ABR agnostic, we first test the
models on six well-known state-of-the-art ABR algorithms.
Then, using real datasets collected from both VoD and Live
sessions, we predict the bitrate decision of three commercial,
completely unknown and closed-source algorithms.

The rest of this paper is organized as follows: Section II
presents the related work. The bitrate selection is formulated
as a classification problem in Section III. The experimental
setup is described in Section IV. Section V discusses the
performance of the different classifiers. We further detail the
application of this work to P2P streaming in Section VI, and
finally, the paper is concluded in Section VII.

II. RELATED WORK

A. Adaptive bitrate classifications

Adaptive bitrate algorithms are extensively classified in
different prior works [2] [9]. Interestingly, most of these works
agree on classifying the ABR algorithms by their required
inputs into three main classes: buffer-based, throughput-based,
and hybrid-buffer-throughput-based. Recently, ML and control
techniques have been used a lot in ABR, leading to a new
emerging ML-based and control-based class. In this work, we
picked some of the most famous ABR algorithms: BBA [10]
and BOLA [11] from buffer-based class, PANDA and CON-
VENTIONAL [12] and Festive [13] from throughput-based
class, and RobustMPC [14] from control-based class. All these
algorithms are well-known in the adaptive video streaming
domain, and they are frequently used in the literature.

B. Supervised learning for classification problems

Models in SL are trained on labeled datasets with the
perspective of using models on yet unknown data. SL involves
classification, regression and also structure output predictions.
In this work we focus on classification, and depending on
the number of the classes, the classification problems are
divided into two main types: Binary and Multiclass problems.
Some works like [15] divide Supervised classifiers into: (1)
Statistical learning techniques, e.g. Naive Bayes. (2) Logic-
based techniques, e.g. Decision Tree [16], Random Forest

[17], Adaboost [18] and Gradient Boost [19]. (3) Instance-
based techniques, e.g. K-Nearest Neighbors [20] algorithm.
(4) Support vector machine (SVM) [21].

C. ML-based classification in adaptive streaming

As previously mentioned, the research in adaptive streaming
is shifting towards machine learning and optimization control.
ML and ABR intersect at the point of learning from heuristic
observations and predicting future decisions. In this context,
some prior works tackled the adaptation problem from another
point of view, by not proposing a new algorithm from scratch,
but improving the existing ones using ML algorithms. In their
work [7], authors proposed a model, called MLASH, that uses
an additional set of features to train a random-forest classifier
to improve the prediction accuracy of some ABR algorithms.
However, MLASH uses some information, True information as
referred, from the ABR algorithms. Besides, we are not aware
of any work that implements MLASH on the control-based
ABR or any experiments with realistic VoD and Live datasets.
A similar work [8] uses Long Short Term Memory (LSTM)
to predict a client-side Scalable Video Coding-based bit-rate
adaptation using a set of heuristic attributes (e.g., buffer
and throughput variables.). Although they compare different
ML-algorithms and perform good trace-based evaluation, the
proposed model tackles only the SVC-based algorithms, and
we are not aware of any work that extends to the classic
heuristic and control-based ABR algorithms.

III. BITRATE SELECTION CLASSIFICATION PROBLEM

ABR bitrate prediction is formulated as a multiclass clas-
sification problem in this work. The first step of solving this
ML problem is to define the features needed to predict the
ABR bitrate. As stated earlier in the introduction, most ABR
algorithms use a set or a subset of network, buffer, or segment
variables. In this study, and to keep the model generic, we will
use the following set of features:

1) Buffer Level (s): the buffer occupancy when requesting
the segment, which is usually available on most video
players’ public APIs.

2) Bandwidth (bps): the TCP throughput as seen by the
application layer after downloading the segment, which
is simply measured by computing the data downloaded
(segment size here) over the download time.

3) Previous Bandwidth (bps): the throughput measured
when downloading the previous segment; this informa-
tion is used in different algorithms for smoothing the
bandwidth estimation, or when the current estimation
is not available as is the case with some buffer-based
algorithms.

4) Download Time (s): the segment download time.
5) Previous Bitrate (bps): the bitrate of the previously

selected segment, as used by the majority of ABR
algorithms to take the bitrate smoothness into account.

Some other features can be used in the bitrate selection,
as RTT, moving average bandwidth over n segments, rewards
when ML-based or control-based ABR are used, processing



power, packet loss, some network-assisted information, etc.
However, some of these attributes require some information
about the ABR algorithm beforehand (e.g., the value of n and
the reward), which is not compatible with the main goal of
this work of being ABR agnostic. Moreover, other metrics are
strongly dependent on the device capabilities, and generalizing
these metrics over different users is of our interest in future
work.

As our features have a wide range of values, we rescale
the above-mentioned features, using Min-Max scaler where
all features will be transformed into the range [0,1]. Then,
we build our dataset matrix of pairs of M inputs (features)
and output (label) over N instances (video segments in our
problem). For training and testing, we perform stratified K-
Folds Cross-Validation with K = 10, where the data is further
split into K different subsets (or folds). The folds are made
by preserving the percentage of samples for each class. Then,
k−1 folds are used to train the model whereas the subset k is
left as test data. The model results are then averaged against
each of the folds and tested after against the Test set.

IV. EXPERIMENTAL EVALUATION

In this work, we use a wide set of datasets from simulation
and real-life cases.

For simulation, we used six classic ABR algorithms: BBA
[10], BOLA [11], CONVENTIONAL [12], PANDA [12],
FESTIVE [13] and Robust MPC [14]. We implemented all
these algorithms using a MATLAB-based model presented in
[22], except for Robust MPC, for which we used an existing
Python-based implementation that is available at Pensieve
Github1. The stats were collected from 10 users who were
watching the same content and experiencing different band-
width profiles. The bandwidth profiles were chosen from some
publicly available sets of real 3G [23] and 4G [24] bandwidth
traces, so that the performance could be evaluated in highly
dynamic adaptive scenarios. For the video content, we chose
Red Bull Play Streets video from DASH Dataset Sequences2,
one-hour duration, segmented into 2-second segments and
encoded at six different bitrates: 0.3, 0.7, 1.19, 1.99, 2.99 and
4.981 Mbps.

For realistic datasets, and to validate our work with un-
known ABR algorithms, we collected the stats from com-
mercial streaming services using STREAMROOT technology
providing the P2P backend. The ABR algorithms for these
players are enabled to work in P2P using Response-Delay
approach presented in [22]. The trials were conducted with
various HTML5 video players implementing their own, differ-
ent ABR algorithms, where some information like the buffer
level can be accessed through DOM independently from the
ABR implementation. Three commercial service providers,
referred as S1, S2, S3, were chosen randomly, and for each,
the data was collected from an overall range of 5k to 10k
concurrent peers. The service provider used different live and

1Available at: https://github.com/hongzimao/pensieve
2Available at: https://dash.itec.aau.at/download/

VoD streams, so we built two datasets, one for VoD and one for
Live sessions, each with up to 40000 instances. The datasets
have shown imbalance bitrate selection for video segments,
dominating the highest bitrate, i.e. the bitrate distribution,
from the lowest to the highest, is 4, 6, 9, 11, 70 % and 6,
7, 14, 73% for the dataset collected from S1 which uses 5
qualities for Live and four for VoD. The second dataset from
S2 shows using four qualities for Live and three for VoD
with distribution of 7, 17, 28, 48% and 12, 14, 74% (Live and
VoD respectively). Also, the last dataset related to S3 shows
a bitrate distribution of 1, 1, 2, 4, 4, 6, 82% and 1, 1, 2, 5, 6,
7, 78 % using seven qualities for Live and VoD respectively.

We performed our experiments over the ML algorithms
presented in section II-B: Logistic Regression (LGS), Support
Vector Machine (SVM), Random Forest (RF), Decision Tree
(DT), Ada Boost (AdBst), Gradient Boost (GrdBst), Naive
Bayes (NB), K-Nearest Neighbors (KNN). For their imple-
mentation and measurement, we used Scikit-Learn package
[25] on a Linux machine (Ubuntu 20.04 LTS), with processor
Intel® Core™ i7-8665U, running 8 cores at 1.90GHz with 16
GB RAM.

For evaluation metrics, it is common in classification prob-
lems to use some known metrics (e.g. accuracy, precision,
recall) [26] to evaluate models. Then for multi-class prob-
lems, these metrics are averaged per class. Here, we use
the weighted-averaging method due to the imbalance of our
datasets and we provide the confusion matrix to show the per-
class prediction accuracy.

V. RESULTS AND DISCUSSION

In this section, we present the ABR prediction results, first
with simulation datasets from the selected ABR algorithms
and then from the realistic datasets from unknown ABR
algorithms.

A. Simulation-based datasets

1) Feature importance: The feature importance of the ABR
algorithms used is presented in Fig. 1. The previous bitrate is
noticeably dominating the decision of the selected ABR algo-
rithms, this acknowledges the importance of the smoothness
in these algorithms. Additionally, we can infer the nature of
the ABR: the buffer-based algorithms (BBA and BOLA) show
high importance of the buffer level feature over the network
features, while the throughput-based algorithms (CONVEN-
TIONAL, PANDA, and FESTIVE) give higher importance to
the bandwidth and the download time features. Finally, we can
see that R-MPC, which is a hybrid control-based algorithm,
relies on all the selected features (buffer and network features)
with different, but close, percentages.

2) Metrics evaluation: The prediction accuracy of the dif-
ferent machine learning classifiers is shown in TABLE I.
Among the selected ML classifiers, RF and GrdBst achieve
the highest prediction accuracy for all the selected ABR
algorithms. For BBA and BOLA, this accuracy is more than
99% with GrdBst scoring slightly higher than RF (around
99.9%). With the throughput-based algorithms, we notice a
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Fig. 1: Feature importance for the selected ABR algorithms

small decline in the overall accuracy for both RF and GrdBst
which still show close scores (96-97%). For control-based
algorithms, represented by R-MPC, it is noticeable that GrdBst
scores the best accuracy with slightly higher than 98%.

TABLE I: Classification accuracy (%) of ML classifiers on
different ABR datasets

LGS SVM RF DT GrdBst AdBst NB KNN
BBA 46.97 87.71 99.63 99.60 99.82 41.36 87.55 85.84
BOLA 53.34 71.23 99.88 99.969 99.97 61.13 63.91 70.01
CONV 44.86 93.29 96.38 94.83 96.23 67.63 93.01 91.79
PANDA 41.05 97.22 98.37 95.79 97.37 65.95 97.13 95.42
FESTIVE 36.61 93.04 96.54 94.34 96.23 63.03 92.46 91.79
R-MPC 39.59 32.35 96.97 94.05 98.01 70.64 80.11 52.47

Moving to TABLE II, which presents the precision and
recall metrics achieved with RF and GrdBst only, due to the
low accuracy of the other algorithms. The best scores are
obtained for buffer-based algorithms, with RF reaching a bit
higher than 99.8% (for both BBA and BOLA), while GrdBst
reaches the same percentage with BBA and even better with
99.98% for BOLA. Unfortunately, this good behavior drops
a bit with throughput-based algorithms: both RF and GrdBst
score around 96% for CONVENTIONAL and FESTIVE. For
PANDA, RF achieves 1% more than GrdBst (98% to 97%).
However, with Robust MPC, the performance is reversed:
GrdBst is better than RF with 98.4 to 97.5%.

TABLE II: Precision and Recall(%) of RF and GrdBst classi-
fiers for simulation datasets

RF GrdBst
Precision Recall Precision Recall

BBA 99.84 99.85 99.84 99.85
BOLA 99.86 98.84 99.98 99.97
CONV 96.83 96.68 96.28 96.14
PANDA 98.18 98.17 97.72 97.71

FESTIVE 96.15 96.12 96.51 96.55
R-MPC 97.57 97.56 98.46 98.45

B. Realistic commercial-based datasets

1) Feature importance: The feature importance shows in
Fig. 2 that these ABR algorithms are more sensitive to
the previous bitrate in the first place, which reveals their
smoothness preference. Also, apart from VoD scenario for S1,
all the ABR algorithms rely on the throughput measurements
for the current and the last downloaded segment. Interestingly,
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Fig. 2: Feature importance for the unknown ABR gained from
three commercial services

the ABR of S1 seems to give higher importance to the buffer
level feature in VoD scenario.

2) Metrics evaluation: The classification accuracy of each
ML algorithm for the different datasets is presented in TABLE
III. This table shows that RF, DT, and GrdBst perform the best
among the tested ML algorithms. For s1 (both Live and VoD),
these three algorithms achieve very high accuracy, slightly
higher than 99%. For S2, RF and GrdBst perform even better
than DT with an accuracy around 98% and 99% for Live and
VoD respectively. Finally, S3, which has the highest number of
quality levels (seven qualities), for Live we notice that RF and
GrdBst achieve again high accuracy, with GrdBst achieving
slightly higher accuracy. Nevertheless, with VoD, RF performs
the best with an accuracy of 98.5%, which is nearly 1% better
than DT and GrdBst.

TABLE III: Classification accuracy (%) of ML classifiers on
LIVE and VoD commercial services datasets

LGS SVM RF DT GrdBst AdBst NB KNN
S1(LIVE) 83.37 93.57 99.30 99.06 99.24 61.69 97.86 98.06
S1(VoD) 84.64 96.43 99.29 98.99 99.26 98.31 98.83 98.67
S2(LIVE) 65.07 86.16 97.89 97.19 98.05 92.85 92.48 92.61
S2(VoD) 85.11 96.66 99.25 98.75 99.37 97.01 93.44 96.00
S3(LIVE) 88.90 88.93 98.26 97.75 98.84 87.17 90.84 95.42
S3(VoD) 84.27 84.28 98.57 97.86 97.04 87.79 95.12 96.35

Before moving to precision and recall metrics, we present
the confusion matrix of the three best classifiers, in tables IV,
V and VI for each commercial dataset. The first column of
each confusion matrix shows the True labels of the classes,
which is in our problem represents the actual ABR decisions
for the quality levels (with class 0 representing the minimum
bitrate). The first row presents the predicted ABR qualities.

Looking at these tables, we see that most of the bitrates are
correctly predicted when enough segments are downloaded on
these bitrates. However, the bitrates, that are rarely selected by
the ABR, are predicted with lower accuracy. This behavior is
clearly seen with the third dataset S3, looking at VI, which
has seven qualities. This table shows that the highest bitrate
is almost always predicted correctly, but the classifiers suffer
from falsely classifying the other bitrates. Even though, it is
interesting to see that RF does not fall below 90% for per-
class correct prediction, compared to 83% and 80% for DT and



TABLE IV: Confusion matrixes of RF, DT and GrdBst for the
first commercial dataset

(a) RF for S1(LIVE)

True Predicted Class
% 0 1 2 3 4

0 96.9 2.2 0.3 0.0 0.6
1 0.3 99.4 0.0 0.1 0.2
2 0.2 0.8 96.8 2.0 0.2
3 0.3 0.2 2.3 94.8 2.3
4 0.0 0.0 0.0 0.1 99.9

(b) RF for S1(VoD)

True Predicted Class
% 0 1 2 3

0 99.1 0.6 0.0 0.3
1 1.6 94.6 3.1 0.7
2 0.0 1.2 95.9 2.9
3 0.0 0.0 0.2 99.8

(c) DT for S1(LIVE)

True Predicted Class
% 0 1 2 3 4

0 96.3 2.5 0.3 0.3 0.6
1 0.3 98.3 0.7 0.5 0.2
2 0.0 1.0 94.5 4.5 0.0
3 0.1 0.3 3.1 94.0 2.4
4 0.0 0.0 0.0 0.2 99.8

(d) DT for S1(VoD)

True Predicted Class
% 0 1 2 3

0 98.7 1.0 0.2 0.1
1 2.7 92.9 3.4 0.9
2 0.5 4.5 90.2 4.8
3 0.0 0.1 0.3 99.7

(e) GrdBst for S1(LIVE)

True Predicted Class
% 0 1 2 3 4

0 96.3 3.1 0.0 0.3 0.3
1 0.3 98.6 0.8 0.1 0.2
2 0.0 1.2 96.0 2.7 0.2
3 0.2 0.6 2.8 94.4 2.0
4 0.0 0.0 0.0 0.1 99.9

(f) GrdBst for S1(VoD)

True Predicted Class
% 0 1 2 3

0 99.2 0.6 0.1 0.2
1 2.6 93.4 3.3 0.7
2 0.0 3.9 93.2 2.9
3 0.0 0.0 0.2 99.8

TABLE V: Confusion matrixes of RF, DT and GrdBst for the
second commercial dataset

(a) RF for S2(LIVE)

True Predicted Class

% 0 1 2 3

0 99.7 0.2 0.0 0.1
1 1.3 97.9 0.1 0.6
2 0.5 2.3 93.6 3.5
3 0.2 0.3 0.5 99.0

(b) RF for S2(VoD)

True Predicted Class
% 0 1 2

0 99.4 0.5 0.1
1 0.7 97.0 2.2
2 0.0 0.4 99.6

(c) DT for S2(LIVE)

True Predicted Class
% 0 1 2 3

0 99.0 0.7 0.1 0.2
1 1.2 97.2 0.9 0.6
2 0.7 0.6 94.3 4.4
3 0.2 0.4 1.0 98.4

(d) DT for S2(VoD)

True Predicted Class
% 0 1 2

0 98.8 1.1 0.1
1 1.0 96.4 2.5
2 0.0 0.6 99.4

(e) GrdBst for S2(LIVE)

True Predicted Class
% 0 1 2 3

0 99.5 0.4 0.1 0.1
1 1.3 97.5 0.6 0.7
2 0.6 4.3 89.5 5.6
3 0.2 0.4 0.7 98.7

(f) GrdBst for S2(VoD)

True Predicted Class
% 0 1 2

0 99.5 0.4 0.1
1 0.6 97.9 1.5
2 0.0 0.4 99.6

GrdBst respectively. This performance can be further improved
by collecting more data points for these bitrates when we have
more qualities involved.

Finally, we present precision and recall metrics in TABLE
VII, as many works recommend that using accuracy only is
not enough. Depending on the application, one metric may be
favored over the other. Taking our bitrate selection problem,
if the purpose is to check, for any given bitrate, how often it
was truly predicted out of all the total predictions of this class,
then precision is the metric that should be taken into account.
On the other hand, if the goal is to assure that the actual

TABLE VI: Confusion matrixes of RF, DT and GrdBst for the
third commercial dataset

(a) RF for S3(LIVE)

True Predicted Class
% 0 1 2 3 4 5 6

0 90.2 4.3 0.5 1.0 0.8 0.8 2.5
1 2.5 93.5 1.2 1.1 0.7 0.3 0.7
2 0.7 3.6 90.7 2.1 0.9 0.9 1.1
3 0.1 0.5 2.5 93.4 2.8 0.3 0.5
4 0.1 0.2 0.1 3.3 93.3 2.2 0.7
5 0.1 0.0 0.2 0.5 5.6 90.3 3.3
6 0.0 0.0 0.0 0.0 0.0 0.3 99.6

(b) RF for S3(VoD)

True Predicted Class
% 0 1 2 3 4 5 6

0 90.2 4.3 0.5 1.0 0.8 0.8 2.5
1 2.5 91.5 1.2 3.1 0.7 0.3 0.7
2 0.7 1.6 90.7 4.1 0.9 0.9 1.1
3 0.1 0.5 2.5 93.4 2.8 0.3 0.5
4 0.1 0.2 0.1 3.3 93.3 2.2 0.7
5 0.1 0.0 0.2 0.5 5.6 90.3 3.3
6 0.0 0.0 0.0 0.0 0.0 0.3 99.6

(c) DT for S3(LIVE)

True Predicted Class
% 0 1 2 3 4 5 6

0 90.0 4.3 1.5 2.3 0.5 0.5 1.0
1 4.7 87.9 3.4 2.8 0.7 0.4 0.1
2 2.0 6.1 83.3 5.2 2.2 0.7 0.4
3 0.6 1.0 3.6 89.6 4.3 0.6 0.4
4 0.4 0.4 0.6 4.7 89.5 3.8 0.5
5 0.1 0.0 0.4 0.8 7.7 87.6 3.3
6 0.1 0.0 0.1 0.0 0.2 0.6 98.9

(d) DT for S3(VoD)

True Predicted Class
% 0 1 2 3 4 5 6

0 88.0 6.8 0.8 1.3 0.5 0.5 2.3
1 3.9 88.2 2.3 3.5 1.0 0.4 0.6
2 0.7 5.6 87.0 3.3 1.6 0.9 0.9
3 0.1 0.6 2.5 92.8 3.5 0.1 0.5
4 0.0 0.2 0.9 5.8 89.5 2.9 0.6
5 0.2 0.0 0.0 0.4 7.2 88.5 3.7
6 0.1 0.1 0.1 0.0 0.1 0.4 99.3

(e) GrdBst for S3(LIVE)

True Predicted Class
% 0 1 2 3 4 5 6

0 90.4 3.2 0.0 3.8 0.0 2.6 0.0
1 2.7 90.1 2.3 4.1 0.4 0.4 0.0
2 0.0 2.3 87.3 5.9 2.7 0.9 0.9
3 0.0 0.7 2.6 93.5 2.9 0.2 0.2
4 0.1 0.1 1.0 3.5 91.1 3.8 0.3
5 0.0 0.1 0.0 0.5 4.3 92.7 2.4
6 0.1 0.0 0.0 0.0 0.0 0.2 99.8

(f) GrdBst for S3(VoD)

True Predicted Class
% 0 1 2 3 4 5 6

0 86.3 2.1 2.9 0.2 2.6 2.6 3.3
1 3.3 88.8 3.6 4.3 0.0 0.0 0.0
2 0.5 2.9 80.6 14.9 0.6 0.3 0.3
3 0.2 0.2 4.4 92.5 2.5 0.1 0.3
4 0.0 0.0 0.2 3.7 92.5 3.4 0.1
5 0.0 0.0 0.1 0.3 4.2 92.4 3.0
6 0.0 0.0 0.0 0.0 0.0 0.3 99.6

classes are truly predicted then recall is the preferred metric.
TABLE VII shows that each RF, DT, and GrdBst achieves
high precision and recall, with RF and GrdBst slightly better
than DT in some scenarios.

TABLE VII: Precision and Recall(%) using RF, DT and AdBst
classifiers on LIVE and VoD commercial services datasets

RF DT GrdBst
Precision Recall Precision Recall Precision Recall

S1(LIVE) 99.16 99.17 98.87 98.86 99.16 99.17
S1(VoD) 99.21 99.19 99.12 99.11 99.20 99.16
S2(LIVE) 98.98 98.99 98.44 98.43 98.71 98.71
S2(VoD) 99.32 99.33 98.96 98.95 99.33 99.33
S3(LIVE) 97.65 97.83 96.87 96.83 97.89 97.18
S3(VoD) 97.99 97.99 96.08 96.06 96.95 96.94

In addition, processing latency is another important metric,
especially for online learning. It is even more important for
video streaming when the download decisions rely on bitrate
prediction. To guarantee the latency requirements, we present
in TABLE VIII the training and prediction times for the
different ML algorithms. The training time is computed over
the whole dataset, and the prediction time is averaged over
20% of the datasets. This table shows that DT is faster than
both RF and GrdBst, for training and prediction phases. For the
training phase, GrdBst is computationally the most demanding
algorithm, though it performs well, and slightly better than RF,
for the prediction phase.

VI. APPLICABILITY TO PRE-FETCHING BASED ABR
DEPLOYMENTS

Predicting the ABR decisions serves the pre-fetching based
systems in the first place. As mentioned in Section I, both CDN
and P2P streaming may need to deploy some pre-fetching
techniques to improve the QoE. Hence, it becomes challeng-
ing when ABR decisions are needed to avoid any source-



TABLE VIII: Processing time of ML classifiers on Live and
VoD commercial services datasets

ML algo Training Prediction
mean (s) std(s) mean (ms) std (ms)

LGS 1.69 0.99 0.19 0.05
SVM 0.99 0.46 56.69 38.93
RF 1.55 0.38 10.74 1.77
DT 0.04 0.016 0.09 0.02
GrdBst 14.64 6.71 7.51 3.47
AdBst 1.61 0.48 33.80 27.45
NB 0.02 0.003 0.21 0.03
KNN 0.41 0.015 41.68 4.82

wasting downloads. To our knowledge, most of the existing
works keep prefetching the last requested quality, ignoring the
possible track switching which becomes problematic in the
high dynamic adaptive scenarios, especially when the highest
bitrates are requested over low bandwidth. Therefore, our goal
is rather to predict the switches with the most important impact
on overhead and QoE, which is possible according to our
results. Moreover, This approach is shown to be representative
of the real-world performances, where the highest bitrate is
almost predicted correctly which will be translated into less
overhead and better QoE. Here, this approach is reasonable
for online prediction, for more reasons than just prediction
accuracy. On one hand, and for the training phase, many
users can participate by sending their measurements of the
buffer and the measured bandwidth to a central server, which
reduces the time needed for data collection effectively. On
the other hand, for the prediction phase, the input features for
the upcoming segments are either pre-known (e.g. the segment
size, the download time, and the measured bandwidth) or easy
to predict (e.g the buffer level giving the download time and
the previous buffer level). On another note, the prediction
latency, as shown in TABLE VIII, is negligible compared to
the segment duration. These reasons make our approach quite
efficient to move forward a smarter pre-fetching using ML-
algorithms.

VII. CONCLUSION

In this paper, we presented how machine learning-based
techniques can be used to predict the behavior of ABR
algorithms. We performed our experiments over different ABR
algorithms from simulation and real-world closed-source de-
ployments. Our results show that Random Forest and Gradient
boost algorithms are able to achieve a very high prediction
accuracy, using only the basic information provided as input
to the application layer. This work serves, in particular, any
pre-fetching based streaming deployment, where the ABR
decisions are needed beforehand. We plan to expand this work
in this direction and investigate the effects of such prediction
on pre-fetching based systems such as P2P networks.

ACKNOWLEDGMENT

We thank our data scientist colleague Igor Mukam for his
great work on collecting and processing the realistic datasets.

REFERENCES

[1] Cisco, “Cisco visual networking index: Forecast and methodology, 2017
-2022,” White Paper, 2019.

[2] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann,
“A survey on bitrate adaptation schemes for streaming media over http,”
IEEE Communications Surveys Tutorials, vol. 21, no. 1, 2019.

[3] D. S. Berger, “Towards lightweight and robust machine learning for cdn
caching,” in Proc of the 17th ACM Workshop on Hot Topics in Networks.
Association for Computing Machinery, 2018.
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